@@ -3,4 +3,6 @@ __pycache__
|
||||
*.pyc
|
||||
*.pyo
|
||||
*.pyd
|
||||
.DS_Store
|
||||
.DS_Store
|
||||
mongodb
|
||||
napcat
|
||||
2
.gitattributes
vendored
Normal file
2
.gitattributes
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
*.bat text eol=crlf
|
||||
*.cmd text eol=crlf
|
||||
11
.gitignore
vendored
11
.gitignore
vendored
@@ -18,6 +18,10 @@ config/bot_config.toml
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
llm_statistics.txt
|
||||
mongodb
|
||||
napcat
|
||||
run_dev.bat
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
@@ -188,3 +192,10 @@ cython_debug/
|
||||
|
||||
# jieba
|
||||
jieba.cache
|
||||
|
||||
|
||||
# vscode
|
||||
/.vscode
|
||||
|
||||
# direnv
|
||||
/.direnv
|
||||
55
README.md
55
README.md
@@ -13,16 +13,19 @@
|
||||
|
||||
**🍔麦麦是一个基于大语言模型的智能QQ群聊机器人**
|
||||
|
||||
- 🤖 基于 nonebot2 框架开发
|
||||
- 🧠 LLM 提供对话能力
|
||||
- 💾 MongoDB 提供数据持久化支持
|
||||
- 🐧 NapCat 作为QQ协议端支持
|
||||
- 基于 nonebot2 框架开发
|
||||
- LLM 提供对话能力
|
||||
- MongoDB 提供数据持久化支持
|
||||
- NapCat 作为QQ协议端支持
|
||||
|
||||
**最新版本: v0.5.***
|
||||
|
||||
<div align="center">
|
||||
<a href="https://www.bilibili.com/video/BV1amAneGE3P" target="_blank">
|
||||
<img src="docs/video.png" width="300" alt="麦麦演示视频">
|
||||
<br>
|
||||
👆 点击观看麦麦演示视频 👆
|
||||
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@@ -31,13 +34,32 @@
|
||||
> - 文档未完善,有问题可以提交 Issue 或者 Discussion
|
||||
> - QQ机器人存在被限制风险,请自行了解,谨慎使用
|
||||
> - 由于持续迭代,可能存在一些已知或未知的bug
|
||||
> - 由于开发中,可能消耗较多token
|
||||
|
||||
**交流群**: 766798517 一群人较多,建议加下面的(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||
**交流群**: 571780722 另一个群(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||
|
||||
## 📚 文档
|
||||
##
|
||||
<div align="left">
|
||||
<h2>📚 文档 ⬇️ 快速开始使用麦麦 ⬇️</h2>
|
||||
</div>
|
||||
|
||||
### 部署方式
|
||||
|
||||
如果你不知道Docker是什么,建议寻找相关教程或使用手动部署
|
||||
|
||||
- [🐳 Docker部署指南](docs/docker_deploy.md)
|
||||
|
||||
- [📦 手动部署指南](docs/manual_deploy.md)
|
||||
|
||||
### 配置说明
|
||||
- [🎀 新手配置指南](docs/installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘
|
||||
- [⚙️ 标准配置指南](docs/installation_standard.md) - 简明专业的配置说明,适合有经验的用户
|
||||
|
||||
<div align="left">
|
||||
<h3>了解麦麦 </h3>
|
||||
</div>
|
||||
|
||||
- [安装与配置指南](docs/installation.md) - 详细的部署和配置说明
|
||||
- [项目架构说明](docs/doc1.md) - 项目结构和核心功能实现细节
|
||||
|
||||
## 🎯 功能介绍
|
||||
@@ -70,6 +92,12 @@
|
||||
|
||||
|
||||
## 开发计划TODO:LIST
|
||||
|
||||
规划主线
|
||||
0.6.0:记忆系统更新
|
||||
0.7.0: 麦麦RunTime
|
||||
|
||||
|
||||
- 人格功能:WIP
|
||||
- 群氛围功能:WIP
|
||||
- 图片发送,转发功能:WIP
|
||||
@@ -87,10 +115,21 @@
|
||||
- 改进表情包发送逻辑
|
||||
- 自动生成的回复逻辑,例如自生成的回复方向,回复风格
|
||||
- 采用截断生成加快麦麦的反应速度
|
||||
- 改进发送消息的触发:
|
||||
- 改进发送消息的触发
|
||||
|
||||
|
||||
## 设计理念
|
||||
|
||||
- **千石可乐说:**
|
||||
- 这个项目最初只是为了给牛牛bot添加一点额外的功能,但是功能越写越多,最后决定重写。其目的是为了创造一个活跃在QQ群聊的"生命体"。可以目的并不是为了写一个功能齐全的机器人,而是一个尽可能让人感知到真实的类人存在.
|
||||
- 程序的功能设计理念基于一个核心的原则:"最像而不是好"
|
||||
- 主打一个陪伴
|
||||
- 如果人类真的需要一个AI来陪伴自己,并不是所有人都需要一个完美的,能解决所有问题的helpful assistant,而是一个会犯错的,拥有自己感知和想法的"生命形式"。
|
||||
- 代码会保持开源和开放,但个人希望MaiMbot的运行时数据保持封闭,尽量避免以显式命令来对其进行控制和调试.我认为一个你无法完全掌控的个体才更能让你感觉到它的自主性,而视其成为一个对话机器.
|
||||
|
||||
|
||||
## 📌 注意事项
|
||||
纯编程外行,面向cursor编程,很多代码史一样多多包涵
|
||||
SengokuCola纯编程外行,面向cursor编程,很多代码史一样多多包涵
|
||||
|
||||
> ⚠️ **警告**:本应用生成内容来自人工智能模型,由 AI 生成,请仔细甄别,请勿用于违反法律的用途,AI生成内容不代表本人观点和立场。
|
||||
|
||||
|
||||
17
bot.py
17
bot.py
@@ -1,14 +1,15 @@
|
||||
import os
|
||||
|
||||
import nonebot
|
||||
from nonebot.adapters.onebot.v11 import Adapter
|
||||
from dotenv import load_dotenv
|
||||
from loguru import logger
|
||||
from nonebot.adapters.onebot.v11 import Adapter
|
||||
|
||||
'''彩蛋'''
|
||||
from colorama import init, Fore
|
||||
from colorama import Fore, init
|
||||
|
||||
init()
|
||||
text = "多年以后,面对行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
|
||||
text = "多年以后,面对AI行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
|
||||
rainbow_colors = [Fore.RED, Fore.YELLOW, Fore.GREEN, Fore.CYAN, Fore.BLUE, Fore.MAGENTA]
|
||||
rainbow_text = ""
|
||||
for i, char in enumerate(text):
|
||||
@@ -17,11 +18,15 @@ print(rainbow_text)
|
||||
'''彩蛋'''
|
||||
|
||||
# 初次启动检测
|
||||
if not os.path.exists("config/bot_config.toml") or not os.path.exists(".env"):
|
||||
logger.info("检测到bot_config.toml不存在,正在从模板复制")
|
||||
if not os.path.exists("config/bot_config.toml"):
|
||||
logger.warning("检测到bot_config.toml不存在,正在从模板复制")
|
||||
import shutil
|
||||
# 检查config目录是否存在
|
||||
if not os.path.exists("config"):
|
||||
os.makedirs("config")
|
||||
logger.info("创建config目录")
|
||||
|
||||
shutil.copy("config/bot_config_template.toml", "config/bot_config.toml")
|
||||
shutil.copy("template/bot_config_template.toml", "config/bot_config.toml")
|
||||
logger.info("复制完成,请修改config/bot_config.toml和.env.prod中的配置后重新启动")
|
||||
|
||||
# 初始化.env 默认ENVIRONMENT=prod
|
||||
|
||||
@@ -1,98 +0,0 @@
|
||||
[bot]
|
||||
qq = 123
|
||||
nickname = "麦麦"
|
||||
|
||||
[personality]
|
||||
prompt_personality = [
|
||||
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧", # 贴吧人格
|
||||
"是一个女大学生,你有黑色头发,你会刷小红书" # 小红书人格
|
||||
]
|
||||
prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
[message]
|
||||
min_text_length = 2 # 与麦麦聊天时麦麦只会回答文本大于等于此数的消息
|
||||
max_context_size = 15 # 麦麦获得的上文数量
|
||||
emoji_chance = 0.2 # 麦麦使用表情包的概率
|
||||
ban_words = [
|
||||
# "403","张三"
|
||||
]
|
||||
|
||||
[emoji]
|
||||
check_interval = 120 # 检查表情包的时间间隔
|
||||
register_interval = 10 # 注册表情包的时间间隔
|
||||
|
||||
[cq_code]
|
||||
enable_pic_translate = false
|
||||
|
||||
[response]
|
||||
model_r1_probability = 0.8 # 麦麦回答时选择R1模型的概率
|
||||
model_v3_probability = 0.1 # 麦麦回答时选择V3模型的概率
|
||||
model_r1_distill_probability = 0.1 # 麦麦回答时选择R1蒸馏模型的概率
|
||||
|
||||
[memory]
|
||||
build_memory_interval = 300 # 记忆构建间隔 单位秒
|
||||
forget_memory_interval = 300 # 记忆遗忘间隔 单位秒
|
||||
|
||||
[others]
|
||||
enable_advance_output = true # 是否启用高级输出
|
||||
enable_kuuki_read = true # 是否启用读空气功能
|
||||
|
||||
[groups]
|
||||
talk_allowed = [
|
||||
123,
|
||||
123,
|
||||
] #可以回复消息的群
|
||||
talk_frequency_down = [] #降低回复频率的群
|
||||
ban_user_id = [] #禁止回复消息的QQ号
|
||||
|
||||
|
||||
#V3
|
||||
#name = "deepseek-chat"
|
||||
#base_url = "DEEP_SEEK_BASE_URL"
|
||||
#key = "DEEP_SEEK_KEY"
|
||||
|
||||
#R1
|
||||
#name = "deepseek-reasoner"
|
||||
#base_url = "DEEP_SEEK_BASE_URL"
|
||||
#key = "DEEP_SEEK_KEY"
|
||||
|
||||
#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env.prod自定义的宏,使用自定义模型则选择定位相似的模型自己填写
|
||||
|
||||
[model.llm_reasoning] #R1
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_reasoning_minor] #R1蒸馏
|
||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal] #V3
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal_minor] #V2.5
|
||||
name = "deepseek-ai/DeepSeek-V2.5"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.vlm] #图像识别
|
||||
name = "deepseek-ai/deepseek-vl2"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.embedding] #嵌入
|
||||
name = "BAAI/bge-m3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
# 主题提取,jieba和snownlp不用api,llm需要api
|
||||
[topic]
|
||||
topic_extract='snownlp' # 只支持jieba,snownlp,llm三种选项
|
||||
|
||||
[topic.llm_topic]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
@@ -13,7 +13,7 @@ services:
|
||||
volumes:
|
||||
- napcatQQ:/app/.config/QQ
|
||||
- napcatCONFIG:/app/napcat/config
|
||||
- maimbotDATA:/MaiMBot/data #麦麦的图片等要给napcat不然发送图片会有问题
|
||||
- maimbotDATA:/MaiMBot/data # 麦麦的图片等要给napcat不然发送图片会有问题
|
||||
image: mlikiowa/napcat-docker:latest
|
||||
|
||||
mongodb:
|
||||
@@ -39,7 +39,8 @@ services:
|
||||
- mongodb
|
||||
- napcat
|
||||
volumes:
|
||||
- maimbotCONFIG:/MaiMBot/config
|
||||
- napcatCONFIG:/MaiMBot/napcat # 自动根据配置中的qq号创建ws反向客户端配置
|
||||
- ./bot_config.toml:/MaiMBot/config/bot_config.toml
|
||||
- maimbotDATA:/MaiMBot/data
|
||||
- ./.env.prod:/MaiMBot/.env.prod
|
||||
image: sengokucola/maimbot:latest
|
||||
|
||||
@@ -83,7 +83,6 @@
|
||||
|
||||
14. **`topic_identifier.py`**:
|
||||
- 识别消息中的主题,帮助机器人理解用户的意图。
|
||||
- 使用多种方法(LLM、jieba、snownlp)进行主题识别。
|
||||
|
||||
15. **`utils.py`** 和 **`utils_*.py`** 系列文件:
|
||||
- 存放各种工具函数,提供辅助功能以支持其他模块。
|
||||
|
||||
24
docs/docker_deploy.md
Normal file
24
docs/docker_deploy.md
Normal file
@@ -0,0 +1,24 @@
|
||||
# 🐳 Docker 部署指南
|
||||
|
||||
## 部署步骤(推荐,但不一定是最新)
|
||||
|
||||
1. 获取配置文件:
|
||||
```bash
|
||||
wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml
|
||||
```
|
||||
|
||||
2. 启动服务:
|
||||
```bash
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
|
||||
```
|
||||
|
||||
3. 修改配置后重启:
|
||||
```bash
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
|
||||
```
|
||||
|
||||
## ⚠️ 注意事项
|
||||
|
||||
- 目前部署方案仍在测试中,可能存在未知问题
|
||||
- 配置文件中的API密钥请妥善保管,不要泄露
|
||||
- 建议先在测试环境中运行,确认无误后再部署到生产环境
|
||||
@@ -1,145 +0,0 @@
|
||||
# 🔧 安装与配置指南
|
||||
|
||||
## 部署方式
|
||||
|
||||
如果你不知道Docker是什么,建议寻找相关教程或使用手动部署
|
||||
|
||||
### 🐳 Docker部署(推荐,但不一定是最新)
|
||||
|
||||
1. 获取配置文件:
|
||||
```bash
|
||||
wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml
|
||||
```
|
||||
|
||||
2. 启动服务:
|
||||
```bash
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
|
||||
```
|
||||
|
||||
3. 修改配置后重启:
|
||||
```bash
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
|
||||
```
|
||||
|
||||
### 📦 手动部署
|
||||
|
||||
1. **环境准备**
|
||||
```bash
|
||||
# 创建虚拟环境(推荐)
|
||||
python -m venv venv
|
||||
venv\\Scripts\\activate # Windows
|
||||
# 安装依赖
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
2. **配置MongoDB**
|
||||
- 安装并启动MongoDB服务
|
||||
- 默认连接本地27017端口
|
||||
|
||||
3. **配置NapCat**
|
||||
- 安装并登录NapCat
|
||||
- 添加反向WS:`ws://localhost:8080/onebot/v11/ws`
|
||||
|
||||
4. **配置文件设置**
|
||||
- 修改环境配置文件:`.env.prod`
|
||||
- 修改机器人配置文件:`bot_config.toml`
|
||||
|
||||
5. **启动麦麦机器人**
|
||||
- 打开命令行,cd到对应路径
|
||||
```bash
|
||||
nb run
|
||||
```
|
||||
|
||||
6. **其他组件**
|
||||
- `run_thingking.bat`: 启动可视化推理界面(未完善)
|
||||
|
||||
- ~~`knowledge.bat`: 将`/data/raw_info`下的文本文档载入数据库~~
|
||||
- 直接运行 knowledge.py生成知识库
|
||||
|
||||
## ⚙️ 配置说明
|
||||
|
||||
### 环境配置 (.env.prod)
|
||||
```ini
|
||||
# API配置,你可以在这里定义你的密钥和base_url
|
||||
# 你可以选择定义其他服务商提供的KEY,完全可以自定义
|
||||
SILICONFLOW_KEY=your_key
|
||||
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
|
||||
DEEP_SEEK_KEY=your_key
|
||||
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
||||
|
||||
# 服务配置,如果你不知道这是什么,保持默认
|
||||
HOST=127.0.0.1
|
||||
PORT=8080
|
||||
|
||||
# 数据库配置,如果你不知道这是什么,保持默认
|
||||
MONGODB_HOST=127.0.0.1
|
||||
MONGODB_PORT=27017
|
||||
DATABASE_NAME=MegBot
|
||||
```
|
||||
|
||||
### 机器人配置 (bot_config.toml)
|
||||
```toml
|
||||
[bot]
|
||||
qq = "你的机器人QQ号"
|
||||
nickname = "麦麦"
|
||||
|
||||
[message]
|
||||
min_text_length = 2
|
||||
max_context_size = 15
|
||||
emoji_chance = 0.2
|
||||
|
||||
[emoji]
|
||||
check_interval = 120
|
||||
register_interval = 10
|
||||
|
||||
[cq_code]
|
||||
enable_pic_translate = false
|
||||
|
||||
[response]
|
||||
#现已移除deepseek或硅基流动选项,可以直接切换分别配置任意模型
|
||||
model_r1_probability = 0.8 #推理模型权重
|
||||
model_v3_probability = 0.1 #非推理模型权重
|
||||
model_r1_distill_probability = 0.1
|
||||
|
||||
[memory]
|
||||
build_memory_interval = 300
|
||||
|
||||
[others]
|
||||
enable_advance_output = true # 是否启用详细日志输出
|
||||
|
||||
[groups]
|
||||
talk_allowed = [] # 允许回复的群号列表
|
||||
talk_frequency_down = [] # 降低回复频率的群号列表
|
||||
ban_user_id = [] # 禁止回复的用户QQ号列表
|
||||
|
||||
[model.llm_reasoning]
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_reasoning_minor]
|
||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal_minor]
|
||||
name = "deepseek-ai/DeepSeek-V2.5"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.vlm]
|
||||
name = "deepseek-ai/deepseek-vl2"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
```
|
||||
|
||||
## ⚠️ 注意事项
|
||||
|
||||
- 目前部署方案仍在测试中,可能存在未知问题
|
||||
- 配置文件中的API密钥请妥善保管,不要泄露
|
||||
- 建议先在测试环境中运行,确认无误后再部署到生产环境
|
||||
215
docs/installation_cute.md
Normal file
215
docs/installation_cute.md
Normal file
@@ -0,0 +1,215 @@
|
||||
# 🔧 配置指南 喵~
|
||||
|
||||
## 👋 你好呀!
|
||||
|
||||
让咱来告诉你我们要做什么喵:
|
||||
1. 我们要一起设置一个可爱的AI机器人
|
||||
2. 这个机器人可以在QQ上陪你聊天玩耍哦
|
||||
3. 需要设置两个文件才能让机器人工作呢
|
||||
|
||||
## 📝 需要设置的文件喵
|
||||
|
||||
要设置这两个文件才能让机器人跑起来哦:
|
||||
1. `.env.prod` - 这个文件告诉机器人要用哪些AI服务呢
|
||||
2. `bot_config.toml` - 这个文件教机器人怎么和你聊天喵
|
||||
|
||||
## 🔑 密钥和域名的对应关系
|
||||
|
||||
想象一下,你要进入一个游乐园,需要:
|
||||
1. 知道游乐园的地址(这就是域名 base_url)
|
||||
2. 有入场的门票(这就是密钥 key)
|
||||
|
||||
在 `.env.prod` 文件里,我们定义了三个游乐园的地址和门票喵:
|
||||
```ini
|
||||
# 硅基流动游乐园
|
||||
SILICONFLOW_KEY=your_key # 硅基流动的门票
|
||||
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/ # 硅基流动的地址
|
||||
|
||||
# DeepSeek游乐园
|
||||
DEEP_SEEK_KEY=your_key # DeepSeek的门票
|
||||
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1 # DeepSeek的地址
|
||||
|
||||
# ChatAnyWhere游乐园
|
||||
CHAT_ANY_WHERE_KEY=your_key # ChatAnyWhere的门票
|
||||
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1 # ChatAnyWhere的地址
|
||||
```
|
||||
|
||||
然后在 `bot_config.toml` 里,机器人会用这些门票和地址去游乐园玩耍:
|
||||
```toml
|
||||
[model.llm_reasoning]
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "SILICONFLOW_BASE_URL" # 告诉机器人:去硅基流动游乐园玩
|
||||
key = "SILICONFLOW_KEY" # 用硅基流动的门票进去
|
||||
|
||||
[model.llm_normal]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL" # 还是去硅基流动游乐园
|
||||
key = "SILICONFLOW_KEY" # 用同一张门票就可以啦
|
||||
```
|
||||
|
||||
### 🎪 举个例子喵:
|
||||
|
||||
如果你想用DeepSeek官方的服务,就要这样改:
|
||||
```toml
|
||||
[model.llm_reasoning]
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "DEEP_SEEK_BASE_URL" # 改成去DeepSeek游乐园
|
||||
key = "DEEP_SEEK_KEY" # 用DeepSeek的门票
|
||||
|
||||
[model.llm_normal]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "DEEP_SEEK_BASE_URL" # 也去DeepSeek游乐园
|
||||
key = "DEEP_SEEK_KEY" # 用同一张DeepSeek门票
|
||||
```
|
||||
|
||||
### 🎯 简单来说:
|
||||
- `.env.prod` 文件就像是你的票夹,存放着各个游乐园的门票和地址
|
||||
- `bot_config.toml` 就是告诉机器人:用哪张票去哪个游乐园玩
|
||||
- 所有模型都可以用同一个游乐园的票,也可以去不同的游乐园玩耍
|
||||
- 如果用硅基流动的服务,就保持默认配置不用改呢~
|
||||
|
||||
记住:门票(key)要保管好,不能给别人看哦,不然别人就可以用你的票去玩了喵!
|
||||
|
||||
## ---让我们开始吧---
|
||||
|
||||
### 第一个文件:环境配置 (.env.prod)
|
||||
|
||||
这个文件就像是机器人的"身份证"呢,告诉它要用哪些AI服务喵~
|
||||
|
||||
```ini
|
||||
# 这些是AI服务的密钥,就像是魔法钥匙一样呢
|
||||
# 要把 your_key 换成真正的密钥才行喵
|
||||
# 比如说:SILICONFLOW_KEY=sk-123456789abcdef
|
||||
SILICONFLOW_KEY=your_key
|
||||
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
|
||||
DEEP_SEEK_KEY=your_key
|
||||
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
||||
CHAT_ANY_WHERE_KEY=your_key
|
||||
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
|
||||
|
||||
# 如果你不知道这是什么,那么下面这些不用改,保持原样就好啦
|
||||
HOST=127.0.0.1
|
||||
PORT=8080
|
||||
|
||||
# 这些是数据库设置,一般也不用改呢
|
||||
MONGODB_HOST=127.0.0.1
|
||||
MONGODB_PORT=27017
|
||||
DATABASE_NAME=MegBot
|
||||
MONGODB_USERNAME = "" # 如果数据库需要用户名,就在这里填写喵
|
||||
MONGODB_PASSWORD = "" # 如果数据库需要密码,就在这里填写呢
|
||||
MONGODB_AUTH_SOURCE = "" # 数据库认证源,一般不用改哦
|
||||
|
||||
# 插件设置喵
|
||||
PLUGINS=["src2.plugins.chat"] # 这里是机器人的插件列表呢
|
||||
```
|
||||
|
||||
### 第二个文件:机器人配置 (bot_config.toml)
|
||||
|
||||
这个文件就像是教机器人"如何说话"的魔法书呢!
|
||||
|
||||
```toml
|
||||
[bot]
|
||||
qq = "把这里改成你的机器人QQ号喵" # 填写你的机器人QQ号
|
||||
nickname = "麦麦" # 机器人的名字,你可以改成你喜欢的任何名字哦
|
||||
|
||||
[personality]
|
||||
# 这里可以设置机器人的性格呢,让它更有趣一些喵
|
||||
prompt_personality = [
|
||||
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧", # 贴吧风格的性格
|
||||
"是一个女大学生,你有黑色头发,你会刷小红书" # 小红书风格的性格
|
||||
]
|
||||
prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
[message]
|
||||
min_text_length = 2 # 机器人每次至少要说几个字呢
|
||||
max_context_size = 15 # 机器人能记住多少条消息喵
|
||||
emoji_chance = 0.2 # 机器人使用表情的概率哦(0.2就是20%的机会呢)
|
||||
ban_words = ["脏话", "不文明用语"] # 在这里填写不让机器人说的词
|
||||
|
||||
[emoji]
|
||||
auto_save = true # 是否自动保存看到的表情包呢
|
||||
enable_check = false # 是否要检查表情包是不是合适的喵
|
||||
check_prompt = "符合公序良俗" # 检查表情包的标准呢
|
||||
|
||||
[groups]
|
||||
talk_allowed = [123456, 789012] # 比如:让机器人在群123456和789012里说话
|
||||
talk_frequency_down = [345678] # 比如:在群345678里少说点话
|
||||
ban_user_id = [111222] # 比如:不回复QQ号为111222的人的消息
|
||||
|
||||
[others]
|
||||
enable_advance_output = true # 是否要显示更多的运行信息呢
|
||||
enable_kuuki_read = true # 让机器人能够"察言观色"喵
|
||||
|
||||
# 模型配置部分的详细说明喵~
|
||||
|
||||
|
||||
#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成在.env.prod自己指定的密钥和域名,使用自定义模型则选择定位相似的模型自己填写
|
||||
|
||||
[model.llm_reasoning] #推理模型R1,用来理解和思考的喵
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1" # 模型名字
|
||||
# name = "Qwen/QwQ-32B" # 如果想用千问模型,可以把上面那行注释掉,用这个呢
|
||||
base_url = "SILICONFLOW_BASE_URL" # 使用在.env.prod里设置的服务地址
|
||||
key = "SILICONFLOW_KEY" # 使用在.env.prod里设置的密钥
|
||||
|
||||
[model.llm_reasoning_minor] #R1蒸馏模型,是个轻量版的推理模型喵
|
||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal] #V3模型,用来日常聊天的喵
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal_minor] #V2.5模型,是V3的前代版本呢
|
||||
name = "deepseek-ai/DeepSeek-V2.5"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.vlm] #图像识别模型,让机器人能看懂图片喵
|
||||
name = "deepseek-ai/deepseek-vl2"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.embedding] #嵌入模型,帮助机器人理解文本的相似度呢
|
||||
name = "BAAI/bge-m3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
# 如果选择了llm方式提取主题,就用这个模型配置喵
|
||||
[topic.llm_topic]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
```
|
||||
|
||||
## 💡 模型配置说明喵
|
||||
|
||||
1. **关于模型服务**:
|
||||
- 如果你用硅基流动的服务,这些配置都不用改呢
|
||||
- 如果用DeepSeek官方API,要把base_url和key改成你在.env.prod里设置的值喵
|
||||
- 如果要用自定义模型,选择一个相似功能的模型配置来改呢
|
||||
|
||||
2. **主要模型功能**:
|
||||
- `llm_reasoning`: 负责思考和推理的大脑喵
|
||||
- `llm_normal`: 负责日常聊天的嘴巴呢
|
||||
- `vlm`: 负责看图片的眼睛哦
|
||||
- `embedding`: 负责理解文字含义的理解力喵
|
||||
- `topic`: 负责理解对话主题的能力呢
|
||||
|
||||
## 🌟 小提示
|
||||
- 如果你刚开始使用,建议保持默认配置呢
|
||||
- 不同的模型有不同的特长,可以根据需要调整它们的使用比例哦
|
||||
|
||||
## 🌟 小贴士喵
|
||||
- 记得要好好保管密钥(key)哦,不要告诉别人呢
|
||||
- 配置文件要小心修改,改错了机器人可能就不能和你玩了喵
|
||||
- 如果想让机器人更聪明,可以调整 personality 里的设置呢
|
||||
- 不想让机器人说某些话,就把那些词放在 ban_words 里面喵
|
||||
- QQ群号和QQ号都要用数字填写,不要加引号哦(除了机器人自己的QQ号)
|
||||
|
||||
## ⚠️ 注意事项
|
||||
- 这个机器人还在测试中呢,可能会有一些小问题喵
|
||||
- 如果不知道怎么改某个设置,就保持原样不要动它哦~
|
||||
- 记得要先有AI服务的密钥,不然机器人就不能和你说话了呢
|
||||
- 修改完配置后要重启机器人才能生效喵~
|
||||
154
docs/installation_standard.md
Normal file
154
docs/installation_standard.md
Normal file
@@ -0,0 +1,154 @@
|
||||
# 🔧 配置指南
|
||||
|
||||
## 简介
|
||||
|
||||
本项目需要配置两个主要文件:
|
||||
1. `.env.prod` - 配置API服务和系统环境
|
||||
2. `bot_config.toml` - 配置机器人行为和模型
|
||||
|
||||
## API配置说明
|
||||
|
||||
`.env.prod`和`bot_config.toml`中的API配置关系如下:
|
||||
|
||||
### 在.env.prod中定义API凭证:
|
||||
```ini
|
||||
# API凭证配置
|
||||
SILICONFLOW_KEY=your_key # 硅基流动API密钥
|
||||
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/ # 硅基流动API地址
|
||||
|
||||
DEEP_SEEK_KEY=your_key # DeepSeek API密钥
|
||||
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1 # DeepSeek API地址
|
||||
|
||||
CHAT_ANY_WHERE_KEY=your_key # ChatAnyWhere API密钥
|
||||
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1 # ChatAnyWhere API地址
|
||||
```
|
||||
|
||||
### 在bot_config.toml中引用API凭证:
|
||||
```toml
|
||||
[model.llm_reasoning]
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "SILICONFLOW_BASE_URL" # 引用.env.prod中定义的地址
|
||||
key = "SILICONFLOW_KEY" # 引用.env.prod中定义的密钥
|
||||
```
|
||||
|
||||
如需切换到其他API服务,只需修改引用:
|
||||
```toml
|
||||
[model.llm_reasoning]
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "DEEP_SEEK_BASE_URL" # 切换为DeepSeek服务
|
||||
key = "DEEP_SEEK_KEY" # 使用DeepSeek密钥
|
||||
```
|
||||
|
||||
## 配置文件详解
|
||||
|
||||
### 环境配置文件 (.env.prod)
|
||||
```ini
|
||||
# API配置
|
||||
SILICONFLOW_KEY=your_key
|
||||
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
|
||||
DEEP_SEEK_KEY=your_key
|
||||
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
||||
CHAT_ANY_WHERE_KEY=your_key
|
||||
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
|
||||
|
||||
# 服务配置
|
||||
HOST=127.0.0.1
|
||||
PORT=8080
|
||||
|
||||
# 数据库配置
|
||||
MONGODB_HOST=127.0.0.1
|
||||
MONGODB_PORT=27017
|
||||
DATABASE_NAME=MegBot
|
||||
MONGODB_USERNAME = "" # 数据库用户名
|
||||
MONGODB_PASSWORD = "" # 数据库密码
|
||||
MONGODB_AUTH_SOURCE = "" # 认证数据库
|
||||
|
||||
# 插件配置
|
||||
PLUGINS=["src2.plugins.chat"]
|
||||
```
|
||||
|
||||
### 机器人配置文件 (bot_config.toml)
|
||||
```toml
|
||||
[bot]
|
||||
qq = "机器人QQ号" # 必填
|
||||
nickname = "麦麦" # 机器人昵称
|
||||
|
||||
[personality]
|
||||
prompt_personality = [
|
||||
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
|
||||
"是一个女大学生,你有黑色头发,你会刷小红书"
|
||||
]
|
||||
prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
[message]
|
||||
min_text_length = 2 # 最小回复长度
|
||||
max_context_size = 15 # 上下文记忆条数
|
||||
emoji_chance = 0.2 # 表情使用概率
|
||||
ban_words = [] # 禁用词列表
|
||||
|
||||
[emoji]
|
||||
auto_save = true # 自动保存表情
|
||||
enable_check = false # 启用表情审核
|
||||
check_prompt = "符合公序良俗"
|
||||
|
||||
[groups]
|
||||
talk_allowed = [] # 允许对话的群号
|
||||
talk_frequency_down = [] # 降低回复频率的群号
|
||||
ban_user_id = [] # 禁止回复的用户QQ号
|
||||
|
||||
[others]
|
||||
enable_advance_output = true # 启用详细日志
|
||||
enable_kuuki_read = true # 启用场景理解
|
||||
|
||||
# 模型配置
|
||||
[model.llm_reasoning] # 推理模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_reasoning_minor] # 轻量推理模型
|
||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal] # 对话模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal_minor] # 备用对话模型
|
||||
name = "deepseek-ai/DeepSeek-V2.5"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.vlm] # 图像识别模型
|
||||
name = "deepseek-ai/deepseek-vl2"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.embedding] # 文本向量模型
|
||||
name = "BAAI/bge-m3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
|
||||
[topic.llm_topic]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
```
|
||||
|
||||
## 注意事项
|
||||
|
||||
1. API密钥安全:
|
||||
- 妥善保管API密钥
|
||||
- 不要将含有密钥的配置文件上传至公开仓库
|
||||
|
||||
2. 配置修改:
|
||||
- 修改配置后需重启服务
|
||||
- 使用默认服务(硅基流动)时无需修改模型配置
|
||||
- QQ号和群号使用数字格式(机器人QQ号除外)
|
||||
|
||||
3. 其他说明:
|
||||
- 项目处于测试阶段,可能存在未知问题
|
||||
- 建议初次使用保持默认配置
|
||||
100
docs/manual_deploy.md
Normal file
100
docs/manual_deploy.md
Normal file
@@ -0,0 +1,100 @@
|
||||
# 📦 如何手动部署MaiMbot麦麦?
|
||||
|
||||
## 你需要什么?
|
||||
|
||||
- 一台电脑,能够上网的那种
|
||||
|
||||
- 一个QQ小号(QQ框架的使用可能导致qq被风控,严重(小概率)可能会导致账号封禁,强烈不推荐使用大号)
|
||||
|
||||
- 可用的大模型API
|
||||
|
||||
- 一个AI助手,网上随便搜一家打开来用都行,可以帮你解决一些不懂的问题
|
||||
|
||||
## 你需要知道什么?
|
||||
|
||||
- 如何正确向AI助手提问,来学习新知识
|
||||
|
||||
- Python是什么
|
||||
|
||||
- Python的虚拟环境是什么?如何创建虚拟环境
|
||||
|
||||
- 命令行是什么
|
||||
|
||||
- 数据库是什么?如何安装并启动MongoDB
|
||||
|
||||
- 如何运行一个QQ机器人,以及NapCat框架是什么
|
||||
|
||||
## 如果准备好了,就可以开始部署了
|
||||
|
||||
### 1️⃣ **首先,我们需要安装正确版本的Python**
|
||||
|
||||
在创建虚拟环境之前,请确保你的电脑上安装了Python 3.9及以上版本。如果没有,可以按以下步骤安装:
|
||||
|
||||
1. 访问Python官网下载页面:https://www.python.org/downloads/release/python-3913/
|
||||
2. 下载Windows安装程序 (64-bit): `python-3.9.13-amd64.exe`
|
||||
3. 运行安装程序,并确保勾选"Add Python 3.9 to PATH"选项
|
||||
4. 点击"Install Now"开始安装
|
||||
|
||||
或者使用PowerShell自动下载安装(需要管理员权限):
|
||||
```powershell
|
||||
# 下载并安装Python 3.9.13
|
||||
$pythonUrl = "https://www.python.org/ftp/python/3.9.13/python-3.9.13-amd64.exe"
|
||||
$pythonInstaller = "$env:TEMP\python-3.9.13-amd64.exe"
|
||||
Invoke-WebRequest -Uri $pythonUrl -OutFile $pythonInstaller
|
||||
Start-Process -Wait -FilePath $pythonInstaller -ArgumentList "/quiet", "InstallAllUsers=0", "PrependPath=1" -Verb RunAs
|
||||
```
|
||||
|
||||
### 2️⃣ **创建Python虚拟环境来运行程序**
|
||||
|
||||
你可以选择使用以下两种方法之一来创建Python环境:
|
||||
|
||||
```bash
|
||||
# ---方法1:使用venv(Python自带)
|
||||
# 在命令行中创建虚拟环境(环境名为maimbot)
|
||||
# 这会让你在运行命令的目录下创建一个虚拟环境
|
||||
# 请确保你已通过cd命令前往到了对应路径,不然之后你可能找不到你的python环境
|
||||
python -m venv maimbot
|
||||
|
||||
maimbot\\Scripts\\activate
|
||||
|
||||
# 安装依赖
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
```bash
|
||||
# ---方法2:使用conda
|
||||
# 创建一个新的conda环境(环境名为maimbot)
|
||||
# Python版本为3.9
|
||||
conda create -n maimbot python=3.9
|
||||
|
||||
# 激活环境
|
||||
conda activate maimbot
|
||||
|
||||
# 安装依赖
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### 2️⃣ **然后你需要启动MongoDB数据库,来存储信息**
|
||||
- 安装并启动MongoDB服务
|
||||
- 默认连接本地27017端口
|
||||
|
||||
### 3️⃣ **配置NapCat,让麦麦bot与qq取得联系**
|
||||
- 安装并登录NapCat(用你的qq小号)
|
||||
- 添加反向WS:`ws://localhost:8080/onebot/v11/ws`
|
||||
|
||||
### 4️⃣ **配置文件设置,让麦麦Bot正常工作**
|
||||
- 修改环境配置文件:`.env.prod`
|
||||
- 修改机器人配置文件:`bot_config.toml`
|
||||
|
||||
### 5️⃣ **启动麦麦机器人**
|
||||
- 打开命令行,cd到对应路径
|
||||
```bash
|
||||
nb run
|
||||
```
|
||||
- 或者cd到对应路径后
|
||||
```bash
|
||||
python bot.py
|
||||
```
|
||||
|
||||
### 6️⃣ **其他组件(可选)**
|
||||
- `run_thingking.bat`: 启动可视化推理界面(未完善)
|
||||
- 直接运行 knowledge.py生成知识库
|
||||
@@ -1,2 +0,0 @@
|
||||
输入消息,推理内容,flag,username,timestamp
|
||||
显示内容,,,,2025-02-18 16:50:53.643238
|
||||
|
61
flake.lock
generated
Normal file
61
flake.lock
generated
Normal file
@@ -0,0 +1,61 @@
|
||||
{
|
||||
"nodes": {
|
||||
"flake-utils": {
|
||||
"inputs": {
|
||||
"systems": "systems"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1731533236,
|
||||
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
||||
"owner": "numtide",
|
||||
"repo": "flake-utils",
|
||||
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "numtide",
|
||||
"repo": "flake-utils",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1741196730,
|
||||
"narHash": "sha256-0Sj6ZKjCpQMfWnN0NURqRCQn2ob7YtXTAOTwCuz7fkA=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "48913d8f9127ea6530a2a2f1bd4daa1b8685d8a3",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "NixOS",
|
||||
"ref": "nixos-24.11",
|
||||
"repo": "nixpkgs",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"root": {
|
||||
"inputs": {
|
||||
"flake-utils": "flake-utils",
|
||||
"nixpkgs": "nixpkgs"
|
||||
}
|
||||
},
|
||||
"systems": {
|
||||
"locked": {
|
||||
"lastModified": 1681028828,
|
||||
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
||||
"owner": "nix-systems",
|
||||
"repo": "default",
|
||||
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "nix-systems",
|
||||
"repo": "default",
|
||||
"type": "github"
|
||||
}
|
||||
}
|
||||
},
|
||||
"root": "root",
|
||||
"version": 7
|
||||
}
|
||||
61
flake.nix
Normal file
61
flake.nix
Normal file
@@ -0,0 +1,61 @@
|
||||
{
|
||||
description = "MaiMBot Nix Dev Env";
|
||||
# 本配置仅方便用于开发,但是因为 nb-cli 上游打包中并未包含 nonebot2,因此目前本配置并不能用于运行和调试
|
||||
|
||||
inputs = {
|
||||
nixpkgs.url = "github:NixOS/nixpkgs/nixos-24.11";
|
||||
flake-utils.url = "github:numtide/flake-utils";
|
||||
};
|
||||
|
||||
outputs =
|
||||
{
|
||||
self,
|
||||
nixpkgs,
|
||||
flake-utils,
|
||||
}:
|
||||
flake-utils.lib.eachDefaultSystem (
|
||||
system:
|
||||
let
|
||||
pkgs = import nixpkgs {
|
||||
inherit system;
|
||||
};
|
||||
|
||||
pythonEnv = pkgs.python3.withPackages (
|
||||
ps: with ps; [
|
||||
pymongo
|
||||
python-dotenv
|
||||
pydantic
|
||||
jieba
|
||||
openai
|
||||
aiohttp
|
||||
requests
|
||||
urllib3
|
||||
numpy
|
||||
pandas
|
||||
matplotlib
|
||||
networkx
|
||||
python-dateutil
|
||||
APScheduler
|
||||
loguru
|
||||
tomli
|
||||
customtkinter
|
||||
colorama
|
||||
pypinyin
|
||||
pillow
|
||||
setuptools
|
||||
]
|
||||
);
|
||||
in
|
||||
{
|
||||
devShell = pkgs.mkShell {
|
||||
buildInputs = [
|
||||
pythonEnv
|
||||
pkgs.nb-cli
|
||||
];
|
||||
|
||||
shellHook = ''
|
||||
'';
|
||||
};
|
||||
}
|
||||
);
|
||||
}
|
||||
@@ -5,4 +5,19 @@ description = "New Bot Project"
|
||||
|
||||
[tool.nonebot]
|
||||
plugins = ["src.plugins.chat"]
|
||||
plugin_dirs = ["src/plugins"]
|
||||
plugin_dirs = ["src/plugins"]
|
||||
|
||||
[tool.ruff]
|
||||
# 设置 Python 版本
|
||||
target-version = "py39"
|
||||
|
||||
# 启用的规则
|
||||
select = [
|
||||
"E", # pycodestyle 错误
|
||||
"F", # pyflakes
|
||||
"I", # isort
|
||||
"B", # flake8-bugbear
|
||||
]
|
||||
|
||||
# 行长度设置
|
||||
line-length = 88
|
||||
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
6
run.bat
Normal file
6
run.bat
Normal file
@@ -0,0 +1,6 @@
|
||||
@ECHO OFF
|
||||
chcp 65001
|
||||
REM python -m venv venv
|
||||
call venv\Scripts\activate.bat
|
||||
REM pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple --upgrade -r requirements.txt
|
||||
python run.py
|
||||
122
run.py
Normal file
122
run.py
Normal file
@@ -0,0 +1,122 @@
|
||||
import os
|
||||
import subprocess
|
||||
import zipfile
|
||||
|
||||
import requests
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def extract_files(zip_path, target_dir):
|
||||
"""
|
||||
解压
|
||||
|
||||
Args:
|
||||
zip_path: 源ZIP压缩包路径(需确保是有效压缩包)
|
||||
target_dir: 目标文件夹路径(会自动创建不存在的目录)
|
||||
"""
|
||||
# 打开ZIP压缩包(上下文管理器自动处理关闭)
|
||||
with zipfile.ZipFile(zip_path) as zip_ref:
|
||||
# 通过第一个文件路径推断顶层目录名(格式如:top_dir/)
|
||||
top_dir = zip_ref.namelist()[0].split("/")[0] + "/"
|
||||
|
||||
# 遍历压缩包内所有文件条目
|
||||
for file in zip_ref.namelist():
|
||||
# 跳过目录条目,仅处理文件
|
||||
if file.startswith(top_dir) and not file.endswith("/"):
|
||||
# 截取顶层目录后的相对路径(如:sub_dir/file.txt)
|
||||
rel_path = file[len(top_dir) :]
|
||||
|
||||
# 创建目标目录结构(含多级目录)
|
||||
os.makedirs(
|
||||
os.path.dirname(f"{target_dir}/{rel_path}"),
|
||||
exist_ok=True, # 忽略已存在目录的错误
|
||||
)
|
||||
|
||||
# 读取压缩包内文件内容并写入目标路径
|
||||
with open(f"{target_dir}/{rel_path}", "wb") as f:
|
||||
f.write(zip_ref.read(file))
|
||||
|
||||
|
||||
def run_cmd(command: str, open_new_window: bool = False):
|
||||
"""
|
||||
运行 cmd 命令
|
||||
|
||||
Args:
|
||||
command (str): 指定要运行的命令
|
||||
open_new_window (bool): 指定是否新建一个 cmd 窗口运行
|
||||
"""
|
||||
creationflags = 0
|
||||
if open_new_window:
|
||||
creationflags = subprocess.CREATE_NEW_CONSOLE
|
||||
subprocess.Popen(
|
||||
[
|
||||
"cmd.exe",
|
||||
"/c",
|
||||
command,
|
||||
],
|
||||
creationflags=creationflags,
|
||||
)
|
||||
|
||||
|
||||
def run_maimbot():
|
||||
run_cmd(r"napcat\NapCatWinBootMain.exe 10001", False)
|
||||
run_cmd(
|
||||
r"mongodb\bin\mongod.exe --dbpath=" + os.getcwd() + r"\mongodb\db --port 27017",
|
||||
True,
|
||||
)
|
||||
run_cmd("nb run", True)
|
||||
|
||||
|
||||
def install_mongodb():
|
||||
"""
|
||||
安装 MongoDB
|
||||
"""
|
||||
print("下载 MongoDB")
|
||||
resp = requests.get(
|
||||
"https://fastdl.mongodb.org/windows/mongodb-windows-x86_64-latest.zip",
|
||||
stream=True,
|
||||
)
|
||||
total = int(resp.headers.get("content-length", 0)) # 计算文件大小
|
||||
with open("mongodb.zip", "w+b") as file, tqdm( # 展示下载进度条,并解压文件
|
||||
desc="mongodb.zip",
|
||||
total=total,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
unit_divisor=1024,
|
||||
) as bar:
|
||||
for data in resp.iter_content(chunk_size=1024):
|
||||
size = file.write(data)
|
||||
bar.update(size)
|
||||
extract_files("mongodb.zip", "mongodb")
|
||||
print("MongoDB 下载完成")
|
||||
os.remove("mongodb.zip")
|
||||
|
||||
|
||||
def install_napcat():
|
||||
run_cmd("start https://github.com/NapNeko/NapCatQQ/releases", True)
|
||||
print("请检查弹出的浏览器窗口,点击**第一个**蓝色的“Win64无头” 下载 napcat")
|
||||
napcat_filename = input(
|
||||
"下载完成后请把文件复制到此文件夹,并将**不包含后缀的文件名**输入至此窗口,如 NapCat.32793.Shell:"
|
||||
)
|
||||
extract_files(napcat_filename + ".zip", "napcat")
|
||||
print("NapCat 安装完成")
|
||||
os.remove(napcat_filename + ".zip")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
os.system("cls")
|
||||
choice = input(
|
||||
"请输入要进行的操作:\n"
|
||||
"1.首次安装\n"
|
||||
"2.运行麦麦\n"
|
||||
"3.运行麦麦并启动可视化推理界面\n"
|
||||
)
|
||||
os.system("cls")
|
||||
if choice == "1":
|
||||
install_napcat()
|
||||
install_mongodb()
|
||||
elif choice == "2":
|
||||
run_maimbot()
|
||||
elif choice == "3":
|
||||
run_maimbot()
|
||||
run_cmd("python src/gui/reasoning_gui.py", True)
|
||||
@@ -1,5 +1,5 @@
|
||||
chcp 65001
|
||||
call conda activate niuniu
|
||||
call conda activate maimbot
|
||||
cd .
|
||||
|
||||
REM 执行nb run命令
|
||||
68
script/run_windows.bat
Normal file
68
script/run_windows.bat
Normal file
@@ -0,0 +1,68 @@
|
||||
@echo off
|
||||
setlocal enabledelayedexpansion
|
||||
chcp 65001
|
||||
|
||||
REM 修正路径获取逻辑
|
||||
cd /d "%~dp0" || (
|
||||
echo 错误:切换目录失败
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if not exist "venv\" (
|
||||
echo 正在初始化虚拟环境...
|
||||
|
||||
where python >nul 2>&1
|
||||
if %errorlevel% neq 0 (
|
||||
echo 未找到Python解释器
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
for /f "tokens=2" %%a in ('python --version 2^>^&1') do set version=%%a
|
||||
for /f "tokens=1,2 delims=." %%b in ("!version!") do (
|
||||
set major=%%b
|
||||
set minor=%%c
|
||||
)
|
||||
|
||||
if !major! lss 3 (
|
||||
echo 需要Python大于等于3.0,当前版本 !version!
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if !major! equ 3 if !minor! lss 9 (
|
||||
echo 需要Python大于等于3.9,当前版本 !version!
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
echo 正在安装virtualenv...
|
||||
python -m pip install virtualenv || (
|
||||
echo virtualenv安装失败
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
echo 正在创建虚拟环境...
|
||||
python -m virtualenv venv || (
|
||||
echo 虚拟环境创建失败
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
call venv\Scripts\activate.bat
|
||||
|
||||
) else (
|
||||
call venv\Scripts\activate.bat
|
||||
)
|
||||
|
||||
echo 正在更新依赖...
|
||||
pip install -r requirements.txt
|
||||
|
||||
echo 当前代理设置:
|
||||
echo HTTP_PROXY=%HTTP_PROXY%
|
||||
echo HTTPS_PROXY=%HTTPS_PROXY%
|
||||
|
||||
set HTTP_PROXY=
|
||||
set HTTPS_PROXY=
|
||||
echo 代理已取消。
|
||||
|
||||
set no_proxy=0.0.0.0/32
|
||||
|
||||
call nb run
|
||||
pause
|
||||
2
setup.py
2
setup.py
@@ -1,4 +1,4 @@
|
||||
from setuptools import setup, find_packages
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
setup(
|
||||
name="maimai-bot",
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
from pymongo import MongoClient
|
||||
from typing import Optional
|
||||
|
||||
from pymongo import MongoClient
|
||||
|
||||
|
||||
class Database:
|
||||
_instance: Optional["Database"] = None
|
||||
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import customtkinter as ctk
|
||||
from typing import Dict, List
|
||||
import json
|
||||
from datetime import datetime
|
||||
import time
|
||||
import threading
|
||||
import os
|
||||
import queue
|
||||
import sys
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
from datetime import datetime
|
||||
from typing import Dict, List
|
||||
|
||||
import customtkinter as ctk
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# 获取当前文件的目录
|
||||
@@ -25,9 +25,11 @@ else:
|
||||
print("未找到环境配置文件")
|
||||
sys.exit(1)
|
||||
|
||||
from pymongo import MongoClient
|
||||
from typing import Optional
|
||||
|
||||
from pymongo import MongoClient
|
||||
|
||||
|
||||
class Database:
|
||||
_instance: Optional["Database"] = None
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
from typing import Dict, List, Union, Optional, Any
|
||||
import base64
|
||||
import os
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
"""
|
||||
OneBot v11 Message Segment Builder
|
||||
|
||||
@@ -1,20 +1,29 @@
|
||||
from loguru import logger
|
||||
from nonebot import on_message, on_command, require, get_driver
|
||||
from nonebot.adapters.onebot.v11 import Bot, GroupMessageEvent, Message, MessageSegment
|
||||
from nonebot.typing import T_State
|
||||
from ...common.database import Database
|
||||
from .config import global_config
|
||||
import os
|
||||
import asyncio
|
||||
import os
|
||||
import random
|
||||
from .relationship_manager import relationship_manager
|
||||
from ..schedule.schedule_generator import bot_schedule
|
||||
from .willing_manager import willing_manager
|
||||
from nonebot.rule import to_me
|
||||
from .bot import chat_bot
|
||||
from .emoji_manager import emoji_manager
|
||||
import time
|
||||
|
||||
from loguru import logger
|
||||
from nonebot import get_driver, on_command, on_message, require
|
||||
from nonebot.adapters.onebot.v11 import Bot, GroupMessageEvent, Message, MessageSegment
|
||||
from nonebot.rule import to_me
|
||||
from nonebot.typing import T_State
|
||||
|
||||
from ...common.database import Database
|
||||
from ..moods.moods import MoodManager # 导入情绪管理器
|
||||
from ..schedule.schedule_generator import bot_schedule
|
||||
from ..utils.statistic import LLMStatistics
|
||||
from .bot import chat_bot
|
||||
from .config import global_config
|
||||
from .emoji_manager import emoji_manager
|
||||
from .relationship_manager import relationship_manager
|
||||
from .willing_manager import willing_manager
|
||||
|
||||
# 创建LLM统计实例
|
||||
llm_stats = LLMStatistics("llm_statistics.txt")
|
||||
|
||||
# 添加标志变量
|
||||
_message_manager_started = False
|
||||
|
||||
# 获取驱动器
|
||||
driver = get_driver()
|
||||
@@ -32,12 +41,11 @@ print("\033[1;32m[初始化数据库完成]\033[0m")
|
||||
|
||||
|
||||
# 导入其他模块
|
||||
from ..memory_system.memory import hippocampus, memory_graph
|
||||
from .bot import ChatBot
|
||||
from .emoji_manager import emoji_manager
|
||||
|
||||
# from .message_send_control import message_sender
|
||||
from .relationship_manager import relationship_manager
|
||||
from .message_sender import message_manager,message_sender
|
||||
from ..memory_system.memory import memory_graph,hippocampus
|
||||
from .message_sender import message_manager, message_sender
|
||||
|
||||
# 初始化表情管理器
|
||||
emoji_manager.initialize()
|
||||
@@ -55,6 +63,15 @@ scheduler = require("nonebot_plugin_apscheduler").scheduler
|
||||
@driver.on_startup
|
||||
async def start_background_tasks():
|
||||
"""启动后台任务"""
|
||||
# 启动LLM统计
|
||||
llm_stats.start()
|
||||
print("\033[1;32m[初始化]\033[0m LLM统计功能已启动")
|
||||
|
||||
# 初始化并启动情绪管理器
|
||||
mood_manager = MoodManager.get_instance()
|
||||
mood_manager.start_mood_update(update_interval=global_config.mood_update_interval)
|
||||
print("\033[1;32m[初始化]\033[0m 情绪管理器已启动")
|
||||
|
||||
# 只启动表情包管理任务
|
||||
asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL))
|
||||
await bot_schedule.initialize()
|
||||
@@ -70,18 +87,20 @@ async def init_relationships():
|
||||
@driver.on_bot_connect
|
||||
async def _(bot: Bot):
|
||||
"""Bot连接成功时的处理"""
|
||||
global _message_manager_started
|
||||
print(f"\033[1;38;5;208m-----------{global_config.BOT_NICKNAME}成功连接!-----------\033[0m")
|
||||
await willing_manager.ensure_started()
|
||||
|
||||
|
||||
message_sender.set_bot(bot)
|
||||
print("\033[1;38;5;208m-----------消息发送器已启动!-----------\033[0m")
|
||||
asyncio.create_task(message_manager.start_processor())
|
||||
print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m")
|
||||
|
||||
if not _message_manager_started:
|
||||
asyncio.create_task(message_manager.start_processor())
|
||||
_message_manager_started = True
|
||||
print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m")
|
||||
|
||||
asyncio.create_task(emoji_manager._periodic_scan(interval_MINS=global_config.EMOJI_REGISTER_INTERVAL))
|
||||
print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m")
|
||||
# 启动消息发送控制任务
|
||||
|
||||
@group_msg.handle()
|
||||
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
|
||||
@@ -90,7 +109,7 @@ async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
|
||||
# 添加build_memory定时任务
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
|
||||
async def build_memory_task():
|
||||
"""每30秒执行一次记忆构建"""
|
||||
"""每build_memory_interval秒执行一次记忆构建"""
|
||||
print("\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------")
|
||||
start_time = time.time()
|
||||
await hippocampus.operation_build_memory(chat_size=20)
|
||||
@@ -110,4 +129,10 @@ async def merge_memory_task():
|
||||
# print("\033[1;32m[记忆整合]\033[0m 开始整合")
|
||||
# await hippocampus.operation_merge_memory(percentage=0.1)
|
||||
# print("\033[1;32m[记忆整合]\033[0m 记忆整合完成")
|
||||
|
||||
@scheduler.scheduled_job("interval", seconds=30, id="print_mood")
|
||||
async def print_mood_task():
|
||||
"""每30秒打印一次情绪状态"""
|
||||
mood_manager = MoodManager.get_instance()
|
||||
mood_manager.print_mood_status()
|
||||
|
||||
|
||||
@@ -1,22 +1,27 @@
|
||||
from nonebot.adapters.onebot.v11 import GroupMessageEvent, Message as EventMessage, Bot
|
||||
from .message import Message, MessageSet, Message_Sending
|
||||
from .config import BotConfig, global_config
|
||||
from .storage import MessageStorage
|
||||
from .llm_generator import ResponseGenerator
|
||||
# from .message_stream import MessageStream, MessageStreamContainer
|
||||
from .topic_identifier import topic_identifier
|
||||
from random import random, choice
|
||||
from .emoji_manager import emoji_manager # 导入表情包管理器
|
||||
import time
|
||||
import os
|
||||
from .cq_code import CQCode # 导入CQCode模块
|
||||
from .message_sender import message_manager # 导入新的消息管理器
|
||||
from .message import Message_Thinking # 导入 Message_Thinking 类
|
||||
from .relationship_manager import relationship_manager
|
||||
from .willing_manager import willing_manager # 导入意愿管理器
|
||||
from .utils import is_mentioned_bot_in_txt, calculate_typing_time
|
||||
from ..memory_system.memory import memory_graph
|
||||
from random import random
|
||||
|
||||
from loguru import logger
|
||||
from nonebot.adapters.onebot.v11 import Bot, GroupMessageEvent
|
||||
|
||||
from ..memory_system.memory import hippocampus
|
||||
from ..moods.moods import MoodManager # 导入情绪管理器
|
||||
from .config import global_config
|
||||
from .cq_code import CQCode # 导入CQCode模块
|
||||
from .emoji_manager import emoji_manager # 导入表情包管理器
|
||||
from .llm_generator import ResponseGenerator
|
||||
from .message import (
|
||||
Message,
|
||||
Message_Sending,
|
||||
Message_Thinking, # 导入 Message_Thinking 类
|
||||
MessageSet,
|
||||
)
|
||||
from .message_sender import message_manager # 导入新的消息管理器
|
||||
from .relationship_manager import relationship_manager
|
||||
from .storage import MessageStorage
|
||||
from .utils import calculate_typing_time, is_mentioned_bot_in_txt
|
||||
from .willing_manager import willing_manager # 导入意愿管理器
|
||||
|
||||
|
||||
class ChatBot:
|
||||
def __init__(self):
|
||||
@@ -24,6 +29,8 @@ class ChatBot:
|
||||
self.gpt = ResponseGenerator()
|
||||
self.bot = None # bot 实例引用
|
||||
self._started = False
|
||||
self.mood_manager = MoodManager.get_instance() # 获取情绪管理器单例
|
||||
self.mood_manager.start_mood_update() # 启动情绪更新
|
||||
|
||||
self.emoji_chance = 0.2 # 发送表情包的基础概率
|
||||
# self.message_streams = MessageStreamContainer()
|
||||
@@ -58,6 +65,7 @@ class ChatBot:
|
||||
plain_text=event.get_plaintext(),
|
||||
reply_message=event.reply,
|
||||
)
|
||||
await message.initialize()
|
||||
|
||||
# 过滤词
|
||||
for word in global_config.ban_words:
|
||||
@@ -70,24 +78,12 @@ class ChatBot:
|
||||
|
||||
|
||||
|
||||
topic=await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
||||
|
||||
|
||||
# topic1 = topic_identifier.identify_topic_jieba(message.processed_plain_text)
|
||||
# topic2 = await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
||||
# topic3 = topic_identifier.identify_topic_snownlp(message.processed_plain_text)
|
||||
logger.info(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
|
||||
|
||||
all_num = 0
|
||||
interested_num = 0
|
||||
if topic:
|
||||
for current_topic in topic:
|
||||
all_num += 1
|
||||
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
|
||||
if first_layer_items:
|
||||
interested_num += 1
|
||||
print(f"\033[1;32m[前额叶]\033[0m 对|{current_topic}|有印象")
|
||||
interested_rate = interested_num / all_num if all_num > 0 else 0
|
||||
# topic=await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
||||
topic = ''
|
||||
interested_rate = 0
|
||||
interested_rate = await hippocampus.memory_activate_value(message.processed_plain_text)/100
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 对{message.processed_plain_text}的激活度:---------------------------------------{interested_rate}\n")
|
||||
# logger.info(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
|
||||
|
||||
await self.storage.store_message(message, topic[0] if topic else None)
|
||||
|
||||
@@ -119,14 +115,9 @@ class ChatBot:
|
||||
|
||||
willing_manager.change_reply_willing_sent(thinking_message.group_id)
|
||||
|
||||
response, emotion = await self.gpt.generate_response(message)
|
||||
|
||||
# if response is None:
|
||||
# thinking_message.interupt=True
|
||||
response,raw_content = await self.gpt.generate_response(message)
|
||||
|
||||
if response:
|
||||
# print(f"\033[1;32m[思考结束]\033[0m 思考结束,已得到回复,开始回复")
|
||||
# 找到并删除对应的thinking消息
|
||||
container = message_manager.get_container(event.group_id)
|
||||
thinking_message = None
|
||||
# 找到message,删除
|
||||
@@ -134,8 +125,13 @@ class ChatBot:
|
||||
if isinstance(msg, Message_Thinking) and msg.message_id == think_id:
|
||||
thinking_message = msg
|
||||
container.messages.remove(msg)
|
||||
print(f"\033[1;32m[思考消息删除]\033[0m 已找到思考消息对象,开始删除")
|
||||
# print(f"\033[1;32m[思考消息删除]\033[0m 已找到思考消息对象,开始删除")
|
||||
break
|
||||
|
||||
# 如果找不到思考消息,直接返回
|
||||
if not thinking_message:
|
||||
print(f"\033[1;33m[警告]\033[0m 未找到对应的思考消息,可能已超时被移除")
|
||||
return
|
||||
|
||||
#记录开始思考的时间,避免从思考到回复的时间太久
|
||||
thinking_start_time = thinking_message.thinking_start_time
|
||||
@@ -144,6 +140,7 @@ class ChatBot:
|
||||
accu_typing_time = 0
|
||||
|
||||
# print(f"\033[1;32m[开始回复]\033[0m 开始将回复1载入发送容器")
|
||||
mark_head = False
|
||||
for msg in response:
|
||||
# print(f"\033[1;32m[回复内容]\033[0m {msg}")
|
||||
#通过时间改变时间戳
|
||||
@@ -164,16 +161,25 @@ class ChatBot:
|
||||
thinking_start_time=thinking_start_time, #记录了思考开始的时间
|
||||
reply_message_id=message.message_id
|
||||
)
|
||||
await bot_message.initialize()
|
||||
if not mark_head:
|
||||
bot_message.is_head = True
|
||||
mark_head = True
|
||||
message_set.add_message(bot_message)
|
||||
|
||||
#message_set 可以直接加入 message_manager
|
||||
print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器")
|
||||
# print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器")
|
||||
message_manager.add_message(message_set)
|
||||
|
||||
bot_response_time = tinking_time_point
|
||||
|
||||
if random() < global_config.emoji_chance:
|
||||
emoji_path = await emoji_manager.get_emoji_for_emotion(emotion)
|
||||
if emoji_path:
|
||||
emoji_raw = await emoji_manager.get_emoji_for_text(response)
|
||||
|
||||
# 检查是否 <没有找到> emoji
|
||||
if emoji_raw != None:
|
||||
emoji_path,discription = emoji_raw
|
||||
|
||||
emoji_cq = CQCode.create_emoji_cq(emoji_path)
|
||||
|
||||
if random() < 0.5:
|
||||
@@ -188,6 +194,7 @@ class ChatBot:
|
||||
raw_message=emoji_cq,
|
||||
plain_text=emoji_cq,
|
||||
processed_plain_text=emoji_cq,
|
||||
detailed_plain_text=discription,
|
||||
user_nickname=global_config.BOT_NICKNAME,
|
||||
group_name=message.group_name,
|
||||
time=bot_response_time,
|
||||
@@ -196,9 +203,24 @@ class ChatBot:
|
||||
thinking_start_time=thinking_start_time,
|
||||
# reply_message_id=message.message_id
|
||||
)
|
||||
await bot_message.initialize()
|
||||
message_manager.add_message(bot_message)
|
||||
emotion = await self.gpt._get_emotion_tags(raw_content)
|
||||
print(f"为 '{response}' 获取到的情感标签为:{emotion}")
|
||||
valuedict={
|
||||
'happy': 0.5,
|
||||
'angry': -1,
|
||||
'sad': -0.5,
|
||||
'surprised': 0.2,
|
||||
'disgusted': -1.5,
|
||||
'fearful': -0.7,
|
||||
'neutral': 0.1
|
||||
}
|
||||
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
|
||||
# 使用情绪管理器更新情绪
|
||||
self.mood_manager.update_mood_from_emotion(emotion[0], global_config.mood_intensity_factor)
|
||||
|
||||
willing_manager.change_reply_willing_after_sent(event.group_id)
|
||||
# willing_manager.change_reply_willing_after_sent(event.group_id)
|
||||
|
||||
# 创建全局ChatBot实例
|
||||
chat_bot = ChatBot()
|
||||
@@ -1,12 +1,9 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Any, Optional, Set
|
||||
import os
|
||||
import configparser
|
||||
import tomli
|
||||
import sys
|
||||
from loguru import logger
|
||||
from nonebot import get_driver
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Optional
|
||||
|
||||
import tomli
|
||||
from loguru import logger
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -24,43 +21,61 @@ class BotConfig:
|
||||
|
||||
talk_allowed_groups = set()
|
||||
talk_frequency_down_groups = set()
|
||||
thinking_timeout: int = 100 # 思考时间
|
||||
|
||||
response_willing_amplifier: float = 1.0 # 回复意愿放大系数
|
||||
response_interested_rate_amplifier: float = 1.0 # 回复兴趣度放大系数
|
||||
down_frequency_rate: float = 3.5 # 降低回复频率的群组回复意愿降低系数
|
||||
|
||||
ban_user_id = set()
|
||||
|
||||
build_memory_interval: int = 30 # 记忆构建间隔(秒)
|
||||
forget_memory_interval: int = 300 # 记忆遗忘间隔(秒)
|
||||
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
|
||||
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
|
||||
EMOJI_SAVE: bool = True # 偷表情包
|
||||
EMOJI_CHECK: bool = False #是否开启过滤
|
||||
EMOJI_CHECK_PROMPT: str = "符合公序良俗" # 表情包过滤要求
|
||||
|
||||
ban_words = set()
|
||||
|
||||
max_response_length: int = 1024 # 最大回复长度
|
||||
|
||||
# 模型配置
|
||||
llm_reasoning: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_normal: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_normal_minor: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_topic_judge: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_summary_by_topic: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_emotion_judge: Dict[str, str] = field(default_factory=lambda: {})
|
||||
embedding: Dict[str, str] = field(default_factory=lambda: {})
|
||||
vlm: Dict[str, str] = field(default_factory=lambda: {})
|
||||
moderation: Dict[str, str] = field(default_factory=lambda: {})
|
||||
|
||||
# 主题提取配置
|
||||
topic_extract: str = 'snownlp' # 只支持jieba,snownlp,llm
|
||||
llm_topic_extract: Dict[str, str] = field(default_factory=lambda: {})
|
||||
|
||||
API_USING: str = "siliconflow" # 使用的API
|
||||
API_PAID: bool = False # 是否使用付费API
|
||||
MODEL_R1_PROBABILITY: float = 0.8 # R1模型概率
|
||||
MODEL_V3_PROBABILITY: float = 0.1 # V3模型概率
|
||||
MODEL_R1_DISTILL_PROBABILITY: float = 0.1 # R1蒸馏模型概率
|
||||
|
||||
enable_advance_output: bool = False # 是否启用高级输出
|
||||
enable_kuuki_read: bool = True # 是否启用读空气功能
|
||||
|
||||
mood_update_interval: float = 1.0 # 情绪更新间隔 单位秒
|
||||
mood_decay_rate: float = 0.95 # 情绪衰减率
|
||||
mood_intensity_factor: float = 0.7 # 情绪强度因子
|
||||
|
||||
# 默认人设
|
||||
PROMPT_PERSONALITY=[
|
||||
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
|
||||
"是一个女大学生,你有黑色头发,你会刷小红书"
|
||||
"是一个女大学生,你有黑色头发,你会刷小红书",
|
||||
"是一个女大学生,你会刷b站,对ACG文化感兴趣"
|
||||
]
|
||||
PROMPT_SCHEDULE_GEN="一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
PERSONALITY_1: float = 0.6 # 第一种人格概率
|
||||
PERSONALITY_2: float = 0.3 # 第二种人格概率
|
||||
PERSONALITY_3: float = 0.1 # 第三种人格概率
|
||||
|
||||
@staticmethod
|
||||
def get_config_dir() -> str:
|
||||
"""获取配置文件目录"""
|
||||
@@ -78,7 +93,11 @@ class BotConfig:
|
||||
config = cls()
|
||||
if os.path.exists(config_path):
|
||||
with open(config_path, "rb") as f:
|
||||
toml_dict = tomli.load(f)
|
||||
try:
|
||||
toml_dict = tomli.load(f)
|
||||
except(tomli.TOMLDecodeError) as e:
|
||||
logger.critical(f"配置文件bot_config.toml填写有误,请检查第{e.lineno}行第{e.colno}处:{e.msg}")
|
||||
exit(1)
|
||||
|
||||
if 'personality' in toml_dict:
|
||||
personality_config=toml_dict['personality']
|
||||
@@ -88,11 +107,17 @@ class BotConfig:
|
||||
config.PROMPT_PERSONALITY=personality_config.get('prompt_personality',config.PROMPT_PERSONALITY)
|
||||
logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)}")
|
||||
config.PROMPT_SCHEDULE_GEN=personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)
|
||||
config.PERSONALITY_1=personality_config.get('personality_1_probability',config.PERSONALITY_1)
|
||||
config.PERSONALITY_2=personality_config.get('personality_2_probability',config.PERSONALITY_2)
|
||||
config.PERSONALITY_3=personality_config.get('personality_3_probability',config.PERSONALITY_3)
|
||||
|
||||
if "emoji" in toml_dict:
|
||||
emoji_config = toml_dict["emoji"]
|
||||
config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
|
||||
config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
|
||||
config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt',config.EMOJI_CHECK_PROMPT)
|
||||
config.EMOJI_SAVE = emoji_config.get('auto_save',config.EMOJI_SAVE)
|
||||
config.EMOJI_CHECK = emoji_config.get('enable_check',config.EMOJI_CHECK)
|
||||
|
||||
if "cq_code" in toml_dict:
|
||||
cq_code_config = toml_dict["cq_code"]
|
||||
@@ -110,8 +135,7 @@ class BotConfig:
|
||||
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
|
||||
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
|
||||
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY)
|
||||
config.API_USING = response_config.get("api_using", config.API_USING)
|
||||
config.API_PAID = response_config.get("api_paid", config.API_PAID)
|
||||
config.max_response_length = response_config.get("max_response_length", config.max_response_length)
|
||||
|
||||
# 加载模型配置
|
||||
if "model" in toml_dict:
|
||||
@@ -125,10 +149,18 @@ class BotConfig:
|
||||
|
||||
if "llm_normal" in model_config:
|
||||
config.llm_normal = model_config["llm_normal"]
|
||||
config.llm_topic_extract = config.llm_normal
|
||||
|
||||
if "llm_normal_minor" in model_config:
|
||||
config.llm_normal_minor = model_config["llm_normal_minor"]
|
||||
|
||||
if "llm_topic_judge" in model_config:
|
||||
config.llm_topic_judge = model_config["llm_topic_judge"]
|
||||
|
||||
if "llm_summary_by_topic" in model_config:
|
||||
config.llm_summary_by_topic = model_config["llm_summary_by_topic"]
|
||||
|
||||
if "llm_emotion_judge" in model_config:
|
||||
config.llm_emotion_judge = model_config["llm_emotion_judge"]
|
||||
|
||||
if "vlm" in model_config:
|
||||
config.vlm = model_config["vlm"]
|
||||
@@ -136,14 +168,8 @@ class BotConfig:
|
||||
if "embedding" in model_config:
|
||||
config.embedding = model_config["embedding"]
|
||||
|
||||
if 'topic' in toml_dict:
|
||||
topic_config=toml_dict['topic']
|
||||
if 'topic_extract' in topic_config:
|
||||
config.topic_extract=topic_config.get('topic_extract',config.topic_extract)
|
||||
logger.info(f"载入自定义主题提取为{config.topic_extract}")
|
||||
if config.topic_extract=='llm' and 'llm_topic' in topic_config:
|
||||
config.llm_topic_extract=topic_config['llm_topic']
|
||||
logger.info(f"载入自定义主题提取模型为{config.llm_topic_extract['name']}")
|
||||
if "moderation" in model_config:
|
||||
config.moderation = model_config["moderation"]
|
||||
|
||||
# 消息配置
|
||||
if "message" in toml_dict:
|
||||
@@ -152,11 +178,21 @@ class BotConfig:
|
||||
config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
|
||||
config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
|
||||
config.ban_words=msg_config.get("ban_words",config.ban_words)
|
||||
config.thinking_timeout = msg_config.get("thinking_timeout", config.thinking_timeout)
|
||||
config.response_willing_amplifier = msg_config.get("response_willing_amplifier", config.response_willing_amplifier)
|
||||
config.response_interested_rate_amplifier = msg_config.get("response_interested_rate_amplifier", config.response_interested_rate_amplifier)
|
||||
config.down_frequency_rate = msg_config.get("down_frequency_rate", config.down_frequency_rate)
|
||||
|
||||
if "memory" in toml_dict:
|
||||
memory_config = toml_dict["memory"]
|
||||
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
|
||||
config.forget_memory_interval = memory_config.get("forget_memory_interval", config.forget_memory_interval)
|
||||
|
||||
if "mood" in toml_dict:
|
||||
mood_config = toml_dict["mood"]
|
||||
config.mood_update_interval = mood_config.get("mood_update_interval", config.mood_update_interval)
|
||||
config.mood_decay_rate = mood_config.get("mood_decay_rate", config.mood_decay_rate)
|
||||
config.mood_intensity_factor = mood_config.get("mood_intensity_factor", config.mood_intensity_factor)
|
||||
|
||||
# 群组配置
|
||||
if "groups" in toml_dict:
|
||||
@@ -178,13 +214,13 @@ class BotConfig:
|
||||
|
||||
bot_config_floder_path = BotConfig.get_config_dir()
|
||||
print(f"正在品鉴配置文件目录: {bot_config_floder_path}")
|
||||
bot_config_path = os.path.join(bot_config_floder_path, "bot_config_dev.toml")
|
||||
if not os.path.exists(bot_config_path):
|
||||
bot_config_path = os.path.join(bot_config_floder_path, "bot_config.toml")
|
||||
if os.path.exists(bot_config_path):
|
||||
# 如果开发环境配置文件不存在,则使用默认配置文件
|
||||
bot_config_path = os.path.join(bot_config_floder_path, "bot_config.toml")
|
||||
print(f"异常的新鲜,异常的美味: {bot_config_path}")
|
||||
logger.info("使用bot配置文件")
|
||||
else:
|
||||
logger.info("已找到开发bot配置文件")
|
||||
logger.info("没有找到美味")
|
||||
|
||||
global_config = BotConfig.load_config(config_path=bot_config_path)
|
||||
|
||||
|
||||
@@ -1,23 +1,23 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, List, Union
|
||||
import html
|
||||
import requests
|
||||
import base64
|
||||
from PIL import Image
|
||||
import html
|
||||
import os
|
||||
from random import random
|
||||
from nonebot.adapters.onebot.v11 import Bot
|
||||
from .config import global_config
|
||||
import time
|
||||
import asyncio
|
||||
from .utils_image import storage_image,storage_emoji
|
||||
from .utils_user import get_user_nickname
|
||||
from ..models.utils_model import LLM_request
|
||||
#解析各种CQ码
|
||||
#包含CQ码类
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional
|
||||
|
||||
import requests
|
||||
|
||||
# 解析各种CQ码
|
||||
# 包含CQ码类
|
||||
import urllib3
|
||||
from urllib3.util import create_urllib3_context
|
||||
from nonebot import get_driver
|
||||
from urllib3.util import create_urllib3_context
|
||||
|
||||
from ..models.utils_model import LLM_request
|
||||
from .config import global_config
|
||||
from .mapper import emojimapper
|
||||
from .utils_image import storage_emoji, storage_image
|
||||
from .utils_user import get_user_nickname
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
@@ -27,6 +27,7 @@ ctx = create_urllib3_context()
|
||||
ctx.load_default_certs()
|
||||
ctx.set_ciphers("AES128-GCM-SHA256")
|
||||
|
||||
|
||||
class TencentSSLAdapter(requests.adapters.HTTPAdapter):
|
||||
def __init__(self, ssl_context=None, **kwargs):
|
||||
self.ssl_context = ssl_context
|
||||
@@ -37,6 +38,7 @@ class TencentSSLAdapter(requests.adapters.HTTPAdapter):
|
||||
num_pools=connections, maxsize=maxsize,
|
||||
block=block, ssl_context=self.ssl_context)
|
||||
|
||||
|
||||
@dataclass
|
||||
class CQCode:
|
||||
"""
|
||||
@@ -64,29 +66,29 @@ class CQCode:
|
||||
"""初始化LLM实例"""
|
||||
self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300)
|
||||
|
||||
def translate(self):
|
||||
async def translate(self):
|
||||
"""根据CQ码类型进行相应的翻译处理"""
|
||||
if self.type == 'text':
|
||||
self.translated_plain_text = self.params.get('text', '')
|
||||
elif self.type == 'image':
|
||||
if self.params.get('sub_type') == '0':
|
||||
self.translated_plain_text = self.translate_image()
|
||||
self.translated_plain_text = await self.translate_image()
|
||||
else:
|
||||
self.translated_plain_text = self.translate_emoji()
|
||||
self.translated_plain_text = await self.translate_emoji()
|
||||
elif self.type == 'at':
|
||||
user_nickname = get_user_nickname(self.params.get('qq', ''))
|
||||
if user_nickname:
|
||||
self.translated_plain_text = f"[@{user_nickname}]"
|
||||
else:
|
||||
self.translated_plain_text = f"@某人"
|
||||
self.translated_plain_text = "@某人"
|
||||
elif self.type == 'reply':
|
||||
self.translated_plain_text = self.translate_reply()
|
||||
self.translated_plain_text = await self.translate_reply()
|
||||
elif self.type == 'face':
|
||||
face_id = self.params.get('id', '')
|
||||
# self.translated_plain_text = f"[表情{face_id}]"
|
||||
self.translated_plain_text = f"[表情]"
|
||||
self.translated_plain_text = f"[{emojimapper.get(int(face_id), '表情')}]"
|
||||
elif self.type == 'forward':
|
||||
self.translated_plain_text = self.translate_forward()
|
||||
self.translated_plain_text = await self.translate_forward()
|
||||
else:
|
||||
self.translated_plain_text = f"[{self.type}]"
|
||||
|
||||
@@ -133,7 +135,7 @@ class CQCode:
|
||||
# 腾讯服务器特殊状态码处理
|
||||
if response.status_code == 400 and 'multimedia.nt.qq.com.cn' in url:
|
||||
return None
|
||||
|
||||
|
||||
if response.status_code != 200:
|
||||
raise requests.exceptions.HTTPError(f"HTTP {response.status_code}")
|
||||
|
||||
@@ -157,8 +159,8 @@ class CQCode:
|
||||
return None
|
||||
|
||||
return None
|
||||
|
||||
def translate_emoji(self) -> str:
|
||||
|
||||
async def translate_emoji(self) -> str:
|
||||
"""处理表情包类型的CQ码"""
|
||||
if 'url' not in self.params:
|
||||
return '[表情包]'
|
||||
@@ -167,50 +169,51 @@ class CQCode:
|
||||
# 将 base64 字符串转换为字节类型
|
||||
image_bytes = base64.b64decode(base64_str)
|
||||
storage_emoji(image_bytes)
|
||||
return self.get_emoji_description(base64_str)
|
||||
return await self.get_emoji_description(base64_str)
|
||||
else:
|
||||
return '[表情包]'
|
||||
|
||||
|
||||
def translate_image(self) -> str:
|
||||
|
||||
async def translate_image(self) -> str:
|
||||
"""处理图片类型的CQ码,区分普通图片和表情包"""
|
||||
#没有url,直接返回默认文本
|
||||
# 没有url,直接返回默认文本
|
||||
if 'url' not in self.params:
|
||||
return '[图片]'
|
||||
base64_str = self.get_img()
|
||||
if base64_str:
|
||||
image_bytes = base64.b64decode(base64_str)
|
||||
storage_image(image_bytes)
|
||||
return self.get_image_description(base64_str)
|
||||
return await self.get_image_description(base64_str)
|
||||
else:
|
||||
return '[图片]'
|
||||
|
||||
def get_emoji_description(self, image_base64: str) -> str:
|
||||
async def get_emoji_description(self, image_base64: str) -> str:
|
||||
"""调用AI接口获取表情包描述"""
|
||||
try:
|
||||
prompt = "这是一个表情包,请用简短的中文描述这个表情包传达的情感和含义。最多20个字。"
|
||||
description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
||||
# description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
|
||||
return f"[表情包:{description}]"
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
|
||||
return "[表情包]"
|
||||
|
||||
def get_image_description(self, image_base64: str) -> str:
|
||||
async def get_image_description(self, image_base64: str) -> str:
|
||||
"""调用AI接口获取普通图片描述"""
|
||||
try:
|
||||
prompt = "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
|
||||
description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
||||
# description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
|
||||
return f"[图片:{description}]"
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
|
||||
return "[图片]"
|
||||
|
||||
def translate_forward(self) -> str:
|
||||
|
||||
async def translate_forward(self) -> str:
|
||||
"""处理转发消息"""
|
||||
try:
|
||||
if 'content' not in self.params:
|
||||
return '[转发消息]'
|
||||
|
||||
|
||||
# 解析content内容(需要先反转义)
|
||||
content = self.unescape(self.params['content'])
|
||||
# print(f"\033[1;34m[调试信息]\033[0m 转发消息内容: {content}")
|
||||
@@ -221,17 +224,17 @@ class CQCode:
|
||||
except ValueError as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 解析转发消息内容失败: {str(e)}")
|
||||
return '[转发消息]'
|
||||
|
||||
|
||||
# 处理每条消息
|
||||
formatted_messages = []
|
||||
for msg in messages:
|
||||
sender = msg.get('sender', {})
|
||||
nickname = sender.get('card') or sender.get('nickname', '未知用户')
|
||||
|
||||
|
||||
# 获取消息内容并使用Message类处理
|
||||
raw_message = msg.get('raw_message', '')
|
||||
message_array = msg.get('message', [])
|
||||
|
||||
|
||||
if message_array and isinstance(message_array, list):
|
||||
# 检查是否包含嵌套的转发消息
|
||||
for message_part in message_array:
|
||||
@@ -249,6 +252,7 @@ class CQCode:
|
||||
plain_text=raw_message,
|
||||
group_id=msg.get('group_id', 0)
|
||||
)
|
||||
await message_obj.initialize()
|
||||
content = message_obj.processed_plain_text
|
||||
else:
|
||||
content = '[空消息]'
|
||||
@@ -263,23 +267,24 @@ class CQCode:
|
||||
plain_text=raw_message,
|
||||
group_id=msg.get('group_id', 0)
|
||||
)
|
||||
await message_obj.initialize()
|
||||
content = message_obj.processed_plain_text
|
||||
else:
|
||||
content = '[空消息]'
|
||||
|
||||
|
||||
formatted_msg = f"{nickname}: {content}"
|
||||
formatted_messages.append(formatted_msg)
|
||||
|
||||
|
||||
# 合并所有消息
|
||||
combined_messages = '\n'.join(formatted_messages)
|
||||
print(f"\033[1;34m[调试信息]\033[0m 合并后的转发消息: {combined_messages}")
|
||||
return f"[转发消息:\n{combined_messages}]"
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 处理转发消息失败: {str(e)}")
|
||||
return '[转发消息]'
|
||||
|
||||
def translate_reply(self) -> str:
|
||||
async def translate_reply(self) -> str:
|
||||
"""处理回复类型的CQ码"""
|
||||
|
||||
# 创建Message对象
|
||||
@@ -287,7 +292,7 @@ class CQCode:
|
||||
if self.reply_message == None:
|
||||
# print(f"\033[1;31m[错误]\033[0m 回复消息为空")
|
||||
return '[回复某人消息]'
|
||||
|
||||
|
||||
if self.reply_message.sender.user_id:
|
||||
message_obj = Message(
|
||||
user_id=self.reply_message.sender.user_id,
|
||||
@@ -295,22 +300,23 @@ class CQCode:
|
||||
raw_message=str(self.reply_message.message),
|
||||
group_id=self.group_id
|
||||
)
|
||||
await message_obj.initialize()
|
||||
if message_obj.user_id == global_config.BOT_QQ:
|
||||
return f"[回复 {global_config.BOT_NICKNAME} 的消息: {message_obj.processed_plain_text}]"
|
||||
else:
|
||||
return f"[回复 {self.reply_message.sender.nickname} 的消息: {message_obj.processed_plain_text}]"
|
||||
|
||||
else:
|
||||
print(f"\033[1;31m[错误]\033[0m 回复消息的sender.user_id为空")
|
||||
print("\033[1;31m[错误]\033[0m 回复消息的sender.user_id为空")
|
||||
return '[回复某人消息]'
|
||||
|
||||
@staticmethod
|
||||
def unescape(text: str) -> str:
|
||||
"""反转义CQ码中的特殊字符"""
|
||||
return text.replace(',', ',') \
|
||||
.replace('[', '[') \
|
||||
.replace(']', ']') \
|
||||
.replace('&', '&')
|
||||
.replace('[', '[') \
|
||||
.replace(']', ']') \
|
||||
.replace('&', '&')
|
||||
|
||||
@staticmethod
|
||||
def create_emoji_cq(file_path: str) -> str:
|
||||
@@ -325,15 +331,16 @@ class CQCode:
|
||||
abs_path = os.path.abspath(file_path)
|
||||
# 转义特殊字符
|
||||
escaped_path = abs_path.replace('&', '&') \
|
||||
.replace('[', '[') \
|
||||
.replace(']', ']') \
|
||||
.replace(',', ',')
|
||||
.replace('[', '[') \
|
||||
.replace(']', ']') \
|
||||
.replace(',', ',')
|
||||
# 生成CQ码,设置sub_type=1表示这是表情包
|
||||
return f"[CQ:image,file=file:///{escaped_path},sub_type=1]"
|
||||
|
||||
|
||||
|
||||
class CQCode_tool:
|
||||
@staticmethod
|
||||
def cq_from_dict_to_class(cq_code: Dict, reply: Optional[Dict] = None) -> CQCode:
|
||||
async def cq_from_dict_to_class(cq_code: Dict, reply: Optional[Dict] = None) -> CQCode:
|
||||
"""
|
||||
将CQ码字典转换为CQCode对象
|
||||
|
||||
@@ -352,7 +359,7 @@ class CQCode_tool:
|
||||
params['text'] = cq_code.get('data', {}).get('text', '')
|
||||
else:
|
||||
params = cq_code.get('data', {})
|
||||
|
||||
|
||||
instance = CQCode(
|
||||
type=cq_type,
|
||||
params=params,
|
||||
@@ -360,11 +367,11 @@ class CQCode_tool:
|
||||
user_id=0,
|
||||
reply_message=reply
|
||||
)
|
||||
|
||||
|
||||
# 进行翻译处理
|
||||
instance.translate()
|
||||
await instance.translate()
|
||||
return instance
|
||||
|
||||
|
||||
@staticmethod
|
||||
def create_reply_cq(message_id: int) -> str:
|
||||
"""
|
||||
@@ -375,6 +382,6 @@ class CQCode_tool:
|
||||
回复CQ码字符串
|
||||
"""
|
||||
return f"[CQ:reply,id={message_id}]"
|
||||
|
||||
|
||||
|
||||
|
||||
cq_code_tool = CQCode_tool()
|
||||
|
||||
@@ -1,22 +1,17 @@
|
||||
from typing import List, Dict, Optional
|
||||
import random
|
||||
from ...common.database import Database
|
||||
import os
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
import jieba.analyse as jieba_analyse
|
||||
import aiohttp
|
||||
import hashlib
|
||||
from datetime import datetime
|
||||
import base64
|
||||
import shutil
|
||||
import asyncio
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from PIL import Image
|
||||
import io
|
||||
import traceback
|
||||
from typing import Optional
|
||||
|
||||
from loguru import logger
|
||||
from nonebot import get_driver
|
||||
|
||||
from ...common.database import Database
|
||||
from ..chat.config import global_config
|
||||
from ..chat.utils import get_embedding
|
||||
from ..chat.utils_image import image_path_to_base64
|
||||
from ..models.utils_model import LLM_request
|
||||
|
||||
driver = get_driver()
|
||||
@@ -27,16 +22,6 @@ class EmojiManager:
|
||||
_instance = None
|
||||
EMOJI_DIR = "data/emoji" # 表情包存储目录
|
||||
|
||||
EMOTION_KEYWORDS = {
|
||||
'happy': ['开心', '快乐', '高兴', '欢喜', '笑', '喜悦', '兴奋', '愉快', '乐', '好'],
|
||||
'angry': ['生气', '愤怒', '恼火', '不爽', '火大', '怒', '气愤', '恼怒', '发火', '不满'],
|
||||
'sad': ['伤心', '难过', '悲伤', '痛苦', '哭', '忧伤', '悲痛', '哀伤', '委屈', '失落'],
|
||||
'surprised': ['惊讶', '震惊', '吃惊', '意外', '惊', '诧异', '惊奇', '惊喜', '不敢相信', '目瞪口呆'],
|
||||
'disgusted': ['恶心', '讨厌', '厌恶', '反感', '嫌弃', '恶', '嫌恶', '憎恶', '不喜欢', '烦'],
|
||||
'fearful': ['害怕', '恐惧', '惊恐', '担心', '怕', '惊吓', '惊慌', '畏惧', '胆怯', '惧'],
|
||||
'neutral': ['普通', '一般', '还行', '正常', '平静', '平淡', '一般般', '凑合', '还好', '就这样']
|
||||
}
|
||||
|
||||
def __new__(cls):
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
@@ -47,7 +32,8 @@ class EmojiManager:
|
||||
def __init__(self):
|
||||
self.db = Database.get_instance()
|
||||
self._scan_task = None
|
||||
self.llm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=50)
|
||||
self.vlm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=1000)
|
||||
self.llm_emotion_judge = LLM_request(model=global_config.llm_normal_minor, max_tokens=60,temperature=0.8) #更高的温度,更少的token(后续可以根据情绪来调整温度)
|
||||
|
||||
def _ensure_emoji_dir(self):
|
||||
"""确保表情存储目录存在"""
|
||||
@@ -64,7 +50,7 @@ class EmojiManager:
|
||||
# 启动时执行一次完整性检查
|
||||
self.check_emoji_file_integrity()
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 初始化表情管理器失败: {str(e)}")
|
||||
logger.error(f"初始化表情管理器失败: {str(e)}")
|
||||
|
||||
def _ensure_db(self):
|
||||
"""确保数据库已初始化"""
|
||||
@@ -74,9 +60,20 @@ class EmojiManager:
|
||||
raise RuntimeError("EmojiManager not initialized")
|
||||
|
||||
def _ensure_emoji_collection(self):
|
||||
"""确保emoji集合存在并创建索引"""
|
||||
"""确保emoji集合存在并创建索引
|
||||
|
||||
这个函数用于确保MongoDB数据库中存在emoji集合,并创建必要的索引。
|
||||
|
||||
索引的作用是加快数据库查询速度:
|
||||
- embedding字段的2dsphere索引: 用于加速向量相似度搜索,帮助快速找到相似的表情包
|
||||
- tags字段的普通索引: 加快按标签搜索表情包的速度
|
||||
- filename字段的唯一索引: 确保文件名不重复,同时加快按文件名查找的速度
|
||||
|
||||
没有索引的话,数据库每次查询都需要扫描全部数据,建立索引后可以大大提高查询效率。
|
||||
"""
|
||||
if 'emoji' not in self.db.db.list_collection_names():
|
||||
self.db.db.create_collection('emoji')
|
||||
self.db.db.emoji.create_index([('embedding', '2dsphere')])
|
||||
self.db.db.emoji.create_index([('tags', 1)])
|
||||
self.db.db.emoji.create_index([('filename', 1)], unique=True)
|
||||
|
||||
@@ -89,228 +86,128 @@ class EmojiManager:
|
||||
{'$inc': {'usage_count': 1}}
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 记录表情使用失败: {str(e)}")
|
||||
logger.error(f"记录表情使用失败: {str(e)}")
|
||||
|
||||
async def _get_emotion_from_text(self, text: str) -> List[str]:
|
||||
"""从文本中识别情感关键词
|
||||
Args:
|
||||
text: 输入文本
|
||||
Returns:
|
||||
List[str]: 匹配到的情感标签列表
|
||||
"""
|
||||
try:
|
||||
prompt = f'分析这段文本:"{text}",从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签。只需要返回标签,不要输出其他任何内容。'
|
||||
|
||||
content, _ = await self.llm.generate_response(prompt)
|
||||
emotion = content.strip().lower()
|
||||
|
||||
if emotion in self.EMOTION_KEYWORDS:
|
||||
print(f"\033[1;32m[成功]\033[0m 识别到的情感: {emotion}")
|
||||
return [emotion]
|
||||
|
||||
return ['neutral']
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 情感分析失败: {str(e)}")
|
||||
return ['neutral']
|
||||
|
||||
async def get_emoji_for_emotion(self, emotion_tag: str) -> Optional[str]:
|
||||
try:
|
||||
self._ensure_db()
|
||||
|
||||
# 构建查询条件:标签匹配任一情感
|
||||
query = {'tags': {'$in': emotion_tag}}
|
||||
|
||||
# print(f"\033[1;34m[调试]\033[0m 表情查询条件: {query}")
|
||||
|
||||
try:
|
||||
# 随机获取一个匹配的表情
|
||||
emoji = self.db.db.emoji.aggregate([
|
||||
{'$match': query},
|
||||
{'$sample': {'size': 1}}
|
||||
]).next()
|
||||
print(f"\033[1;32m[成功]\033[0m 找到匹配的表情")
|
||||
if emoji and 'path' in emoji:
|
||||
# 更新使用次数
|
||||
self.db.db.emoji.update_one(
|
||||
{'_id': emoji['_id']},
|
||||
{'$inc': {'usage_count': 1}}
|
||||
)
|
||||
return emoji['path']
|
||||
except StopIteration:
|
||||
# 如果没有匹配的表情,从所有表情中随机选择一个
|
||||
print(f"\033[1;33m[提示]\033[0m 未找到匹配的表情,随机选择一个")
|
||||
try:
|
||||
emoji = self.db.db.emoji.aggregate([
|
||||
{'$sample': {'size': 1}}
|
||||
]).next()
|
||||
if emoji and 'path' in emoji:
|
||||
# 更新使用次数
|
||||
self.db.db.emoji.update_one(
|
||||
{'_id': emoji['_id']},
|
||||
{'$inc': {'usage_count': 1}}
|
||||
)
|
||||
return emoji['path']
|
||||
except StopIteration:
|
||||
print(f"\033[1;31m[错误]\033[0m 数据库中没有任何表情")
|
||||
return None
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 获取表情包失败: {str(e)}")
|
||||
return None
|
||||
|
||||
|
||||
async def get_emoji_for_text(self, text: str) -> Optional[str]:
|
||||
"""根据文本内容获取相关表情包
|
||||
Args:
|
||||
text: 输入文本
|
||||
Returns:
|
||||
Optional[str]: 表情包文件路径,如果没有找到则返回None
|
||||
|
||||
|
||||
可不可以通过 配置文件中的指令 来自定义使用表情包的逻辑?
|
||||
我觉得可行
|
||||
|
||||
"""
|
||||
try:
|
||||
self._ensure_db()
|
||||
# 获取情感标签
|
||||
emotions = await self._get_emotion_from_text(text)
|
||||
print("为 ‘"+ str(text) + "’ 获取到的情感标签为:" + str(emotions))
|
||||
if not emotions:
|
||||
return None
|
||||
|
||||
# 构建查询条件:标签匹配任一情感
|
||||
query = {'tags': {'$in': emotions}}
|
||||
|
||||
print(f"\033[1;34m[调试]\033[0m 表情查询条件: {query}")
|
||||
print(f"\033[1;34m[调试]\033[0m 匹配到的情感: {emotions}")
|
||||
# 获取文本的embedding
|
||||
text_for_search= await self._get_kimoji_for_text(text)
|
||||
if not text_for_search:
|
||||
logger.error("无法获取文本的情绪")
|
||||
return None
|
||||
text_embedding = await get_embedding(text_for_search)
|
||||
if not text_embedding:
|
||||
logger.error("无法获取文本的embedding")
|
||||
return None
|
||||
|
||||
try:
|
||||
# 随机获取一个匹配的表情
|
||||
emoji = self.db.db.emoji.aggregate([
|
||||
{'$match': query},
|
||||
{'$sample': {'size': 1}}
|
||||
]).next()
|
||||
print(f"\033[1;32m[成功]\033[0m 找到匹配的表情")
|
||||
if emoji and 'path' in emoji:
|
||||
# 获取所有表情包
|
||||
all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'discription': 1}))
|
||||
|
||||
if not all_emojis:
|
||||
logger.warning("数据库中没有任何表情包")
|
||||
return None
|
||||
|
||||
# 计算余弦相似度并排序
|
||||
def cosine_similarity(v1, v2):
|
||||
if not v1 or not v2:
|
||||
return 0
|
||||
dot_product = sum(a * b for a, b in zip(v1, v2))
|
||||
norm_v1 = sum(a * a for a in v1) ** 0.5
|
||||
norm_v2 = sum(b * b for b in v2) ** 0.5
|
||||
if norm_v1 == 0 or norm_v2 == 0:
|
||||
return 0
|
||||
return dot_product / (norm_v1 * norm_v2)
|
||||
|
||||
# 计算所有表情包与输入文本的相似度
|
||||
emoji_similarities = [
|
||||
(emoji, cosine_similarity(text_embedding, emoji.get('embedding', [])))
|
||||
for emoji in all_emojis
|
||||
]
|
||||
|
||||
# 按相似度降序排序
|
||||
emoji_similarities.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 获取前3个最相似的表情包
|
||||
top_3_emojis = emoji_similarities[:3]
|
||||
|
||||
if not top_3_emojis:
|
||||
logger.warning("未找到匹配的表情包")
|
||||
return None
|
||||
|
||||
# 从前3个中随机选择一个
|
||||
selected_emoji, similarity = random.choice(top_3_emojis)
|
||||
|
||||
if selected_emoji and 'path' in selected_emoji:
|
||||
# 更新使用次数
|
||||
self.db.db.emoji.update_one(
|
||||
{'_id': emoji['_id']},
|
||||
{'_id': selected_emoji['_id']},
|
||||
{'$inc': {'usage_count': 1}}
|
||||
)
|
||||
return emoji['path']
|
||||
except StopIteration:
|
||||
# 如果没有匹配的表情,从所有表情中随机选择一个
|
||||
print(f"\033[1;33m[提示]\033[0m 未找到匹配的表情,随机选择一个")
|
||||
try:
|
||||
emoji = self.db.db.emoji.aggregate([
|
||||
{'$sample': {'size': 1}}
|
||||
]).next()
|
||||
if emoji and 'path' in emoji:
|
||||
# 更新使用次数
|
||||
self.db.db.emoji.update_one(
|
||||
{'_id': emoji['_id']},
|
||||
{'$inc': {'usage_count': 1}}
|
||||
)
|
||||
return emoji['path']
|
||||
except StopIteration:
|
||||
print(f"\033[1;31m[错误]\033[0m 数据库中没有任何表情")
|
||||
return None
|
||||
logger.success(f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})")
|
||||
# 稍微改一下文本描述,不然容易产生幻觉,描述已经包含 表情包 了
|
||||
return selected_emoji['path'],"[ %s ]" % selected_emoji.get('discription', '无描述')
|
||||
|
||||
except Exception as search_error:
|
||||
logger.error(f"搜索表情包失败: {str(search_error)}")
|
||||
return None
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 获取表情包失败: {str(e)}")
|
||||
logger.error(f"获取表情包失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def _get_emoji_tag(self, image_base64: str) -> str:
|
||||
async def _get_emoji_discription(self, image_base64: str) -> str:
|
||||
"""获取表情包的标签"""
|
||||
try:
|
||||
prompt = '这是一个表情包,请从"happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"中选出1个情感标签。只输出标签,不要输出其他任何内容,只输出情感标签就好'
|
||||
prompt = '这是一个表情包,使用中文简洁的描述一下表情包的内容和表情包所表达的情感'
|
||||
|
||||
content, _ = await self.llm.generate_response_for_image(prompt, image_base64)
|
||||
tag_result = content.strip().lower()
|
||||
|
||||
valid_tags = ["happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"]
|
||||
for tag_match in valid_tags:
|
||||
if tag_match in tag_result or tag_match == tag_result:
|
||||
return tag_match
|
||||
print(f"\033[1;33m[警告]\033[0m 无效的标签: {tag_result}, 跳过")
|
||||
content, _ = await self.vlm.generate_response_for_image(prompt, image_base64)
|
||||
logger.debug(f"输出描述: {content}")
|
||||
return content
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 获取标签失败: {str(e)}")
|
||||
return "skip"
|
||||
|
||||
print(f"\033[1;32m[调试信息]\033[0m 使用默认标签: neutral")
|
||||
return "skip" # 默认标签
|
||||
|
||||
async def _compress_image(self, image_path: str, target_size: int = 0.8 * 1024 * 1024) -> Optional[str]:
|
||||
"""压缩图片并返回base64编码
|
||||
Args:
|
||||
image_path: 图片文件路径
|
||||
target_size: 目标文件大小(字节),默认0.8MB
|
||||
Returns:
|
||||
Optional[str]: 成功返回base64编码的图片数据,失败返回None
|
||||
"""
|
||||
try:
|
||||
file_size = os.path.getsize(image_path)
|
||||
if file_size <= target_size:
|
||||
# 如果文件已经小于目标大小,直接读取并返回base64
|
||||
with open(image_path, 'rb') as f:
|
||||
return base64.b64encode(f.read()).decode('utf-8')
|
||||
|
||||
# 打开图片
|
||||
with Image.open(image_path) as img:
|
||||
# 获取原始尺寸
|
||||
original_width, original_height = img.size
|
||||
|
||||
# 计算缩放比例
|
||||
scale = min(1.0, (target_size / file_size) ** 0.5)
|
||||
|
||||
# 计算新的尺寸
|
||||
new_width = int(original_width * scale)
|
||||
new_height = int(original_height * scale)
|
||||
|
||||
# 创建内存缓冲区
|
||||
output_buffer = io.BytesIO()
|
||||
|
||||
# 如果是GIF,处理所有帧
|
||||
if getattr(img, "is_animated", False):
|
||||
frames = []
|
||||
for frame_idx in range(img.n_frames):
|
||||
img.seek(frame_idx)
|
||||
new_frame = img.copy()
|
||||
new_frame = new_frame.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
frames.append(new_frame)
|
||||
|
||||
# 保存到缓冲区
|
||||
frames[0].save(
|
||||
output_buffer,
|
||||
format='GIF',
|
||||
save_all=True,
|
||||
append_images=frames[1:],
|
||||
optimize=True,
|
||||
duration=img.info.get('duration', 100),
|
||||
loop=img.info.get('loop', 0)
|
||||
)
|
||||
else:
|
||||
# 处理静态图片
|
||||
resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
|
||||
# 保存到缓冲区,保持原始格式
|
||||
if img.format == 'PNG' and img.mode in ('RGBA', 'LA'):
|
||||
resized_img.save(output_buffer, format='PNG', optimize=True)
|
||||
else:
|
||||
resized_img.save(output_buffer, format='JPEG', quality=95, optimize=True)
|
||||
|
||||
# 获取压缩后的数据并转换为base64
|
||||
compressed_data = output_buffer.getvalue()
|
||||
print(f"\033[1;32m[成功]\033[0m 压缩图片: {os.path.basename(image_path)} ({original_width}x{original_height} -> {new_width}x{new_height})")
|
||||
|
||||
return base64.b64encode(compressed_data).decode('utf-8')
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 压缩图片失败: {os.path.basename(image_path)}, 错误: {str(e)}")
|
||||
logger.error(f"获取标签失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def _check_emoji(self, image_base64: str) -> str:
|
||||
try:
|
||||
prompt = f'这是一个表情包,请回答这个表情包是否满足\"{global_config.EMOJI_CHECK_PROMPT}\"的要求,是则回答是,否则回答否,不要出现任何其他内容'
|
||||
|
||||
content, _ = await self.vlm.generate_response_for_image(prompt, image_base64)
|
||||
logger.debug(f"输出描述: {content}")
|
||||
return content
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取标签失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def _get_kimoji_for_text(self, text:str):
|
||||
try:
|
||||
prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对消息内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。'
|
||||
|
||||
content, _ = await self.llm_emotion_judge.generate_response_async(prompt)
|
||||
logger.info(f"输出描述: {content}")
|
||||
return content
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取标签失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def scan_new_emojis(self):
|
||||
"""扫描新的表情包"""
|
||||
try:
|
||||
@@ -329,41 +226,51 @@ class EmojiManager:
|
||||
continue
|
||||
|
||||
# 压缩图片并获取base64编码
|
||||
image_base64 = await self._compress_image(image_path)
|
||||
image_base64 = image_path_to_base64(image_path)
|
||||
if image_base64 is None:
|
||||
os.remove(image_path)
|
||||
continue
|
||||
|
||||
# 获取表情包的情感标签
|
||||
tag = await self._get_emoji_tag(image_base64)
|
||||
if not tag == "skip":
|
||||
# 获取表情包的描述
|
||||
discription = await self._get_emoji_discription(image_base64)
|
||||
if global_config.EMOJI_CHECK:
|
||||
check = await self._check_emoji(image_base64)
|
||||
if '是' not in check:
|
||||
os.remove(image_path)
|
||||
logger.info(f"描述: {discription}")
|
||||
logger.info(f"其不满足过滤规则,被剔除 {check}")
|
||||
continue
|
||||
logger.info(f"check通过 {check}")
|
||||
embedding = await get_embedding(discription)
|
||||
if discription is not None:
|
||||
# 准备数据库记录
|
||||
emoji_record = {
|
||||
'filename': filename,
|
||||
'path': image_path,
|
||||
'tags': [tag],
|
||||
'embedding':embedding,
|
||||
'discription': discription,
|
||||
'timestamp': int(time.time())
|
||||
}
|
||||
|
||||
# 保存到数据库
|
||||
self.db.db['emoji'].insert_one(emoji_record)
|
||||
print(f"\033[1;32m[成功]\033[0m 注册新表情包: {filename}")
|
||||
print(f"标签: {tag}")
|
||||
logger.success(f"注册新表情包: {filename}")
|
||||
logger.info(f"描述: {discription}")
|
||||
else:
|
||||
print(f"\033[1;33m[警告]\033[0m 跳过表情包: {filename}")
|
||||
logger.warning(f"跳过表情包: {filename}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 扫描表情包失败: {str(e)}")
|
||||
import traceback
|
||||
print(traceback.format_exc())
|
||||
|
||||
logger.error(f"扫描表情包失败: {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
async def _periodic_scan(self, interval_MINS: int = 10):
|
||||
"""定期扫描新表情包"""
|
||||
while True:
|
||||
print(f"\033[1;36m[表情包]\033[0m 开始扫描新表情包...")
|
||||
print("\033[1;36m[表情包]\033[0m 开始扫描新表情包...")
|
||||
await self.scan_new_emojis()
|
||||
await asyncio.sleep(interval_MINS * 60) # 每600秒扫描一次
|
||||
|
||||
|
||||
def check_emoji_file_integrity(self):
|
||||
"""检查表情包文件完整性
|
||||
如果文件已被删除,则从数据库中移除对应记录
|
||||
@@ -378,44 +285,42 @@ class EmojiManager:
|
||||
for emoji in all_emojis:
|
||||
try:
|
||||
if 'path' not in emoji:
|
||||
print(f"\033[1;33m[提示]\033[0m 发现无效记录(缺少path字段),ID: {emoji.get('_id', 'unknown')}")
|
||||
logger.warning(f"发现无效记录(缺少path字段),ID: {emoji.get('_id', 'unknown')}")
|
||||
self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
||||
removed_count += 1
|
||||
continue
|
||||
|
||||
if 'embedding' not in emoji:
|
||||
logger.warning(f"发现过时记录(缺少embedding字段),ID: {emoji.get('_id', 'unknown')}")
|
||||
self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
||||
removed_count += 1
|
||||
continue
|
||||
|
||||
# 检查文件是否存在
|
||||
if not os.path.exists(emoji['path']):
|
||||
print(f"\033[1;33m[提示]\033[0m 表情包文件已被删除: {emoji['path']}")
|
||||
logger.warning(f"表情包文件已被删除: {emoji['path']}")
|
||||
# 从数据库中删除记录
|
||||
result = self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
||||
if result.deleted_count > 0:
|
||||
print(f"\033[1;32m[成功]\033[0m 成功删除数据库记录: {emoji['_id']}")
|
||||
logger.success(f"成功删除数据库记录: {emoji['_id']}")
|
||||
removed_count += 1
|
||||
else:
|
||||
print(f"\033[1;31m[错误]\033[0m 删除数据库记录失败: {emoji['_id']}")
|
||||
logger.error(f"删除数据库记录失败: {emoji['_id']}")
|
||||
except Exception as item_error:
|
||||
print(f"\033[1;31m[错误]\033[0m 处理表情包记录时出错: {str(item_error)}")
|
||||
logger.error(f"处理表情包记录时出错: {str(item_error)}")
|
||||
continue
|
||||
|
||||
# 验证清理结果
|
||||
remaining_count = self.db.db.emoji.count_documents({})
|
||||
if removed_count > 0:
|
||||
print(f"\033[1;32m[成功]\033[0m 已清理 {removed_count} 个失效的表情包记录")
|
||||
print(f"\033[1;34m[统计]\033[0m 清理前总数: {total_count} | 清理后总数: {remaining_count}")
|
||||
# print(f"\033[1;34m[统计]\033[0m 应删除数量: {removed_count} | 实际删除数量: {total_count - remaining_count}")
|
||||
# 执行数据库压缩
|
||||
try:
|
||||
self.db.db.command({"compact": "emoji"})
|
||||
print(f"\033[1;32m[成功]\033[0m 数据库集合压缩完成")
|
||||
except Exception as compact_error:
|
||||
print(f"\033[1;31m[错误]\033[0m 数据库压缩失败: {str(compact_error)}")
|
||||
logger.success(f"已清理 {removed_count} 个失效的表情包记录")
|
||||
logger.info(f"清理前总数: {total_count} | 清理后总数: {remaining_count}")
|
||||
else:
|
||||
print(f"\033[1;36m[表情包]\033[0m 已检查 {total_count} 个表情包记录")
|
||||
logger.info(f"已检查 {total_count} 个表情包记录")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 检查表情包完整性失败: {str(e)}")
|
||||
import traceback
|
||||
print(f"\033[1;31m[错误追踪]\033[0m\n{traceback.format_exc()}")
|
||||
logger.error(f"检查表情包完整性失败: {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
async def start_periodic_check(self, interval_MINS: int = 120):
|
||||
while True:
|
||||
|
||||
@@ -1,19 +1,16 @@
|
||||
from typing import Dict, Any, List, Optional, Union, Tuple
|
||||
from openai import OpenAI
|
||||
import asyncio
|
||||
from functools import partial
|
||||
from .message import Message
|
||||
from .config import global_config
|
||||
from ...common.database import Database
|
||||
import random
|
||||
import time
|
||||
import numpy as np
|
||||
from .relationship_manager import relationship_manager
|
||||
from .prompt_builder import prompt_builder
|
||||
from .config import global_config
|
||||
from .utils import process_llm_response
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
from nonebot import get_driver
|
||||
|
||||
from ...common.database import Database
|
||||
from ..models.utils_model import LLM_request
|
||||
from .config import global_config
|
||||
from .message import Message
|
||||
from .prompt_builder import prompt_builder
|
||||
from .relationship_manager import relationship_manager
|
||||
from .utils import process_llm_response
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
@@ -21,9 +18,10 @@ config = driver.config
|
||||
|
||||
class ResponseGenerator:
|
||||
def __init__(self):
|
||||
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7,max_tokens=1000)
|
||||
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7,max_tokens=1000,stream=True)
|
||||
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7,max_tokens=1000)
|
||||
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7,max_tokens=1000)
|
||||
self.model_v25 = LLM_request(model=global_config.llm_normal_minor, temperature=0.7,max_tokens=1000)
|
||||
self.db = Database.get_instance()
|
||||
self.current_model_type = 'r1' # 默认使用 R1
|
||||
|
||||
@@ -44,19 +42,15 @@ class ResponseGenerator:
|
||||
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
|
||||
|
||||
model_response = await self._generate_response_with_model(message, current_model)
|
||||
raw_content=model_response
|
||||
|
||||
if model_response:
|
||||
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
||||
model_response, emotion = await self._process_response(model_response)
|
||||
model_response = await self._process_response(model_response)
|
||||
if model_response:
|
||||
print(f"为 '{model_response}' 获取到的情感标签为:{emotion}")
|
||||
valuedict={
|
||||
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
|
||||
}
|
||||
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
|
||||
|
||||
return model_response, emotion
|
||||
return None, []
|
||||
return model_response ,raw_content
|
||||
return None,raw_content
|
||||
|
||||
async def _generate_response_with_model(self, message: Message, model: LLM_request) -> Optional[str]:
|
||||
"""使用指定的模型生成回复"""
|
||||
@@ -67,10 +61,11 @@ class ResponseGenerator:
|
||||
# 获取关系值
|
||||
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value if relationship_manager.get_relationship(message.user_id) else 0.0
|
||||
if relationship_value != 0.0:
|
||||
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
||||
# print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
||||
pass
|
||||
|
||||
# 构建prompt
|
||||
prompt, prompt_check = prompt_builder._build_prompt(
|
||||
prompt, prompt_check = await prompt_builder._build_prompt(
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
relationship_value=relationship_value,
|
||||
@@ -142,7 +137,7 @@ class ResponseGenerator:
|
||||
内容:{content}
|
||||
输出:
|
||||
'''
|
||||
content, _ = await self.model_v3.generate_response(prompt)
|
||||
content, _ = await self.model_v25.generate_response(prompt)
|
||||
content=content.strip()
|
||||
if content in ['happy','angry','sad','surprised','disgusted','fearful','neutral']:
|
||||
return [content]
|
||||
@@ -158,10 +153,9 @@ class ResponseGenerator:
|
||||
if not content:
|
||||
return None, []
|
||||
|
||||
emotion_tags = await self._get_emotion_tags(content)
|
||||
processed_response = process_llm_response(content)
|
||||
|
||||
return processed_response, emotion_tags
|
||||
return processed_response
|
||||
|
||||
|
||||
class InitiativeMessageGenerate:
|
||||
@@ -197,6 +191,6 @@ class InitiativeMessageGenerate:
|
||||
prompt = prompt_builder._build_initiative_prompt(
|
||||
select_dot, prompt_template, memory
|
||||
)
|
||||
content, reasoning = self.model_r1.generate_response(prompt)
|
||||
content, reasoning = self.model_r1.generate_response_async(prompt)
|
||||
print(f"[DEBUG] {content} {reasoning}")
|
||||
return content
|
||||
|
||||
26
src/plugins/chat/mapper.py
Normal file
26
src/plugins/chat/mapper.py
Normal file
@@ -0,0 +1,26 @@
|
||||
emojimapper = {5: "流泪", 311: "打 call", 312: "变形", 314: "仔细分析", 317: "菜汪", 318: "崇拜", 319: "比心",
|
||||
320: "庆祝", 324: "吃糖", 325: "惊吓", 337: "花朵脸", 338: "我想开了", 339: "舔屏", 341: "打招呼",
|
||||
342: "酸Q", 343: "我方了", 344: "大怨种", 345: "红包多多", 346: "你真棒棒", 181: "戳一戳", 74: "太阳",
|
||||
75: "月亮", 351: "敲敲", 349: "坚强", 350: "贴贴", 395: "略略略", 114: "篮球", 326: "生气", 53: "蛋糕",
|
||||
137: "鞭炮", 333: "烟花", 424: "续标识", 415: "划龙舟", 392: "龙年快乐", 425: "求放过", 427: "偷感",
|
||||
426: "玩火", 419: "火车", 429: "蛇年快乐",
|
||||
14: "微笑", 1: "撇嘴", 2: "色", 3: "发呆", 4: "得意", 6: "害羞", 7: "闭嘴", 8: "睡", 9: "大哭",
|
||||
10: "尴尬", 11: "发怒", 12: "调皮", 13: "呲牙", 0: "惊讶", 15: "难过", 16: "酷", 96: "冷汗", 18: "抓狂",
|
||||
19: "吐", 20: "偷笑", 21: "可爱", 22: "白眼", 23: "傲慢", 24: "饥饿", 25: "困", 26: "惊恐", 27: "流汗",
|
||||
28: "憨笑", 29: "悠闲", 30: "奋斗", 31: "咒骂", 32: "疑问", 33: "嘘", 34: "晕", 35: "折磨", 36: "衰",
|
||||
37: "骷髅", 38: "敲打", 39: "再见", 97: "擦汗", 98: "抠鼻", 99: "鼓掌", 100: "糗大了", 101: "坏笑",
|
||||
102: "左哼哼", 103: "右哼哼", 104: "哈欠", 105: "鄙视", 106: "委屈", 107: "快哭了", 108: "阴险",
|
||||
305: "右亲亲", 109: "左亲亲", 110: "吓", 111: "可怜", 172: "眨眼睛", 182: "笑哭", 179: "doge",
|
||||
173: "泪奔", 174: "无奈", 212: "托腮", 175: "卖萌", 178: "斜眼笑", 177: "喷血", 176: "小纠结",
|
||||
183: "我最美", 262: "脑阔疼", 263: "沧桑", 264: "捂脸", 265: "辣眼睛", 266: "哦哟", 267: "头秃",
|
||||
268: "问号脸", 269: "暗中观察", 270: "emm", 271: "吃瓜", 272: "呵呵哒", 277: "汪汪", 307: "喵喵",
|
||||
306: "牛气冲天", 281: "无眼笑", 282: "敬礼", 283: "狂笑", 284: "面无表情", 285: "摸鱼", 293: "摸锦鲤",
|
||||
286: "魔鬼笑", 287: "哦", 289: "睁眼", 294: "期待", 297: "拜谢", 298: "元宝", 299: "牛啊", 300: "胖三斤",
|
||||
323: "嫌弃", 332: "举牌牌", 336: "豹富", 353: "拜托", 355: "耶", 356: "666", 354: "尊嘟假嘟", 352: "咦",
|
||||
357: "裂开", 334: "虎虎生威", 347: "大展宏兔", 303: "右拜年", 302: "左拜年", 295: "拿到红包", 49: "拥抱",
|
||||
66: "爱心", 63: "玫瑰", 64: "凋谢", 187: "幽灵", 146: "爆筋", 116: "示爱", 67: "心碎", 60: "咖啡",
|
||||
185: "羊驼", 76: "赞", 124: "OK", 118: "抱拳", 78: "握手", 119: "勾引", 79: "胜利", 120: "拳头",
|
||||
121: "差劲", 77: "踩", 123: "NO", 201: "点赞", 273: "我酸了", 46: "猪头", 112: "菜刀", 56: "刀",
|
||||
169: "手枪", 171: "茶", 59: "便便", 144: "喝彩", 147: "棒棒糖", 89: "西瓜", 41: "发抖", 125: "转圈",
|
||||
42: "爱情", 43: "跳跳", 86: "怄火", 129: "挥手", 85: "飞吻", 428: "收到",
|
||||
423: "复兴号", 432: "灵蛇献瑞"}
|
||||
@@ -1,16 +1,12 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Dict, Tuple, ForwardRef
|
||||
import time
|
||||
import jieba.analyse as jieba_analyse
|
||||
import os
|
||||
from datetime import datetime
|
||||
from ...common.database import Database
|
||||
from PIL import Image
|
||||
from .config import global_config
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, ForwardRef, List, Optional
|
||||
|
||||
import urllib3
|
||||
from .utils_user import get_user_nickname,get_user_cardname,get_groupname
|
||||
|
||||
from .cq_code import CQCode, cq_code_tool
|
||||
from .utils_cq import parse_cq_code
|
||||
from .cq_code import cq_code_tool,CQCode
|
||||
from .utils_user import get_groupname, get_user_cardname, get_user_nickname
|
||||
|
||||
Message = ForwardRef('Message') # 添加这行
|
||||
# 禁用SSL警告
|
||||
@@ -27,58 +23,66 @@ class Message:
|
||||
"""消息数据类"""
|
||||
message_id: int = None
|
||||
time: float = None
|
||||
|
||||
|
||||
group_id: int = None
|
||||
group_name: str = None # 群名称
|
||||
|
||||
group_name: str = None # 群名称
|
||||
|
||||
user_id: int = None
|
||||
user_nickname: str = None # 用户昵称
|
||||
user_cardname: str=None # 用户群昵称
|
||||
|
||||
raw_message: str = None # 原始消息,包含未解析的cq码
|
||||
plain_text: str = None # 纯文本
|
||||
|
||||
user_cardname: str = None # 用户群昵称
|
||||
|
||||
raw_message: str = None # 原始消息,包含未解析的cq码
|
||||
plain_text: str = None # 纯文本
|
||||
|
||||
reply_message: Dict = None # 存储 回复的 源消息
|
||||
|
||||
# 延迟初始化字段
|
||||
_initialized: bool = False
|
||||
message_segments: List[Dict] = None # 存储解析后的消息片段
|
||||
processed_plain_text: str = None # 用于存储处理后的plain_text
|
||||
detailed_plain_text: str = None # 用于存储详细可读文本
|
||||
|
||||
reply_message: Dict = None # 存储 回复的 源消息
|
||||
|
||||
is_emoji: bool = False # 是否是表情包
|
||||
has_emoji: bool = False # 是否包含表情包
|
||||
|
||||
translate_cq: bool = True # 是否翻译cq码
|
||||
|
||||
def __post_init__(self):
|
||||
if self.time is None:
|
||||
self.time = int(time.time())
|
||||
|
||||
if not self.group_name:
|
||||
self.group_name = get_groupname(self.group_id)
|
||||
|
||||
if not self.user_nickname:
|
||||
self.user_nickname = get_user_nickname(self.user_id)
|
||||
|
||||
if not self.user_cardname:
|
||||
self.user_cardname=get_user_cardname(self.user_id)
|
||||
|
||||
if not self.processed_plain_text:
|
||||
if self.raw_message:
|
||||
self.message_segments = self.parse_message_segments(str(self.raw_message))
|
||||
|
||||
# 状态标志
|
||||
is_emoji: bool = False
|
||||
has_emoji: bool = False
|
||||
translate_cq: bool = True
|
||||
|
||||
async def initialize(self):
|
||||
"""显式异步初始化方法(必须调用)"""
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
# 异步获取补充信息
|
||||
self.group_name = self.group_name or get_groupname(self.group_id)
|
||||
self.user_nickname = self.user_nickname or get_user_nickname(self.user_id)
|
||||
self.user_cardname = self.user_cardname or get_user_cardname(self.user_id)
|
||||
|
||||
# 消息解析
|
||||
if self.raw_message:
|
||||
if not isinstance(self,Message_Sending):
|
||||
self.message_segments = await self.parse_message_segments(self.raw_message)
|
||||
self.processed_plain_text = ' '.join(
|
||||
seg.translated_plain_text
|
||||
for seg in self.message_segments
|
||||
)
|
||||
#将详细翻译为详细可读文本
|
||||
|
||||
# 构建详细文本
|
||||
if self.time is None:
|
||||
self.time = int(time.time())
|
||||
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(self.time))
|
||||
try:
|
||||
name = f"{self.user_nickname}(ta的昵称:{self.user_cardname},ta的id:{self.user_id})"
|
||||
except:
|
||||
name = self.user_nickname or f"用户{self.user_id}"
|
||||
content = self.processed_plain_text
|
||||
self.detailed_plain_text = f"[{time_str}] {name}: {content}\n"
|
||||
name = (
|
||||
f"{self.user_nickname}(ta的昵称:{self.user_cardname},ta的id:{self.user_id})"
|
||||
if self.user_cardname
|
||||
else f"{self.user_nickname or f'用户{self.user_id}'}"
|
||||
)
|
||||
if isinstance(self,Message_Sending) and self.is_emoji:
|
||||
self.detailed_plain_text = f"[{time_str}] {name}: {self.detailed_plain_text}\n"
|
||||
else:
|
||||
self.detailed_plain_text = f"[{time_str}] {name}: {self.processed_plain_text}\n"
|
||||
|
||||
self._initialized = True
|
||||
|
||||
def parse_message_segments(self, message: str) -> List[CQCode]:
|
||||
async def parse_message_segments(self, message: str) -> List[CQCode]:
|
||||
"""
|
||||
将消息解析为片段列表,包括纯文本和CQ码
|
||||
返回的列表中每个元素都是字典,包含:
|
||||
@@ -136,7 +140,7 @@ class Message:
|
||||
|
||||
#翻译作为字典的CQ码
|
||||
for _code_item in cq_code_dict_list:
|
||||
message_obj = cq_code_tool.cq_from_dict_to_class(_code_item,reply = self.reply_message)
|
||||
message_obj = await cq_code_tool.cq_from_dict_to_class(_code_item,reply = self.reply_message)
|
||||
trans_list.append(message_obj)
|
||||
return trans_list
|
||||
|
||||
@@ -169,6 +173,8 @@ class Message_Sending(Message):
|
||||
|
||||
reply_message_id: int = None # 存储 回复的 源消息ID
|
||||
|
||||
is_head: bool = False # 是否是头部消息
|
||||
|
||||
def update_thinking_time(self):
|
||||
self.thinking_time = round(time.time(), 2) - self.thinking_start_time
|
||||
return self.thinking_time
|
||||
|
||||
@@ -1,14 +1,15 @@
|
||||
from typing import Union, List, Optional, Dict
|
||||
from collections import deque
|
||||
from .message import Message, Message_Thinking, MessageSet, Message_Sending
|
||||
import time
|
||||
import asyncio
|
||||
import time
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from nonebot.adapters.onebot.v11 import Bot
|
||||
from .config import global_config
|
||||
from .storage import MessageStorage
|
||||
|
||||
from .cq_code import cq_code_tool
|
||||
import random
|
||||
from .message import Message, Message_Sending, Message_Thinking, MessageSet
|
||||
from .storage import MessageStorage
|
||||
from .utils import calculate_typing_time
|
||||
from .config import global_config
|
||||
|
||||
|
||||
class Message_Sender:
|
||||
"""发送器"""
|
||||
@@ -103,7 +104,7 @@ class MessageContainer:
|
||||
|
||||
def add_message(self, message: Union[Message_Thinking, Message_Sending]) -> None:
|
||||
"""添加消息到队列"""
|
||||
print(f"\033[1;32m[添加消息]\033[0m 添加消息到对应群")
|
||||
# print(f"\033[1;32m[添加消息]\033[0m 添加消息到对应群")
|
||||
if isinstance(message, MessageSet):
|
||||
for single_message in message.messages:
|
||||
self.messages.append(single_message)
|
||||
@@ -156,26 +157,25 @@ class MessageManager:
|
||||
#最早的对象,可能是思考消息,也可能是发送消息
|
||||
message_earliest = container.get_earliest_message() #一个message_thinking or message_sending
|
||||
|
||||
#一个月后删了
|
||||
if not message_earliest:
|
||||
print(f"\033[1;34m[BUG,如果出现这个,说明有BUG,3月4日留]\033[0m ")
|
||||
return
|
||||
|
||||
#如果是思考消息
|
||||
if isinstance(message_earliest, Message_Thinking):
|
||||
#优先等待这条消息
|
||||
message_earliest.update_thinking_time()
|
||||
thinking_time = message_earliest.thinking_time
|
||||
print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{int(thinking_time)}秒")
|
||||
print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{int(thinking_time)}秒\033[K\r", end='', flush=True)
|
||||
|
||||
# 检查是否超时
|
||||
if thinking_time > global_config.thinking_timeout:
|
||||
print(f"\033[1;33m[警告]\033[0m 消息思考超时({thinking_time}秒),移除该消息")
|
||||
container.remove_message(message_earliest)
|
||||
else:# 如果不是message_thinking就只能是message_sending
|
||||
print(f"\033[1;34m[调试]\033[0m 消息'{message_earliest.processed_plain_text}'正在发送中")
|
||||
#直接发,等什么呢
|
||||
if message_earliest.update_thinking_time() < 30:
|
||||
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False)
|
||||
else:
|
||||
if message_earliest.is_head and message_earliest.update_thinking_time() >30:
|
||||
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False, reply_message_id=message_earliest.reply_message_id)
|
||||
|
||||
#移除消息
|
||||
else:
|
||||
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False)
|
||||
#移除消息
|
||||
if message_earliest.is_emoji:
|
||||
message_earliest.processed_plain_text = "[表情包]"
|
||||
await self.storage.store_message(message_earliest, None)
|
||||
@@ -192,10 +192,11 @@ class MessageManager:
|
||||
|
||||
try:
|
||||
#发送
|
||||
if msg.update_thinking_time() < 30:
|
||||
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False)
|
||||
else:
|
||||
if msg.is_head and msg.update_thinking_time() >30:
|
||||
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False, reply_message_id=msg.reply_message_id)
|
||||
else:
|
||||
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False)
|
||||
|
||||
|
||||
#如果是表情包,则替换为"[表情包]"
|
||||
if msg.is_emoji:
|
||||
@@ -204,7 +205,7 @@ class MessageManager:
|
||||
|
||||
# 安全地移除消息
|
||||
if not container.remove_message(msg):
|
||||
print(f"\033[1;33m[警告]\033[0m 尝试删除不存在的消息")
|
||||
print("\033[1;33m[警告]\033[0m 尝试删除不存在的消息")
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 处理超时消息时发生错误: {e}")
|
||||
continue
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
import time
|
||||
import random
|
||||
from ..schedule.schedule_generator import bot_schedule
|
||||
import os
|
||||
from .utils import get_embedding, combine_messages, get_recent_group_detailed_plain_text
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
from ...common.database import Database
|
||||
from ..memory_system.memory import hippocampus, memory_graph
|
||||
from ..moods.moods import MoodManager
|
||||
from ..schedule.schedule_generator import bot_schedule
|
||||
from .config import global_config
|
||||
from .topic_identifier import topic_identifier
|
||||
from ..memory_system.memory import memory_graph
|
||||
from random import choice
|
||||
from .utils import get_embedding, get_recent_group_detailed_plain_text
|
||||
|
||||
|
||||
class PromptBuilder:
|
||||
@@ -16,11 +16,13 @@ class PromptBuilder:
|
||||
self.activate_messages = ''
|
||||
self.db = Database.get_instance()
|
||||
|
||||
def _build_prompt(self,
|
||||
|
||||
|
||||
async def _build_prompt(self,
|
||||
message_txt: str,
|
||||
sender_name: str = "某人",
|
||||
relationship_value: float = 0.0,
|
||||
group_id: int = None) -> str:
|
||||
group_id: Optional[int] = None) -> tuple[str, str]:
|
||||
"""构建prompt
|
||||
|
||||
Args:
|
||||
@@ -31,60 +33,7 @@ class PromptBuilder:
|
||||
|
||||
Returns:
|
||||
str: 构建好的prompt
|
||||
"""
|
||||
|
||||
|
||||
memory_prompt = ''
|
||||
start_time = time.time() # 记录开始时间
|
||||
# topic = await topic_identifier.identify_topic_llm(message_txt)
|
||||
topic = topic_identifier.identify_topic_snownlp(message_txt)
|
||||
|
||||
# print(f"\033[1;32m[pb主题识别]\033[0m 主题: {topic}")
|
||||
|
||||
all_first_layer_items = [] # 存储所有第一层记忆
|
||||
all_second_layer_items = {} # 用字典存储每个topic的第二层记忆
|
||||
overlapping_second_layer = set() # 存储重叠的第二层记忆
|
||||
|
||||
if topic:
|
||||
# 遍历所有topic
|
||||
for current_topic in topic:
|
||||
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
|
||||
# if first_layer_items:
|
||||
# print(f"\033[1;32m[前额叶]\033[0m 主题 '{current_topic}' 的第一层记忆: {first_layer_items}")
|
||||
|
||||
# 记录第一层数据
|
||||
all_first_layer_items.extend(first_layer_items)
|
||||
|
||||
# 记录第二层数据
|
||||
all_second_layer_items[current_topic] = second_layer_items
|
||||
|
||||
# 检查是否有重叠的第二层数据
|
||||
for other_topic, other_second_layer in all_second_layer_items.items():
|
||||
if other_topic != current_topic:
|
||||
# 找到重叠的记忆
|
||||
overlap = set(second_layer_items) & set(other_second_layer)
|
||||
if overlap:
|
||||
# print(f"\033[1;32m[前额叶]\033[0m 发现主题 '{current_topic}' 和 '{other_topic}' 有共同的第二层记忆: {overlap}")
|
||||
overlapping_second_layer.update(overlap)
|
||||
|
||||
selected_first_layer = random.sample(all_first_layer_items, min(2, len(all_first_layer_items))) if all_first_layer_items else []
|
||||
selected_second_layer = random.sample(list(overlapping_second_layer), min(2, len(overlapping_second_layer))) if overlapping_second_layer else []
|
||||
|
||||
# 合并并去重
|
||||
all_memories = list(set(selected_first_layer + selected_second_layer))
|
||||
if all_memories:
|
||||
print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆: {all_memories}")
|
||||
random_item = " ".join(all_memories)
|
||||
memory_prompt = f"看到这些聊天,你想起来{random_item}\n"
|
||||
else:
|
||||
memory_prompt = "" # 如果没有记忆,则返回空字符串
|
||||
|
||||
end_time = time.time() # 记录结束时间
|
||||
print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}秒") # 输出耗时
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
#先禁用关系
|
||||
if 0 > 30:
|
||||
relation_prompt = "关系特别特别好,你很喜欢喜欢他"
|
||||
@@ -98,6 +47,12 @@ class PromptBuilder:
|
||||
|
||||
#开始构建prompt
|
||||
|
||||
|
||||
#心情
|
||||
mood_manager = MoodManager.get_instance()
|
||||
mood_prompt = mood_manager.get_prompt()
|
||||
|
||||
|
||||
#日程构建
|
||||
current_date = time.strftime("%Y-%m-%d", time.localtime())
|
||||
current_time = time.strftime("%H:%M:%S", time.localtime())
|
||||
@@ -109,49 +64,83 @@ class PromptBuilder:
|
||||
|
||||
prompt_info = ''
|
||||
promt_info_prompt = ''
|
||||
prompt_info = self.get_prompt_info(message_txt,threshold=0.5)
|
||||
prompt_info = await self.get_prompt_info(message_txt,threshold=0.5)
|
||||
if prompt_info:
|
||||
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]:\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
|
||||
# promt_info_prompt = '你有一些[知识],在上面可以参考。'
|
||||
|
||||
end_time = time.time()
|
||||
print(f"\033[1;32m[知识检索]\033[0m 耗时: {(end_time - start_time):.3f}秒")
|
||||
# print(f"\033[1;34m[调试]\033[0m 获取知识库内容结果: {prompt_info}")
|
||||
|
||||
|
||||
# print(f"\033[1;34m[调试信息]\033[0m 正在构建聊天上下文")
|
||||
|
||||
# 获取聊天上下文
|
||||
chat_talking_prompt = ''
|
||||
if group_id:
|
||||
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True)
|
||||
|
||||
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
|
||||
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
|
||||
|
||||
|
||||
|
||||
# 使用新的记忆获取方法
|
||||
memory_prompt = ''
|
||||
start_time = time.time()
|
||||
|
||||
# 调用 hippocampus 的 get_relevant_memories 方法
|
||||
relevant_memories = await hippocampus.get_relevant_memories(
|
||||
text=message_txt,
|
||||
max_topics=5,
|
||||
similarity_threshold=0.4,
|
||||
max_memory_num=5
|
||||
)
|
||||
|
||||
if relevant_memories:
|
||||
# 格式化记忆内容
|
||||
memory_items = []
|
||||
for memory in relevant_memories:
|
||||
memory_items.append(f"关于「{memory['topic']}」的记忆:{memory['content']}")
|
||||
|
||||
memory_prompt = "看到这些聊天,你想起来:\n" + "\n".join(memory_items) + "\n"
|
||||
|
||||
# 打印调试信息
|
||||
print("\n\033[1;32m[记忆检索]\033[0m 找到以下相关记忆:")
|
||||
for memory in relevant_memories:
|
||||
print(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}")
|
||||
|
||||
end_time = time.time()
|
||||
print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}秒")
|
||||
|
||||
|
||||
|
||||
#激活prompt构建
|
||||
activate_prompt = ''
|
||||
activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2}。"
|
||||
activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},{mood_prompt},你想要{relation_prompt_2}。"
|
||||
|
||||
#检测机器人相关词汇
|
||||
bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人']
|
||||
is_bot = any(keyword in message_txt.lower() for keyword in bot_keywords)
|
||||
if is_bot:
|
||||
is_bot_prompt = '有人说你是人机或者机器人,否定这一事实,攻击或反问他。'
|
||||
is_bot_prompt = '有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认'
|
||||
else:
|
||||
is_bot_prompt = ''
|
||||
|
||||
#人格选择
|
||||
personality=global_config.PROMPT_PERSONALITY
|
||||
probability_1 = global_config.PERSONALITY_1
|
||||
probability_2 = global_config.PERSONALITY_2
|
||||
probability_3 = global_config.PERSONALITY_3
|
||||
prompt_personality = ''
|
||||
personality_choice = random.random()
|
||||
if personality_choice < 4/6: # 第一种人格
|
||||
if personality_choice < probability_1: # 第一种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[0]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{is_bot_prompt}
|
||||
请注意把握群里的聊天内容,不要刻意突出自身学科背景,不要回复的太有条理,可以有个性。'''
|
||||
elif personality_choice < 1: # 第二种人格
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt}
|
||||
请你表达自己的见解和观点。可以有个性。'''
|
||||
else: # 第三种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt}
|
||||
请你表达自己的见解和观点。可以有个性。'''
|
||||
|
||||
#中文高手(新加的好玩功能)
|
||||
prompt_ger = ''
|
||||
@@ -162,36 +151,28 @@ class PromptBuilder:
|
||||
if random.random() < 0.01:
|
||||
prompt_ger += '你喜欢用文言文'
|
||||
|
||||
|
||||
#额外信息要求
|
||||
extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
|
||||
|
||||
|
||||
extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 不要直接回复别人发的表情包,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
|
||||
|
||||
#合并prompt
|
||||
prompt = ""
|
||||
prompt += f"{prompt_info}\n"
|
||||
prompt += f"{prompt_date}\n"
|
||||
prompt += f"{chat_talking_prompt}\n"
|
||||
|
||||
# prompt += f"{memory_prompt}\n"
|
||||
|
||||
# prompt += f"{activate_prompt}\n"
|
||||
prompt += f"{prompt_personality}\n"
|
||||
prompt += f"{prompt_ger}\n"
|
||||
prompt += f"{extra_info}\n"
|
||||
|
||||
|
||||
|
||||
'''读空气prompt处理'''
|
||||
|
||||
activate_prompt_check=f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。"
|
||||
prompt_personality_check = ''
|
||||
extra_check_info=f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复,如果自己正在和别人聊天一定要回复,其他话题如果合适搭话也可以回复,如果认为应该回复请输出yes,否则输出no,请注意是决定是否需要回复,而不是编写回复内容,除了yes和no不要输出任何回复内容。"
|
||||
if personality_choice < 4/6: # 第一种人格
|
||||
if personality_choice < probability_1: # 第一种人格
|
||||
prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[0]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}'''
|
||||
elif personality_choice < 1: # 第二种人格
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种人格
|
||||
prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[1]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}'''
|
||||
else: # 第三种人格
|
||||
prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[2]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}'''
|
||||
|
||||
prompt_check_if_response=f"{prompt_info}\n{prompt_date}\n{chat_talking_prompt}\n{prompt_personality_check}"
|
||||
|
||||
@@ -219,14 +200,16 @@ class PromptBuilder:
|
||||
|
||||
#激活prompt构建
|
||||
activate_prompt = ''
|
||||
activate_prompt = f"以上是群里正在进行的聊天。"
|
||||
activate_prompt = "以上是群里正在进行的聊天。"
|
||||
personality=global_config.PROMPT_PERSONALITY
|
||||
prompt_personality = ''
|
||||
personality_choice = random.random()
|
||||
if personality_choice < 4/6: # 第一种人格
|
||||
if personality_choice < probability_1: # 第一种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[0]}'''
|
||||
elif personality_choice < 1: # 第二种人格
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]}'''
|
||||
else: # 第三种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}'''
|
||||
|
||||
topics_str=','.join(f"\"{topics}\"")
|
||||
prompt_for_select=f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)"
|
||||
@@ -247,10 +230,10 @@ class PromptBuilder:
|
||||
return prompt_for_initiative
|
||||
|
||||
|
||||
def get_prompt_info(self,message:str,threshold:float):
|
||||
async def get_prompt_info(self,message:str,threshold:float):
|
||||
related_info = ''
|
||||
print(f"\033[1;34m[调试]\033[0m 获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
embedding = get_embedding(message)
|
||||
embedding = await get_embedding(message)
|
||||
related_info += self.get_info_from_db(embedding,threshold=threshold)
|
||||
|
||||
return related_info
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import time
|
||||
from ...common.database import Database
|
||||
from nonebot.adapters.onebot.v11 import Bot
|
||||
from typing import Optional, Tuple
|
||||
import asyncio
|
||||
from typing import Optional
|
||||
|
||||
from ...common.database import Database
|
||||
|
||||
|
||||
class Impression:
|
||||
traits: str = None
|
||||
@@ -123,7 +123,7 @@ class RelationshipManager:
|
||||
print(f"\033[1;32m[关系管理]\033[0m 已加载 {len(self.relationships)} 条关系记录")
|
||||
|
||||
while True:
|
||||
print(f"\033[1;32m[关系管理]\033[0m 正在自动保存关系")
|
||||
print("\033[1;32m[关系管理]\033[0m 正在自动保存关系")
|
||||
await asyncio.sleep(300) # 等待300秒(5分钟)
|
||||
await self._save_all_relationships()
|
||||
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
from typing import Dict, List, Any, Optional
|
||||
import time
|
||||
import threading
|
||||
from collections import defaultdict
|
||||
import asyncio
|
||||
from .message import Message
|
||||
from typing import Optional
|
||||
|
||||
from ...common.database import Database
|
||||
from .message import Message
|
||||
|
||||
|
||||
class MessageStorage:
|
||||
def __init__(self):
|
||||
|
||||
@@ -1,21 +1,17 @@
|
||||
from typing import Optional, Dict, List
|
||||
from openai import OpenAI
|
||||
from .message import Message
|
||||
import jieba
|
||||
from typing import List, Optional
|
||||
|
||||
from nonebot import get_driver
|
||||
from .config import global_config
|
||||
from snownlp import SnowNLP
|
||||
|
||||
from ..models.utils_model import LLM_request
|
||||
from .config import global_config
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
|
||||
class TopicIdentifier:
|
||||
def __init__(self):
|
||||
self.llm_client = LLM_request(model=global_config.llm_topic_extract)
|
||||
self.select=global_config.topic_extract
|
||||
self.llm_topic_judge = LLM_request(model=global_config.llm_topic_judge)
|
||||
|
||||
|
||||
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
|
||||
"""识别消息主题,返回主题列表"""
|
||||
|
||||
@@ -26,10 +22,10 @@ class TopicIdentifier:
|
||||
消息内容:{text}"""
|
||||
|
||||
# 使用 LLM_request 类进行请求
|
||||
topic, _ = await self.llm_client.generate_response(prompt)
|
||||
topic, _ = await self.llm_topic_judge.generate_response(prompt)
|
||||
|
||||
if not topic:
|
||||
print(f"\033[1;31m[错误]\033[0m LLM API 返回为空")
|
||||
print("\033[1;31m[错误]\033[0m LLM API 返回为空")
|
||||
return None
|
||||
|
||||
# 直接在这里处理主题解析
|
||||
@@ -42,25 +38,4 @@ class TopicIdentifier:
|
||||
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}")
|
||||
return topic_list if topic_list else None
|
||||
|
||||
def identify_topic_snownlp(self, text: str) -> Optional[List[str]]:
|
||||
"""使用 SnowNLP 进行主题识别
|
||||
|
||||
Args:
|
||||
text (str): 需要识别主题的文本
|
||||
|
||||
Returns:
|
||||
Optional[List[str]]: 返回识别出的主题关键词列表,如果无法识别则返回 None
|
||||
"""
|
||||
if not text or len(text.strip()) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
s = SnowNLP(text)
|
||||
# 提取前3个关键词作为主题
|
||||
keywords = s.keywords(5)
|
||||
return keywords if keywords else None
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m SnowNLP 处理失败: {str(e)}")
|
||||
return None
|
||||
|
||||
topic_identifier = TopicIdentifier()
|
||||
@@ -1,16 +1,17 @@
|
||||
import time
|
||||
import random
|
||||
from typing import List
|
||||
from .message import Message
|
||||
import requests
|
||||
import numpy as np
|
||||
from .config import global_config
|
||||
import re
|
||||
from typing import Dict
|
||||
from collections import Counter
|
||||
import math
|
||||
import random
|
||||
import time
|
||||
from collections import Counter
|
||||
from typing import Dict, List
|
||||
|
||||
import jieba
|
||||
import numpy as np
|
||||
from nonebot import get_driver
|
||||
|
||||
from ..models.utils_model import LLM_request
|
||||
from ..utils.typo_generator import ChineseTypoGenerator
|
||||
from .config import global_config
|
||||
from .message import Message
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
@@ -30,16 +31,18 @@ def combine_messages(messages: List[Message]) -> str:
|
||||
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message.time))
|
||||
name = message.user_nickname or f"用户{message.user_id}"
|
||||
content = message.processed_plain_text or message.plain_text
|
||||
|
||||
|
||||
result += f"[{time_str}] {name}: {content}\n"
|
||||
|
||||
|
||||
return result
|
||||
|
||||
def db_message_to_str (message_dict: Dict) -> str:
|
||||
|
||||
def db_message_to_str(message_dict: Dict) -> str:
|
||||
print(f"message_dict: {message_dict}")
|
||||
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"]))
|
||||
try:
|
||||
name="[(%s)%s]%s" % (message_dict['user_id'],message_dict.get("user_nickname", ""),message_dict.get("user_cardname", ""))
|
||||
name = "[(%s)%s]%s" % (
|
||||
message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", ""))
|
||||
except:
|
||||
name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}"
|
||||
content = message_dict.get("processed_plain_text", "")
|
||||
@@ -56,6 +59,7 @@ def is_mentioned_bot_in_message(message: Message) -> bool:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_mentioned_bot_in_txt(message: str) -> bool:
|
||||
"""检查消息是否提到了机器人"""
|
||||
keywords = [global_config.BOT_NICKNAME]
|
||||
@@ -64,10 +68,13 @@ def is_mentioned_bot_in_txt(message: str) -> bool:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_embedding(text):
|
||||
|
||||
async def get_embedding(text):
|
||||
"""获取文本的embedding向量"""
|
||||
llm = LLM_request(model=global_config.embedding)
|
||||
return llm.get_embedding_sync(text)
|
||||
# return llm.get_embedding_sync(text)
|
||||
return await llm.get_embedding(text)
|
||||
|
||||
|
||||
def cosine_similarity(v1, v2):
|
||||
dot_product = np.dot(v1, v2)
|
||||
@@ -75,52 +82,55 @@ def cosine_similarity(v1, v2):
|
||||
norm2 = np.linalg.norm(v2)
|
||||
return dot_product / (norm1 * norm2)
|
||||
|
||||
|
||||
def calculate_information_content(text):
|
||||
"""计算文本的信息量(熵)"""
|
||||
char_count = Counter(text)
|
||||
total_chars = len(text)
|
||||
|
||||
|
||||
entropy = 0
|
||||
for count in char_count.values():
|
||||
probability = count / total_chars
|
||||
entropy -= probability * math.log2(probability)
|
||||
|
||||
|
||||
return entropy
|
||||
|
||||
|
||||
def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
|
||||
chat_text = ''
|
||||
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
|
||||
|
||||
if closest_record and closest_record.get('memorized', 0) < 4:
|
||||
|
||||
if closest_record and closest_record.get('memorized', 0) < 4:
|
||||
closest_time = closest_record['time']
|
||||
group_id = closest_record['group_id'] # 获取groupid
|
||||
# 获取该时间戳之后的length条消息,且groupid相同
|
||||
chat_records = list(db.db.messages.find(
|
||||
{"time": {"$gt": closest_time}, "group_id": group_id}
|
||||
).sort('time', 1).limit(length))
|
||||
|
||||
|
||||
# 更新每条消息的memorized属性
|
||||
for record in chat_records:
|
||||
# 检查当前记录的memorized值
|
||||
current_memorized = record.get('memorized', 0)
|
||||
if current_memorized > 3:
|
||||
if current_memorized > 3:
|
||||
# print(f"消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
|
||||
# 更新memorized值
|
||||
db.db.messages.update_one(
|
||||
{"_id": record["_id"]},
|
||||
{"$set": {"memorized": current_memorized + 1}}
|
||||
)
|
||||
|
||||
|
||||
chat_text += record["detailed_plain_text"]
|
||||
|
||||
|
||||
return chat_text
|
||||
print(f"消息已读取3次,跳过")
|
||||
# print(f"消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
||||
|
||||
async def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
||||
"""从数据库获取群组最近的消息记录
|
||||
|
||||
Args:
|
||||
@@ -132,7 +142,7 @@ def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
||||
list: Message对象列表,按时间正序排列
|
||||
"""
|
||||
|
||||
# 从数据库获取最近消息
|
||||
# 从数据库获取最近消息
|
||||
recent_messages = list(db.db.messages.find(
|
||||
{"group_id": group_id},
|
||||
# {
|
||||
@@ -147,7 +157,7 @@ def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
||||
|
||||
if not recent_messages:
|
||||
return []
|
||||
|
||||
|
||||
# 转换为 Message对象列表
|
||||
from .message import Message
|
||||
message_objects = []
|
||||
@@ -162,16 +172,18 @@ def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
||||
processed_plain_text=msg_data.get("processed_text", ""),
|
||||
group_id=group_id
|
||||
)
|
||||
await msg.initialize()
|
||||
message_objects.append(msg)
|
||||
except KeyError:
|
||||
print("[WARNING] 数据库中存在无效的消息")
|
||||
continue
|
||||
|
||||
|
||||
# 按时间正序排列
|
||||
message_objects.reverse()
|
||||
return message_objects
|
||||
|
||||
def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12,combine = False):
|
||||
|
||||
def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12, combine=False):
|
||||
recent_messages = list(db.db.messages.find(
|
||||
{"group_id": group_id},
|
||||
{
|
||||
@@ -185,16 +197,16 @@ def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12,comb
|
||||
|
||||
if not recent_messages:
|
||||
return []
|
||||
|
||||
|
||||
message_detailed_plain_text = ''
|
||||
message_detailed_plain_text_list = []
|
||||
|
||||
|
||||
# 反转消息列表,使最新的消息在最后
|
||||
recent_messages.reverse()
|
||||
|
||||
|
||||
if combine:
|
||||
for msg_db_data in recent_messages:
|
||||
message_detailed_plain_text+=str(msg_db_data["detailed_plain_text"])
|
||||
message_detailed_plain_text += str(msg_db_data["detailed_plain_text"])
|
||||
return message_detailed_plain_text
|
||||
else:
|
||||
for msg_db_data in recent_messages:
|
||||
@@ -202,7 +214,6 @@ def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12,comb
|
||||
return message_detailed_plain_text_list
|
||||
|
||||
|
||||
|
||||
def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
||||
"""将文本分割成句子,但保持书名号中的内容完整
|
||||
Args:
|
||||
@@ -222,30 +233,30 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
||||
split_strength = 0.7
|
||||
else:
|
||||
split_strength = 0.9
|
||||
#先移除换行符
|
||||
# 先移除换行符
|
||||
# print(f"split_strength: {split_strength}")
|
||||
|
||||
|
||||
# print(f"处理前的文本: {text}")
|
||||
|
||||
|
||||
# 统一将英文逗号转换为中文逗号
|
||||
text = text.replace(',', ',')
|
||||
text = text.replace('\n', ' ')
|
||||
|
||||
|
||||
# print(f"处理前的文本: {text}")
|
||||
|
||||
|
||||
text_no_1 = ''
|
||||
for letter in text:
|
||||
# print(f"当前字符: {letter}")
|
||||
if letter in ['!','!','?','?']:
|
||||
if letter in ['!', '!', '?', '?']:
|
||||
# print(f"当前字符: {letter}, 随机数: {random.random()}")
|
||||
if random.random() < split_strength:
|
||||
letter = ''
|
||||
if letter in ['。','…']:
|
||||
if letter in ['。', '…']:
|
||||
# print(f"当前字符: {letter}, 随机数: {random.random()}")
|
||||
if random.random() < 1 - split_strength:
|
||||
letter = ''
|
||||
text_no_1 += letter
|
||||
|
||||
|
||||
# 对每个逗号单独判断是否分割
|
||||
sentences = [text_no_1]
|
||||
new_sentences = []
|
||||
@@ -274,84 +285,16 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
||||
sentences_done = []
|
||||
for sentence in sentences:
|
||||
sentence = sentence.rstrip(',,')
|
||||
if random.random() < split_strength*0.5:
|
||||
if random.random() < split_strength * 0.5:
|
||||
sentence = sentence.replace(',', '').replace(',', '')
|
||||
elif random.random() < split_strength:
|
||||
sentence = sentence.replace(',', ' ').replace(',', ' ')
|
||||
sentences_done.append(sentence)
|
||||
|
||||
|
||||
print(f"处理后的句子: {sentences_done}")
|
||||
return sentences_done
|
||||
|
||||
# 常见的错别字映射
|
||||
TYPO_DICT = {
|
||||
'的': '地得',
|
||||
'了': '咯啦勒',
|
||||
'吗': '嘛麻',
|
||||
'吧': '八把罢',
|
||||
'是': '事',
|
||||
'在': '再在',
|
||||
'和': '合',
|
||||
'有': '又',
|
||||
'我': '沃窝喔',
|
||||
'你': '泥尼拟',
|
||||
'他': '它她塔祂',
|
||||
'们': '门',
|
||||
'啊': '阿哇',
|
||||
'呢': '呐捏',
|
||||
'都': '豆读毒',
|
||||
'很': '狠',
|
||||
'会': '回汇',
|
||||
'去': '趣取曲',
|
||||
'做': '作坐',
|
||||
'想': '相像',
|
||||
'说': '说税睡',
|
||||
'看': '砍堪刊',
|
||||
'来': '来莱赖',
|
||||
'好': '号毫豪',
|
||||
'给': '给既继',
|
||||
'过': '锅果裹',
|
||||
'能': '嫩',
|
||||
'为': '位未',
|
||||
'什': '甚深伸',
|
||||
'么': '末麽嘛',
|
||||
'话': '话花划',
|
||||
'知': '织直值',
|
||||
'道': '到',
|
||||
'听': '听停挺',
|
||||
'见': '见件建',
|
||||
'觉': '觉脚搅',
|
||||
'得': '得德锝',
|
||||
'着': '着找招',
|
||||
'像': '向象想',
|
||||
'等': '等灯登',
|
||||
'谢': '谢写卸',
|
||||
'对': '对队',
|
||||
'里': '里理鲤',
|
||||
'啦': '啦拉喇',
|
||||
'吃': '吃持迟',
|
||||
'哦': '哦喔噢',
|
||||
'呀': '呀压',
|
||||
'要': '药',
|
||||
'太': '太抬台',
|
||||
'快': '块',
|
||||
'点': '店',
|
||||
'以': '以已',
|
||||
'因': '因应',
|
||||
'啥': '啥沙傻',
|
||||
'行': '行型形',
|
||||
'哈': '哈蛤铪',
|
||||
'嘿': '嘿黑嗨',
|
||||
'嗯': '嗯恩摁',
|
||||
'哎': '哎爱埃',
|
||||
'呜': '呜屋污',
|
||||
'喂': '喂位未',
|
||||
'嘛': '嘛麻马',
|
||||
'嗨': '嗨害亥',
|
||||
'哇': '哇娃蛙',
|
||||
'咦': '咦意易',
|
||||
'嘻': '嘻西希'
|
||||
}
|
||||
|
||||
|
||||
def random_remove_punctuation(text: str) -> str:
|
||||
"""随机处理标点符号,模拟人类打字习惯
|
||||
@@ -364,7 +307,7 @@ def random_remove_punctuation(text: str) -> str:
|
||||
"""
|
||||
result = ''
|
||||
text_len = len(text)
|
||||
|
||||
|
||||
for i, char in enumerate(text):
|
||||
if char == '。' and i == text_len - 1: # 结尾的句号
|
||||
if random.random() > 0.4: # 80%概率删除结尾句号
|
||||
@@ -379,32 +322,30 @@ def random_remove_punctuation(text: str) -> str:
|
||||
result += char
|
||||
return result
|
||||
|
||||
def add_typos(text: str) -> str:
|
||||
TYPO_RATE = 0.02 # 控制错别字出现的概率(2%)
|
||||
result = ""
|
||||
for char in text:
|
||||
if char in TYPO_DICT and random.random() < TYPO_RATE:
|
||||
# 从可能的错别字中随机选择一个
|
||||
typos = TYPO_DICT[char]
|
||||
result += random.choice(typos)
|
||||
else:
|
||||
result += char
|
||||
return result
|
||||
|
||||
|
||||
def process_llm_response(text: str) -> List[str]:
|
||||
# processed_response = process_text_with_typos(content)
|
||||
if len(text) > 200:
|
||||
print(f"回复过长 ({len(text)} 字符),返回默认回复")
|
||||
return ['懒得说']
|
||||
if len(text) > 300:
|
||||
print(f"回复过长 ({len(text)} 字符),返回默认回复")
|
||||
return ['懒得说']
|
||||
# 处理长消息
|
||||
sentences = split_into_sentences_w_remove_punctuation(add_typos(text))
|
||||
typo_generator = ChineseTypoGenerator(
|
||||
error_rate=0.03,
|
||||
min_freq=7,
|
||||
tone_error_rate=0.2,
|
||||
word_replace_rate=0.02
|
||||
)
|
||||
typoed_text = typo_generator.create_typo_sentence(text)[0]
|
||||
sentences = split_into_sentences_w_remove_punctuation(typoed_text)
|
||||
# 检查分割后的消息数量是否过多(超过3条)
|
||||
if len(sentences) > 3:
|
||||
if len(sentences) > 4:
|
||||
print(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
|
||||
return [f'{global_config.BOT_NICKNAME}不知道哦']
|
||||
|
||||
|
||||
return sentences
|
||||
|
||||
|
||||
def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float:
|
||||
"""
|
||||
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
|
||||
@@ -417,7 +358,46 @@ def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_
|
||||
if '\u4e00' <= char <= '\u9fff': # 判断是否为中文字符
|
||||
total_time += chinese_time
|
||||
else: # 其他字符(如英文)
|
||||
total_time += english_time
|
||||
total_time += english_time
|
||||
return total_time
|
||||
|
||||
|
||||
def cosine_similarity(v1, v2):
|
||||
"""计算余弦相似度"""
|
||||
dot_product = np.dot(v1, v2)
|
||||
norm1 = np.linalg.norm(v1)
|
||||
norm2 = np.linalg.norm(v2)
|
||||
if norm1 == 0 or norm2 == 0:
|
||||
return 0
|
||||
return dot_product / (norm1 * norm2)
|
||||
|
||||
|
||||
def text_to_vector(text):
|
||||
"""将文本转换为词频向量"""
|
||||
# 分词
|
||||
words = jieba.lcut(text)
|
||||
# 统计词频
|
||||
word_freq = Counter(words)
|
||||
return word_freq
|
||||
|
||||
|
||||
def find_similar_topics_simple(text: str, topics: list, top_k: int = 5) -> list:
|
||||
"""使用简单的余弦相似度计算文本相似度"""
|
||||
# 将输入文本转换为词频向量
|
||||
text_vector = text_to_vector(text)
|
||||
|
||||
# 计算每个主题的相似度
|
||||
similarities = []
|
||||
for topic in topics:
|
||||
topic_vector = text_to_vector(topic)
|
||||
# 获取所有唯一词
|
||||
all_words = set(text_vector.keys()) | set(topic_vector.keys())
|
||||
# 构建向量
|
||||
v1 = [text_vector.get(word, 0) for word in all_words]
|
||||
v2 = [topic_vector.get(word, 0) for word in all_words]
|
||||
# 计算相似度
|
||||
similarity = cosine_similarity(v1, v2)
|
||||
similarities.append((topic, similarity))
|
||||
|
||||
# 按相似度降序排序并返回前k个
|
||||
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]
|
||||
|
||||
@@ -1,13 +1,15 @@
|
||||
import io
|
||||
from PIL import Image
|
||||
import hashlib
|
||||
import time
|
||||
import os
|
||||
from ...common.database import Database
|
||||
import zlib # 用于 CRC32
|
||||
import base64
|
||||
from nonebot import get_driver
|
||||
import io
|
||||
import os
|
||||
import time
|
||||
import zlib # 用于 CRC32
|
||||
|
||||
from loguru import logger
|
||||
from nonebot import get_driver
|
||||
from PIL import Image
|
||||
|
||||
from ...common.database import Database
|
||||
from ..chat.config import global_config
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
@@ -118,7 +120,7 @@ def storage_compress_image(base64_data: str, max_size: int = 200) -> str:
|
||||
|
||||
# 保存记录
|
||||
collection.insert_one(image_record)
|
||||
print(f"\033[1;32m[成功]\033[0m 保存图片记录到数据库")
|
||||
print("\033[1;32m[成功]\033[0m 保存图片记录到数据库")
|
||||
|
||||
except Exception as db_error:
|
||||
print(f"\033[1;31m[错误]\033[0m 数据库操作失败: {str(db_error)}")
|
||||
@@ -143,6 +145,8 @@ def storage_emoji(image_data: bytes) -> bytes:
|
||||
Returns:
|
||||
bytes: 原始图片数据
|
||||
"""
|
||||
if not global_config.EMOJI_SAVE:
|
||||
return image_data
|
||||
try:
|
||||
# 使用 CRC32 计算哈希值
|
||||
hash_value = format(zlib.crc32(image_data) & 0xFFFFFFFF, 'x')
|
||||
@@ -227,7 +231,7 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
|
||||
image_data = base64.b64decode(base64_data)
|
||||
|
||||
# 如果已经小于目标大小,直接返回原图
|
||||
if len(image_data) <= target_size:
|
||||
if len(image_data) <= 2*1024*1024:
|
||||
return base64_data
|
||||
|
||||
# 将字节数据转换为图片对象
|
||||
@@ -252,7 +256,7 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
|
||||
for frame_idx in range(img.n_frames):
|
||||
img.seek(frame_idx)
|
||||
new_frame = img.copy()
|
||||
new_frame = new_frame.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
new_frame = new_frame.resize((new_width//2, new_height//2), Image.Resampling.LANCZOS) # 动图折上折
|
||||
frames.append(new_frame)
|
||||
|
||||
# 保存到缓冲区
|
||||
@@ -286,4 +290,19 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
|
||||
logger.error(f"压缩图片失败: {str(e)}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
return base64_data
|
||||
return base64_data
|
||||
|
||||
def image_path_to_base64(image_path: str) -> str:
|
||||
"""将图片路径转换为base64编码
|
||||
Args:
|
||||
image_path: 图片文件路径
|
||||
Returns:
|
||||
str: base64编码的图片数据
|
||||
"""
|
||||
try:
|
||||
with open(image_path, 'rb') as f:
|
||||
image_data = f.read()
|
||||
return base64.b64encode(image_data).decode('utf-8')
|
||||
except Exception as e:
|
||||
logger.error(f"读取图片失败: {image_path}, 错误: {str(e)}")
|
||||
return None
|
||||
@@ -1,5 +1,6 @@
|
||||
from .relationship_manager import relationship_manager
|
||||
from .config import global_config
|
||||
from .relationship_manager import relationship_manager
|
||||
|
||||
|
||||
def get_user_nickname(user_id: int) -> str:
|
||||
if int(user_id) == int(global_config.BOT_QQ):
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
import asyncio
|
||||
from .config import global_config
|
||||
|
||||
|
||||
class WillingManager:
|
||||
def __init__(self):
|
||||
@@ -34,26 +36,32 @@ class WillingManager:
|
||||
print(f"被重复提及, 当前意愿: {current_willing}")
|
||||
|
||||
if is_emoji:
|
||||
current_willing *= 0.15
|
||||
current_willing *= 0.1
|
||||
print(f"表情包, 当前意愿: {current_willing}")
|
||||
|
||||
if interested_rate > 0.65:
|
||||
print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
|
||||
current_willing += interested_rate-0.6
|
||||
print(f"放大系数_interested_rate: {global_config.response_interested_rate_amplifier}")
|
||||
interested_rate *= global_config.response_interested_rate_amplifier #放大回复兴趣度
|
||||
if interested_rate > 0.4:
|
||||
# print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
|
||||
current_willing += interested_rate-0.4
|
||||
|
||||
self.group_reply_willing[group_id] = min(current_willing, 3.0)
|
||||
current_willing *= global_config.response_willing_amplifier #放大回复意愿
|
||||
# print(f"放大系数_willing: {global_config.response_willing_amplifier}, 当前意愿: {current_willing}")
|
||||
|
||||
reply_probability = max((current_willing - 0.55) * 1.9, 0)
|
||||
reply_probability = max((current_willing - 0.45) * 2, 0)
|
||||
if group_id not in config.talk_allowed_groups:
|
||||
current_willing = 0
|
||||
reply_probability = 0
|
||||
|
||||
if group_id in config.talk_frequency_down_groups:
|
||||
reply_probability = reply_probability / 3.5
|
||||
reply_probability = reply_probability / global_config.down_frequency_rate
|
||||
|
||||
reply_probability = min(reply_probability, 1)
|
||||
if reply_probability < 0:
|
||||
reply_probability = 0
|
||||
|
||||
|
||||
self.group_reply_willing[group_id] = min(current_willing, 3.0)
|
||||
return reply_probability
|
||||
|
||||
def change_reply_willing_sent(self, group_id: int):
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import os
|
||||
import sys
|
||||
import numpy as np
|
||||
import requests
|
||||
import time
|
||||
|
||||
import requests
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# 添加项目根目录到 Python 路径
|
||||
|
||||
@@ -1,19 +1,12 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
import sys
|
||||
import jieba
|
||||
import networkx as nx
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
from collections import Counter
|
||||
import datetime
|
||||
import random
|
||||
import time
|
||||
|
||||
import jieba
|
||||
import matplotlib.pyplot as plt
|
||||
import networkx as nx
|
||||
from dotenv import load_dotenv
|
||||
import sys
|
||||
import asyncio
|
||||
import aiohttp
|
||||
from typing import Tuple
|
||||
|
||||
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
|
||||
from src.common.database import Database # 使用正确的导入语法
|
||||
|
||||
@@ -1,20 +1,21 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
import jieba
|
||||
import networkx as nx
|
||||
import matplotlib.pyplot as plt
|
||||
from collections import Counter
|
||||
import datetime
|
||||
import math
|
||||
import random
|
||||
import time
|
||||
|
||||
import jieba
|
||||
import networkx as nx
|
||||
|
||||
from ...common.database import Database # 使用正确的导入语法
|
||||
from ..chat.config import global_config
|
||||
from ...common.database import Database # 使用正确的导入语法
|
||||
from ..chat.utils import (
|
||||
calculate_information_content,
|
||||
cosine_similarity,
|
||||
get_cloest_chat_from_db,
|
||||
text_to_vector,
|
||||
)
|
||||
from ..models.utils_model import LLM_request
|
||||
import math
|
||||
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class Memory_graph:
|
||||
@@ -132,9 +133,17 @@ class Memory_graph:
|
||||
class Hippocampus:
|
||||
def __init__(self,memory_graph:Memory_graph):
|
||||
self.memory_graph = memory_graph
|
||||
self.llm_model_get_topic = LLM_request(model = global_config.llm_normal_minor,temperature=0.5)
|
||||
self.llm_model_summary = LLM_request(model = global_config.llm_normal,temperature=0.5)
|
||||
self.llm_topic_judge = LLM_request(model = global_config.llm_topic_judge,temperature=0.5)
|
||||
self.llm_summary_by_topic = LLM_request(model = global_config.llm_summary_by_topic,temperature=0.5)
|
||||
|
||||
def get_all_node_names(self) -> list:
|
||||
"""获取记忆图中所有节点的名字列表
|
||||
|
||||
Returns:
|
||||
list: 包含所有节点名字的列表
|
||||
"""
|
||||
return list(self.memory_graph.G.nodes())
|
||||
|
||||
def calculate_node_hash(self, concept, memory_items):
|
||||
"""计算节点的特征值"""
|
||||
if not isinstance(memory_items, list):
|
||||
@@ -171,18 +180,24 @@ class Hippocampus:
|
||||
|
||||
#获取topics
|
||||
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
||||
topics_response = await self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||
# 修改话题处理逻辑
|
||||
print(f"话题: {topics_response[0]}")
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
print(f"话题: {topics}")
|
||||
# 定义需要过滤的关键词
|
||||
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
|
||||
|
||||
# 创建所有话题的请求任务
|
||||
# 过滤topics
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
|
||||
|
||||
# print(f"原始话题: {topics}")
|
||||
print(f"过滤后话题: {filtered_topics}")
|
||||
|
||||
# 使用过滤后的话题继续处理
|
||||
tasks = []
|
||||
for topic in topics:
|
||||
for topic in filtered_topics:
|
||||
topic_what_prompt = self.topic_what(input_text, topic)
|
||||
# 创建异步任务
|
||||
task = self.llm_model_summary.generate_response_async(topic_what_prompt)
|
||||
task = self.llm_summary_by_topic.generate_response_async(topic_what_prompt)
|
||||
tasks.append((topic.strip(), task))
|
||||
|
||||
# 等待所有任务完成
|
||||
@@ -483,6 +498,201 @@ class Hippocampus:
|
||||
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
return prompt
|
||||
|
||||
async def _identify_topics(self, text: str) -> list:
|
||||
"""从文本中识别可能的主题
|
||||
|
||||
Args:
|
||||
text: 输入文本
|
||||
|
||||
Returns:
|
||||
list: 识别出的主题列表
|
||||
"""
|
||||
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, 5))
|
||||
# print(f"话题: {topics_response[0]}")
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
# print(f"话题: {topics}")
|
||||
|
||||
return topics
|
||||
|
||||
def _find_similar_topics(self, topics: list, similarity_threshold: float = 0.4, debug_info: str = "") -> list:
|
||||
"""查找与给定主题相似的记忆主题
|
||||
|
||||
Args:
|
||||
topics: 主题列表
|
||||
similarity_threshold: 相似度阈值
|
||||
debug_info: 调试信息前缀
|
||||
|
||||
Returns:
|
||||
list: (主题, 相似度) 元组列表
|
||||
"""
|
||||
all_memory_topics = self.get_all_node_names()
|
||||
all_similar_topics = []
|
||||
|
||||
# 计算每个识别出的主题与记忆主题的相似度
|
||||
for topic in topics:
|
||||
if debug_info:
|
||||
# print(f"\033[1;32m[{debug_info}]\033[0m 正在思考有没有见过: {topic}")
|
||||
pass
|
||||
|
||||
topic_vector = text_to_vector(topic)
|
||||
has_similar_topic = False
|
||||
|
||||
for memory_topic in all_memory_topics:
|
||||
memory_vector = text_to_vector(memory_topic)
|
||||
# 获取所有唯一词
|
||||
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
|
||||
# 构建向量
|
||||
v1 = [topic_vector.get(word, 0) for word in all_words]
|
||||
v2 = [memory_vector.get(word, 0) for word in all_words]
|
||||
# 计算相似度
|
||||
similarity = cosine_similarity(v1, v2)
|
||||
|
||||
if similarity >= similarity_threshold:
|
||||
has_similar_topic = True
|
||||
if debug_info:
|
||||
# print(f"\033[1;32m[{debug_info}]\033[0m 找到相似主题: {topic} -> {memory_topic} (相似度: {similarity:.2f})")
|
||||
pass
|
||||
all_similar_topics.append((memory_topic, similarity))
|
||||
|
||||
if not has_similar_topic and debug_info:
|
||||
# print(f"\033[1;31m[{debug_info}]\033[0m 没有见过: {topic} ,呃呃")
|
||||
pass
|
||||
|
||||
return all_similar_topics
|
||||
|
||||
def _get_top_topics(self, similar_topics: list, max_topics: int = 5) -> list:
|
||||
"""获取相似度最高的主题
|
||||
|
||||
Args:
|
||||
similar_topics: (主题, 相似度) 元组列表
|
||||
max_topics: 最大主题数量
|
||||
|
||||
Returns:
|
||||
list: (主题, 相似度) 元组列表
|
||||
"""
|
||||
seen_topics = set()
|
||||
top_topics = []
|
||||
|
||||
for topic, score in sorted(similar_topics, key=lambda x: x[1], reverse=True):
|
||||
if topic not in seen_topics and len(top_topics) < max_topics:
|
||||
seen_topics.add(topic)
|
||||
top_topics.append((topic, score))
|
||||
|
||||
return top_topics
|
||||
|
||||
async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int:
|
||||
"""计算输入文本对记忆的激活程度"""
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 识别主题: {await self._identify_topics(text)}")
|
||||
|
||||
# 识别主题
|
||||
identified_topics = await self._identify_topics(text)
|
||||
if not identified_topics:
|
||||
return 0
|
||||
|
||||
# 查找相似主题
|
||||
all_similar_topics = self._find_similar_topics(
|
||||
identified_topics,
|
||||
similarity_threshold=similarity_threshold,
|
||||
debug_info="记忆激活"
|
||||
)
|
||||
|
||||
if not all_similar_topics:
|
||||
return 0
|
||||
|
||||
# 获取最相关的主题
|
||||
top_topics = self._get_top_topics(all_similar_topics, max_topics)
|
||||
|
||||
# 如果只找到一个主题,进行惩罚
|
||||
if len(top_topics) == 1:
|
||||
topic, score = top_topics[0]
|
||||
# 获取主题内容数量并计算惩罚系数
|
||||
memory_items = self.memory_graph.G.nodes[topic].get('memory_items', [])
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
content_count = len(memory_items)
|
||||
penalty = 1.0 / (1 + math.log(content_count + 1))
|
||||
|
||||
activation = int(score * 50 * penalty)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}")
|
||||
return activation
|
||||
|
||||
# 计算关键词匹配率,同时考虑内容数量
|
||||
matched_topics = set()
|
||||
topic_similarities = {}
|
||||
|
||||
for memory_topic, similarity in top_topics:
|
||||
# 计算内容数量惩罚
|
||||
memory_items = self.memory_graph.G.nodes[memory_topic].get('memory_items', [])
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
content_count = len(memory_items)
|
||||
penalty = 1.0 / (1 + math.log(content_count + 1))
|
||||
|
||||
# 对每个记忆主题,检查它与哪些输入主题相似
|
||||
for input_topic in identified_topics:
|
||||
topic_vector = text_to_vector(input_topic)
|
||||
memory_vector = text_to_vector(memory_topic)
|
||||
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
|
||||
v1 = [topic_vector.get(word, 0) for word in all_words]
|
||||
v2 = [memory_vector.get(word, 0) for word in all_words]
|
||||
sim = cosine_similarity(v1, v2)
|
||||
if sim >= similarity_threshold:
|
||||
matched_topics.add(input_topic)
|
||||
adjusted_sim = sim * penalty
|
||||
topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), adjusted_sim)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})")
|
||||
|
||||
# 计算主题匹配率和平均相似度
|
||||
topic_match = len(matched_topics) / len(identified_topics)
|
||||
average_similarities = sum(topic_similarities.values()) / len(topic_similarities) if topic_similarities else 0
|
||||
|
||||
# 计算最终激活值
|
||||
activation = int((topic_match + average_similarities) / 2 * 100)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
|
||||
|
||||
return activation
|
||||
|
||||
async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, max_memory_num: int = 5) -> list:
|
||||
"""根据输入文本获取相关的记忆内容"""
|
||||
# 识别主题
|
||||
identified_topics = await self._identify_topics(text)
|
||||
|
||||
# 查找相似主题
|
||||
all_similar_topics = self._find_similar_topics(
|
||||
identified_topics,
|
||||
similarity_threshold=similarity_threshold,
|
||||
debug_info="记忆检索"
|
||||
)
|
||||
|
||||
# 获取最相关的主题
|
||||
relevant_topics = self._get_top_topics(all_similar_topics, max_topics)
|
||||
|
||||
# 获取相关记忆内容
|
||||
relevant_memories = []
|
||||
for topic, score in relevant_topics:
|
||||
# 获取该主题的记忆内容
|
||||
first_layer, _ = self.memory_graph.get_related_item(topic, depth=1)
|
||||
if first_layer:
|
||||
# 如果记忆条数超过限制,随机选择指定数量的记忆
|
||||
if len(first_layer) > max_memory_num/2:
|
||||
first_layer = random.sample(first_layer, max_memory_num//2)
|
||||
# 为每条记忆添加来源主题和相似度信息
|
||||
for memory in first_layer:
|
||||
relevant_memories.append({
|
||||
'topic': topic,
|
||||
'similarity': score,
|
||||
'content': memory
|
||||
})
|
||||
|
||||
# 如果记忆数量超过5个,随机选择5个
|
||||
# 按相似度排序
|
||||
relevant_memories.sort(key=lambda x: x['similarity'], reverse=True)
|
||||
|
||||
if len(relevant_memories) > max_memory_num:
|
||||
relevant_memories = random.sample(relevant_memories, max_memory_num)
|
||||
|
||||
return relevant_memories
|
||||
|
||||
|
||||
def segment_text(text):
|
||||
seg_text = list(jieba.cut(text))
|
||||
@@ -490,6 +700,7 @@ def segment_text(text):
|
||||
|
||||
|
||||
from nonebot import get_driver
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
|
||||
|
||||
@@ -1,22 +1,22 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
import jieba
|
||||
import networkx as nx
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
from collections import Counter
|
||||
import datetime
|
||||
import random
|
||||
import time
|
||||
import math
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
import pymongo
|
||||
from loguru import logger
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
from snownlp import SnowNLP
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import networkx as nx
|
||||
import pymongo
|
||||
from dotenv import load_dotenv
|
||||
from loguru import logger
|
||||
|
||||
# from chat.config import global_config
|
||||
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
|
||||
from src.common.database import Database
|
||||
from src.common.database import Database
|
||||
from src.plugins.memory_system.offline_llm import LLMModel
|
||||
|
||||
# 获取当前文件的目录
|
||||
@@ -103,7 +103,7 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
# 检查当前记录的memorized值
|
||||
current_memorized = record.get('memorized', 0)
|
||||
if current_memorized > 3:
|
||||
print(f"消息已读取3次,跳过")
|
||||
print("消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
# 更新memorized值
|
||||
@@ -115,7 +115,7 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
chat_text += record["detailed_plain_text"]
|
||||
|
||||
return chat_text
|
||||
print(f"消息已读取3次,跳过")
|
||||
print("消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
class Memory_graph:
|
||||
@@ -234,16 +234,22 @@ class Hippocampus:
|
||||
async def memory_compress(self, input_text, compress_rate=0.1):
|
||||
print(input_text)
|
||||
|
||||
#获取topics
|
||||
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
||||
topics_response = await self.llm_model_get_topic.generate_response_async(self.find_topic_llm(input_text, topic_num))
|
||||
topics_response = self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||
# 修改话题处理逻辑
|
||||
# 定义需要过滤的关键词
|
||||
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
|
||||
|
||||
# 过滤topics
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
print(f"话题: {topics}")
|
||||
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
|
||||
|
||||
# print(f"原始话题: {topics}")
|
||||
print(f"过滤后话题: {filtered_topics}")
|
||||
|
||||
# 创建所有话题的请求任务
|
||||
tasks = []
|
||||
for topic in topics:
|
||||
for topic in filtered_topics:
|
||||
topic_what_prompt = self.topic_what(input_text, topic)
|
||||
# 创建异步任务
|
||||
task = self.llm_model_small.generate_response_async(topic_what_prompt)
|
||||
@@ -650,7 +656,22 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
|
||||
G = memory_graph.G
|
||||
|
||||
# 创建一个新图用于可视化
|
||||
H = G.copy()
|
||||
H = G.copy()
|
||||
|
||||
# 过滤掉内容数量小于2的节点
|
||||
nodes_to_remove = []
|
||||
for node in H.nodes():
|
||||
memory_items = H.nodes[node].get('memory_items', [])
|
||||
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
|
||||
if memory_count < 2:
|
||||
nodes_to_remove.append(node)
|
||||
|
||||
H.remove_nodes_from(nodes_to_remove)
|
||||
|
||||
# 如果没有符合条件的节点,直接返回
|
||||
if len(H.nodes()) == 0:
|
||||
print("没有找到内容数量大于等于2的节点")
|
||||
return
|
||||
|
||||
# 计算节点大小和颜色
|
||||
node_colors = []
|
||||
@@ -704,7 +725,7 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
|
||||
edge_color='gray',
|
||||
width=1.5) # 统一的边宽度
|
||||
|
||||
title = '记忆图谱可视化 - 节点大小表示记忆数量\n节点颜色:蓝(弱连接)到红(强连接)渐变,边的透明度表示连接强度\n连接强度越大的节点距离越近'
|
||||
title = '记忆图谱可视化(仅显示内容≥2的节点)\n节点大小表示记忆数量\n节点颜色:蓝(弱连接)到红(强连接)渐变,边的透明度表示连接强度\n连接强度越大的节点距离越近'
|
||||
plt.title(title, fontsize=16, fontfamily='SimHei')
|
||||
plt.show()
|
||||
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
import os
|
||||
import requests
|
||||
from typing import Tuple, Union
|
||||
import time
|
||||
import aiohttp
|
||||
import asyncio
|
||||
import os
|
||||
import time
|
||||
from typing import Tuple, Union
|
||||
|
||||
import aiohttp
|
||||
import requests
|
||||
from loguru import logger
|
||||
|
||||
|
||||
class LLMModel:
|
||||
def __init__(self, model_name="deepseek-ai/DeepSeek-V3", **kwargs):
|
||||
self.model_name = model_name
|
||||
|
||||
@@ -1,11 +1,14 @@
|
||||
import aiohttp
|
||||
import asyncio
|
||||
import requests
|
||||
import time
|
||||
import json
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Tuple, Union
|
||||
from nonebot import get_driver
|
||||
|
||||
import aiohttp
|
||||
from loguru import logger
|
||||
from nonebot import get_driver
|
||||
|
||||
from ...common.database import Database
|
||||
from ..chat.config import global_config
|
||||
from ..chat.utils_image import compress_base64_image_by_scale
|
||||
|
||||
@@ -24,397 +27,381 @@ class LLM_request:
|
||||
raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e
|
||||
self.model_name = model["name"]
|
||||
self.params = kwargs
|
||||
|
||||
self.pri_in = model.get("pri_in", 0)
|
||||
self.pri_out = model.get("pri_out", 0)
|
||||
|
||||
# 获取数据库实例
|
||||
self.db = Database.get_instance()
|
||||
self._init_database()
|
||||
|
||||
async def generate_response(self, prompt: str) -> Tuple[str, str]:
|
||||
"""根据输入的提示生成模型的异步响应"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
def _init_database(self):
|
||||
"""初始化数据库集合"""
|
||||
try:
|
||||
# 创建llm_usage集合的索引
|
||||
self.db.db.llm_usage.create_index([("timestamp", 1)])
|
||||
self.db.db.llm_usage.create_index([("model_name", 1)])
|
||||
self.db.db.llm_usage.create_index([("user_id", 1)])
|
||||
self.db.db.llm_usage.create_index([("request_type", 1)])
|
||||
except Exception as e:
|
||||
logger.error(f"创建数据库索引失败: {e}")
|
||||
|
||||
def _record_usage(self, prompt_tokens: int, completion_tokens: int, total_tokens: int,
|
||||
user_id: str = "system", request_type: str = "chat",
|
||||
endpoint: str = "/chat/completions"):
|
||||
"""记录模型使用情况到数据库
|
||||
Args:
|
||||
prompt_tokens: 输入token数
|
||||
completion_tokens: 输出token数
|
||||
total_tokens: 总token数
|
||||
user_id: 用户ID,默认为system
|
||||
request_type: 请求类型(chat/embedding/image等)
|
||||
endpoint: API端点
|
||||
"""
|
||||
try:
|
||||
usage_data = {
|
||||
"model_name": self.model_name,
|
||||
"user_id": user_id,
|
||||
"request_type": request_type,
|
||||
"endpoint": endpoint,
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
"cost": self._calculate_cost(prompt_tokens, completion_tokens),
|
||||
"status": "success",
|
||||
"timestamp": datetime.now()
|
||||
}
|
||||
self.db.db.llm_usage.insert_one(usage_data)
|
||||
logger.info(
|
||||
f"Token使用情况 - 模型: {self.model_name}, "
|
||||
f"用户: {user_id}, 类型: {request_type}, "
|
||||
f"提示词: {prompt_tokens}, 完成: {completion_tokens}, "
|
||||
f"总计: {total_tokens}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"记录token使用情况失败: {e}")
|
||||
|
||||
def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float:
|
||||
"""计算API调用成本
|
||||
使用模型的pri_in和pri_out价格计算输入和输出的成本
|
||||
|
||||
Args:
|
||||
prompt_tokens: 输入token数量
|
||||
completion_tokens: 输出token数量
|
||||
|
||||
Returns:
|
||||
float: 总成本(元)
|
||||
"""
|
||||
# 使用模型的pri_in和pri_out计算成本
|
||||
input_cost = (prompt_tokens / 1000000) * self.pri_in
|
||||
output_cost = (completion_tokens / 1000000) * self.pri_out
|
||||
return round(input_cost + output_cost, 6)
|
||||
|
||||
async def _execute_request(
|
||||
self,
|
||||
endpoint: str,
|
||||
prompt: str = None,
|
||||
image_base64: str = None,
|
||||
payload: dict = None,
|
||||
retry_policy: dict = None,
|
||||
response_handler: callable = None,
|
||||
user_id: str = "system",
|
||||
request_type: str = "chat"
|
||||
):
|
||||
"""统一请求执行入口
|
||||
Args:
|
||||
endpoint: API端点路径 (如 "chat/completions")
|
||||
prompt: prompt文本
|
||||
image_base64: 图片的base64编码
|
||||
payload: 请求体数据
|
||||
retry_policy: 自定义重试策略
|
||||
response_handler: 自定义响应处理器
|
||||
user_id: 用户ID
|
||||
request_type: 请求类型
|
||||
"""
|
||||
# 合并重试策略
|
||||
default_retry = {
|
||||
"max_retries": 3, "base_wait": 15,
|
||||
"retry_codes": [429, 413, 500, 503],
|
||||
"abort_codes": [400, 401, 402, 403]}
|
||||
policy = {**default_retry, **(retry_policy or {})}
|
||||
|
||||
# 常见Error Code Mapping
|
||||
error_code_mapping = {
|
||||
400: "参数不正确",
|
||||
401: "API key 错误,认证失败",
|
||||
402: "账号余额不足",
|
||||
403: "需要实名,或余额不足",
|
||||
404: "Not Found",
|
||||
429: "请求过于频繁,请稍后再试",
|
||||
500: "服务器内部故障",
|
||||
503: "服务器负载过高"
|
||||
}
|
||||
|
||||
api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
|
||||
#判断是否为流式
|
||||
stream_mode = self.params.get("stream", False)
|
||||
if self.params.get("stream", False) is True:
|
||||
logger.info(f"进入流式输出模式,发送请求到URL: {api_url}")
|
||||
else:
|
||||
logger.info(f"发送请求到URL: {api_url}")
|
||||
logger.info(f"使用模型: {self.model_name}")
|
||||
|
||||
# 构建请求体
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
**self.params
|
||||
}
|
||||
if image_base64:
|
||||
payload = await self._build_payload(prompt, image_base64)
|
||||
elif payload is None:
|
||||
payload = await self._build_payload(prompt)
|
||||
|
||||
# 发送请求到完整的chat/completions端点
|
||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
||||
|
||||
max_retries = 3
|
||||
base_wait_time = 15
|
||||
|
||||
for retry in range(max_retries):
|
||||
for retry in range(policy["max_retries"]):
|
||||
try:
|
||||
# 使用上下文管理器处理会话
|
||||
headers = await self._build_headers()
|
||||
#似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响
|
||||
if stream_mode:
|
||||
headers["Accept"] = "text/event-stream"
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(api_url, headers=headers, json=data) as response:
|
||||
if response.status == 429:
|
||||
wait_time = base_wait_time * (2 ** retry) # 指数退避
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
async with session.post(api_url, headers=headers, json=payload) as response:
|
||||
# 处理需要重试的状态码
|
||||
if response.status in policy["retry_codes"]:
|
||||
wait_time = policy["base_wait"] * (2 ** retry)
|
||||
logger.warning(f"错误码: {response.status}, 等待 {wait_time}秒后重试")
|
||||
if response.status == 413:
|
||||
logger.warning("请求体过大,尝试压缩...")
|
||||
image_base64 = compress_base64_image_by_scale(image_base64)
|
||||
payload = await self._build_payload(prompt, image_base64)
|
||||
elif response.status in [500, 503]:
|
||||
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
|
||||
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
|
||||
else:
|
||||
logger.warning(f"请求限制(429),等待{wait_time}秒后重试...")
|
||||
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
elif response.status in policy["abort_codes"]:
|
||||
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
|
||||
raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
|
||||
|
||||
if response.status in [500, 503]:
|
||||
logger.error(f"服务器错误: {response.status}")
|
||||
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
|
||||
result = await response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
message = result["choices"][0]["message"]
|
||||
content = message.get("content", "")
|
||||
think_match = None
|
||||
reasoning_content = message.get("reasoning_content", "")
|
||||
if not reasoning_content:
|
||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
||||
response.raise_for_status()
|
||||
|
||||
#将流式输出转化为非流式输出
|
||||
if stream_mode:
|
||||
accumulated_content = ""
|
||||
async for line_bytes in response.content:
|
||||
line = line_bytes.decode("utf-8").strip()
|
||||
if not line:
|
||||
continue
|
||||
if line.startswith("data:"):
|
||||
data_str = line[5:].strip()
|
||||
if data_str == "[DONE]":
|
||||
break
|
||||
try:
|
||||
chunk = json.loads(data_str)
|
||||
delta = chunk["choices"][0]["delta"]
|
||||
delta_content = delta.get("content")
|
||||
if delta_content is None:
|
||||
delta_content = ""
|
||||
accumulated_content += delta_content
|
||||
except Exception as e:
|
||||
logger.error(f"解析流式输出错误: {e}")
|
||||
content = accumulated_content
|
||||
reasoning_content = ""
|
||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
||||
if think_match:
|
||||
reasoning_content = think_match.group(1).strip()
|
||||
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
||||
return content, reasoning_content
|
||||
return "没有返回结果", ""
|
||||
# 构造一个伪result以便调用自定义响应处理器或默认处理器
|
||||
result = {"choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}]}
|
||||
return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||
else:
|
||||
result = await response.json()
|
||||
# 使用自定义处理器或默认处理
|
||||
return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1: # 如果还有重试机会
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
||||
if retry < policy["max_retries"] - 1:
|
||||
wait_time = policy["base_wait"] * (2 ** retry)
|
||||
logger.error(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.critical(f"请求失败: {str(e)}", exc_info=True)
|
||||
logger.critical(f"请求失败: {str(e)}")
|
||||
logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}")
|
||||
raise RuntimeError(f"API请求失败: {str(e)}")
|
||||
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
||||
|
||||
async def _transform_parameters(self, params: dict) ->dict:
|
||||
"""
|
||||
根据模型名称转换参数:
|
||||
- 对于需要转换的OpenAI CoT系列模型(例如 "o3-mini"),删除 'temprature' 参数,
|
||||
并将 'max_tokens' 重命名为 'max_completion_tokens'
|
||||
"""
|
||||
# 复制一份参数,避免直接修改原始数据
|
||||
new_params = dict(params)
|
||||
# 定义需要转换的模型列表
|
||||
models_needing_transformation = ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12", "o3-mini-2025-01-31", "o1-mini-2024-09-12"]
|
||||
if self.model_name.lower() in models_needing_transformation:
|
||||
# 删除 'temprature' 参数(如果存在)
|
||||
new_params.pop("temperature", None)
|
||||
# 如果存在 'max_tokens',则重命名为 'max_completion_tokens'
|
||||
if "max_tokens" in new_params:
|
||||
new_params["max_completion_tokens"] = new_params.pop("max_tokens")
|
||||
return new_params
|
||||
|
||||
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
|
||||
"""根据输入的提示和图片生成模型的异步响应"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# 构建请求体
|
||||
def build_request_data(img_base64: str):
|
||||
return {
|
||||
async def _build_payload(self, prompt: str, image_base64: str = None) -> dict:
|
||||
"""构建请求体"""
|
||||
# 复制一份参数,避免直接修改 self.params
|
||||
params_copy = await self._transform_parameters(self.params)
|
||||
if image_base64:
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": prompt
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{img_base64}"
|
||||
}
|
||||
}
|
||||
{"type": "text", "text": prompt},
|
||||
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
|
||||
]
|
||||
}
|
||||
],
|
||||
**self.params
|
||||
"max_tokens": global_config.max_response_length,
|
||||
**params_copy
|
||||
}
|
||||
else:
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"max_tokens": global_config.max_response_length,
|
||||
**params_copy
|
||||
}
|
||||
# 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
|
||||
if self.model_name.lower() in ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12", "o3-mini-2025-01-31", "o1-mini-2024-09-12"] and "max_tokens" in payload:
|
||||
payload["max_completion_tokens"] = payload.pop("max_tokens")
|
||||
return payload
|
||||
|
||||
|
||||
# 发送请求到完整的chat/completions端点
|
||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
||||
def _default_response_handler(self, result: dict, user_id: str = "system",
|
||||
request_type: str = "chat", endpoint: str = "/chat/completions") -> Tuple:
|
||||
"""默认响应解析"""
|
||||
if "choices" in result and result["choices"]:
|
||||
message = result["choices"][0]["message"]
|
||||
content = message.get("content", "")
|
||||
content, reasoning = self._extract_reasoning(content)
|
||||
reasoning_content = message.get("model_extra", {}).get("reasoning_content", "")
|
||||
if not reasoning_content:
|
||||
reasoning_content = message.get("reasoning_content", "")
|
||||
if not reasoning_content:
|
||||
reasoning_content = reasoning
|
||||
|
||||
max_retries = 3
|
||||
base_wait_time = 15
|
||||
|
||||
current_image_base64 = image_base64
|
||||
current_image_base64 = compress_base64_image_by_scale(current_image_base64)
|
||||
|
||||
# 记录token使用情况
|
||||
usage = result.get("usage", {})
|
||||
if usage:
|
||||
prompt_tokens = usage.get("prompt_tokens", 0)
|
||||
completion_tokens = usage.get("completion_tokens", 0)
|
||||
total_tokens = usage.get("total_tokens", 0)
|
||||
self._record_usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=total_tokens,
|
||||
user_id=user_id,
|
||||
request_type=request_type,
|
||||
endpoint=endpoint
|
||||
)
|
||||
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
data = build_request_data(current_image_base64)
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(api_url, headers=headers, json=data) as response:
|
||||
if response.status == 429:
|
||||
wait_time = base_wait_time * (2 ** retry) # 指数退避
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
return content, reasoning_content
|
||||
|
||||
elif response.status == 413:
|
||||
logger.warning("图片太大(413),尝试压缩...")
|
||||
current_image_base64 = compress_base64_image_by_scale(current_image_base64)
|
||||
continue
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
return "没有返回结果", ""
|
||||
|
||||
result = await response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
message = result["choices"][0]["message"]
|
||||
content = message.get("content", "")
|
||||
think_match = None
|
||||
reasoning_content = message.get("reasoning_content", "")
|
||||
if not reasoning_content:
|
||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
||||
if think_match:
|
||||
reasoning_content = think_match.group(1).strip()
|
||||
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
||||
return content, reasoning_content
|
||||
return "没有返回结果", ""
|
||||
def _extract_reasoning(self, content: str) -> tuple[str, str]:
|
||||
"""CoT思维链提取"""
|
||||
match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL)
|
||||
content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
|
||||
if match:
|
||||
reasoning = match.group(1).strip()
|
||||
else:
|
||||
reasoning = ""
|
||||
return content, reasoning
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1: # 如果还有重试机会
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.error(f"[image回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.critical(f"请求失败: {str(e)}", exc_info=True)
|
||||
raise RuntimeError(f"API请求失败: {str(e)}")
|
||||
async def _build_headers(self, no_key: bool = False) -> dict:
|
||||
"""构建请求头"""
|
||||
if no_key:
|
||||
return {
|
||||
"Authorization": f"Bearer **********",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
# 防止小朋友们截图自己的key
|
||||
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
||||
async def generate_response(self, prompt: str) -> Tuple[str, str]:
|
||||
"""根据输入的提示生成模型的异步响应"""
|
||||
|
||||
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
|
||||
content, reasoning_content = await self._execute_request(
|
||||
endpoint="/chat/completions",
|
||||
prompt=prompt
|
||||
)
|
||||
return content, reasoning_content
|
||||
|
||||
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
|
||||
"""根据输入的提示和图片生成模型的异步响应"""
|
||||
|
||||
content, reasoning_content = await self._execute_request(
|
||||
endpoint="/chat/completions",
|
||||
prompt=prompt,
|
||||
image_base64=image_base64
|
||||
)
|
||||
return content, reasoning_content
|
||||
|
||||
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple[str, str]]:
|
||||
"""异步方式根据输入的提示生成模型的响应"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# 构建请求体
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": 0.5,
|
||||
**self.params
|
||||
}
|
||||
|
||||
# 发送请求到完整的 chat/completions 端点
|
||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||||
logger.info(f"Request URL: {api_url}") # 记录请求的 URL
|
||||
|
||||
max_retries = 3
|
||||
base_wait_time = 15
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
async with session.post(api_url, headers=headers, json=data) as response:
|
||||
if response.status == 429:
|
||||
wait_time = base_wait_time * (2 ** retry) # 指数退避
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
|
||||
result = await response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
content = result["choices"][0]["message"]["content"]
|
||||
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
|
||||
return content, reasoning_content
|
||||
return "没有返回结果", ""
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1: # 如果还有重试机会
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.error(f"请求失败: {str(e)}")
|
||||
return f"请求失败: {str(e)}", ""
|
||||
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
return "达到最大重试次数,请求仍然失败", ""
|
||||
|
||||
|
||||
|
||||
def generate_response_for_image_sync(self, prompt: str, image_base64: str) -> Tuple[str, str]:
|
||||
"""同步方法:根据输入的提示和图片生成模型的响应"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
image_base64=compress_base64_image_by_scale(image_base64)
|
||||
|
||||
# 构建请求体
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": prompt
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": global_config.max_response_length,
|
||||
**self.params
|
||||
}
|
||||
|
||||
# 发送请求到完整的chat/completions端点
|
||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
||||
content, reasoning_content = await self._execute_request(
|
||||
endpoint="/chat/completions",
|
||||
payload=data,
|
||||
prompt=prompt
|
||||
)
|
||||
return content, reasoning_content
|
||||
|
||||
max_retries = 2
|
||||
base_wait_time = 6
|
||||
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
response = requests.post(api_url, headers=headers, json=data, timeout=30)
|
||||
|
||||
if response.status_code == 429:
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
time.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
|
||||
result = response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
message = result["choices"][0]["message"]
|
||||
content = message.get("content", "")
|
||||
think_match = None
|
||||
reasoning_content = message.get("reasoning_content", "")
|
||||
if not reasoning_content:
|
||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
||||
if think_match:
|
||||
reasoning_content = think_match.group(1).strip()
|
||||
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
||||
return content, reasoning_content
|
||||
return "没有返回结果", ""
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1: # 如果还有重试机会
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.error(f"[image_sync回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
||||
time.sleep(wait_time)
|
||||
else:
|
||||
logger.critical(f"请求失败: {str(e)}", exc_info=True)
|
||||
raise RuntimeError(f"API请求失败: {str(e)}")
|
||||
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
||||
|
||||
def get_embedding_sync(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]:
|
||||
"""同步方法:获取文本的embedding向量
|
||||
|
||||
Args:
|
||||
text: 需要获取embedding的文本
|
||||
model: 使用的模型名称,默认为"BAAI/bge-m3"
|
||||
|
||||
Returns:
|
||||
list: embedding向量,如果失败则返回None
|
||||
"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"input": text,
|
||||
"encoding_format": "float"
|
||||
}
|
||||
|
||||
api_url = f"{self.base_url.rstrip('/')}/embeddings"
|
||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
||||
|
||||
max_retries = 2
|
||||
base_wait_time = 6
|
||||
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
response = requests.post(api_url, headers=headers, json=data, timeout=30)
|
||||
|
||||
if response.status_code == 429:
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
time.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status()
|
||||
|
||||
result = response.json()
|
||||
if 'data' in result and len(result['data']) > 0:
|
||||
return result['data'][0]['embedding']
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1:
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.error(f"[embedding_sync]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
||||
time.sleep(wait_time)
|
||||
else:
|
||||
logger.critical(f"embedding请求失败: {str(e)}", exc_info=True)
|
||||
return None
|
||||
|
||||
logger.error("达到最大重试次数,embedding请求仍然失败")
|
||||
return None
|
||||
|
||||
async def get_embedding(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]:
|
||||
async def get_embedding(self, text: str) -> Union[list, None]:
|
||||
"""异步方法:获取文本的embedding向量
|
||||
|
||||
Args:
|
||||
text: 需要获取embedding的文本
|
||||
model: 使用的模型名称,默认为"BAAI/bge-m3"
|
||||
|
||||
Returns:
|
||||
list: embedding向量,如果失败则返回None
|
||||
"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
def embedding_handler(result):
|
||||
"""处理响应"""
|
||||
if "data" in result and len(result["data"]) > 0:
|
||||
return result["data"][0].get("embedding", None)
|
||||
return None
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"input": text,
|
||||
"encoding_format": "float"
|
||||
}
|
||||
embedding = await self._execute_request(
|
||||
endpoint="/embeddings",
|
||||
prompt=text,
|
||||
payload={
|
||||
"model": self.model_name,
|
||||
"input": text,
|
||||
"encoding_format": "float"
|
||||
},
|
||||
retry_policy={
|
||||
"max_retries": 2,
|
||||
"base_wait": 6
|
||||
},
|
||||
response_handler=embedding_handler
|
||||
)
|
||||
return embedding
|
||||
|
||||
api_url = f"{self.base_url.rstrip('/')}/embeddings"
|
||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
||||
|
||||
max_retries = 3
|
||||
base_wait_time = 15
|
||||
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(api_url, headers=headers, json=data) as response:
|
||||
if response.status == 429:
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status()
|
||||
|
||||
result = await response.json()
|
||||
if 'data' in result and len(result['data']) > 0:
|
||||
return result['data'][0]['embedding']
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1:
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.error(f"[embedding]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.critical(f"embedding请求失败: {str(e)}", exc_info=True)
|
||||
return None
|
||||
|
||||
logger.error("达到最大重试次数,embedding请求仍然失败")
|
||||
return None
|
||||
|
||||
231
src/plugins/moods/moods.py
Normal file
231
src/plugins/moods/moods.py
Normal file
@@ -0,0 +1,231 @@
|
||||
import math
|
||||
import threading
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..chat.config import global_config
|
||||
|
||||
|
||||
@dataclass
|
||||
class MoodState:
|
||||
valence: float # 愉悦度 (-1 到 1)
|
||||
arousal: float # 唤醒度 (0 到 1)
|
||||
text: str # 心情文本描述
|
||||
|
||||
class MoodManager:
|
||||
_instance = None
|
||||
_lock = threading.Lock()
|
||||
|
||||
def __new__(cls):
|
||||
with cls._lock:
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
cls._instance._initialized = False
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
# 确保初始化代码只运行一次
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
self._initialized = True
|
||||
|
||||
# 初始化心情状态
|
||||
self.current_mood = MoodState(
|
||||
valence=0.0,
|
||||
arousal=0.5,
|
||||
text="平静"
|
||||
)
|
||||
|
||||
# 从配置文件获取衰减率
|
||||
self.decay_rate_valence = 1 - global_config.mood_decay_rate # 愉悦度衰减率
|
||||
self.decay_rate_arousal = 1 - global_config.mood_decay_rate # 唤醒度衰减率
|
||||
|
||||
# 上次更新时间
|
||||
self.last_update = time.time()
|
||||
|
||||
# 线程控制
|
||||
self._running = False
|
||||
self._update_thread = None
|
||||
|
||||
# 情绪词映射表 (valence, arousal)
|
||||
self.emotion_map = {
|
||||
'happy': (0.8, 0.6), # 高愉悦度,中等唤醒度
|
||||
'angry': (-0.7, 0.8), # 负愉悦度,高唤醒度
|
||||
'sad': (-0.6, 0.3), # 负愉悦度,低唤醒度
|
||||
'surprised': (0.4, 0.9), # 中等愉悦度,高唤醒度
|
||||
'disgusted': (-0.8, 0.5), # 高负愉悦度,中等唤醒度
|
||||
'fearful': (-0.7, 0.7), # 负愉悦度,高唤醒度
|
||||
'neutral': (0.0, 0.5), # 中性愉悦度,中等唤醒度
|
||||
}
|
||||
|
||||
# 情绪文本映射表
|
||||
self.mood_text_map = {
|
||||
# 第一象限:高唤醒,正愉悦
|
||||
(0.5, 0.7): "兴奋",
|
||||
(0.3, 0.8): "快乐",
|
||||
# 第二象限:高唤醒,负愉悦
|
||||
(-0.5, 0.7): "愤怒",
|
||||
(-0.3, 0.8): "焦虑",
|
||||
# 第三象限:低唤醒,负愉悦
|
||||
(-0.5, 0.3): "悲伤",
|
||||
(-0.3, 0.2): "疲倦",
|
||||
# 第四象限:低唤醒,正愉悦
|
||||
(0.5, 0.3): "放松",
|
||||
(0.3, 0.2): "平静"
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_instance(cls) -> 'MoodManager':
|
||||
"""获取MoodManager的单例实例"""
|
||||
if cls._instance is None:
|
||||
cls._instance = MoodManager()
|
||||
return cls._instance
|
||||
|
||||
def start_mood_update(self, update_interval: float = 1.0) -> None:
|
||||
"""
|
||||
启动情绪更新线程
|
||||
:param update_interval: 更新间隔(秒)
|
||||
"""
|
||||
if self._running:
|
||||
return
|
||||
|
||||
self._running = True
|
||||
self._update_thread = threading.Thread(
|
||||
target=self._continuous_mood_update,
|
||||
args=(update_interval,),
|
||||
daemon=True
|
||||
)
|
||||
self._update_thread.start()
|
||||
|
||||
def stop_mood_update(self) -> None:
|
||||
"""停止情绪更新线程"""
|
||||
self._running = False
|
||||
if self._update_thread and self._update_thread.is_alive():
|
||||
self._update_thread.join()
|
||||
|
||||
def _continuous_mood_update(self, update_interval: float) -> None:
|
||||
"""
|
||||
持续更新情绪状态的线程函数
|
||||
:param update_interval: 更新间隔(秒)
|
||||
"""
|
||||
while self._running:
|
||||
self._apply_decay()
|
||||
self._update_mood_text()
|
||||
time.sleep(update_interval)
|
||||
|
||||
def _apply_decay(self) -> None:
|
||||
"""应用情绪衰减"""
|
||||
current_time = time.time()
|
||||
time_diff = current_time - self.last_update
|
||||
|
||||
# 应用衰减公式
|
||||
self.current_mood.valence *= math.pow(1 - self.decay_rate_valence, time_diff)
|
||||
self.current_mood.arousal *= math.pow(1 - self.decay_rate_arousal, time_diff)
|
||||
|
||||
# 确保值在合理范围内
|
||||
self.current_mood.valence = max(-1.0, min(1.0, self.current_mood.valence))
|
||||
self.current_mood.arousal = max(0.0, min(1.0, self.current_mood.arousal))
|
||||
|
||||
self.last_update = current_time
|
||||
|
||||
def update_mood_from_text(self, text: str, valence_change: float, arousal_change: float) -> None:
|
||||
"""根据输入文本更新情绪状态"""
|
||||
|
||||
self.current_mood.valence += valence_change
|
||||
self.current_mood.arousal += arousal_change
|
||||
|
||||
# 限制范围
|
||||
self.current_mood.valence = max(-1.0, min(1.0, self.current_mood.valence))
|
||||
self.current_mood.arousal = max(0.0, min(1.0, self.current_mood.arousal))
|
||||
|
||||
self._update_mood_text()
|
||||
|
||||
def set_mood_text(self, text: str) -> None:
|
||||
"""直接设置心情文本"""
|
||||
self.current_mood.text = text
|
||||
|
||||
def _update_mood_text(self) -> None:
|
||||
"""根据当前情绪状态更新文本描述"""
|
||||
closest_mood = None
|
||||
min_distance = float('inf')
|
||||
|
||||
for (v, a), text in self.mood_text_map.items():
|
||||
distance = math.sqrt(
|
||||
(self.current_mood.valence - v) ** 2 +
|
||||
(self.current_mood.arousal - a) ** 2
|
||||
)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_mood = text
|
||||
|
||||
if closest_mood:
|
||||
self.current_mood.text = closest_mood
|
||||
|
||||
def update_mood_by_user(self, user_id: str, valence_change: float, arousal_change: float) -> None:
|
||||
"""根据用户ID更新情绪状态"""
|
||||
|
||||
# 这里可以根据用户ID添加特定的权重或规则
|
||||
weight = 1.0 # 默认权重
|
||||
|
||||
self.current_mood.valence += valence_change * weight
|
||||
self.current_mood.arousal += arousal_change * weight
|
||||
|
||||
# 限制范围
|
||||
self.current_mood.valence = max(-1.0, min(1.0, self.current_mood.valence))
|
||||
self.current_mood.arousal = max(0.0, min(1.0, self.current_mood.arousal))
|
||||
|
||||
self._update_mood_text()
|
||||
|
||||
def get_prompt(self) -> str:
|
||||
"""根据当前情绪状态生成提示词"""
|
||||
|
||||
base_prompt = f"当前心情:{self.current_mood.text}。"
|
||||
|
||||
# 根据情绪状态添加额外的提示信息
|
||||
if self.current_mood.valence > 0.5:
|
||||
base_prompt += "你现在心情很好,"
|
||||
elif self.current_mood.valence < -0.5:
|
||||
base_prompt += "你现在心情不太好,"
|
||||
|
||||
if self.current_mood.arousal > 0.7:
|
||||
base_prompt += "情绪比较激动。"
|
||||
elif self.current_mood.arousal < 0.3:
|
||||
base_prompt += "情绪比较平静。"
|
||||
|
||||
return base_prompt
|
||||
|
||||
def get_current_mood(self) -> MoodState:
|
||||
"""获取当前情绪状态"""
|
||||
return self.current_mood
|
||||
|
||||
def print_mood_status(self) -> None:
|
||||
"""打印当前情绪状态"""
|
||||
print(f"\033[1;35m[情绪状态]\033[0m 愉悦度: {self.current_mood.valence:.2f}, "
|
||||
f"唤醒度: {self.current_mood.arousal:.2f}, "
|
||||
f"心情: {self.current_mood.text}")
|
||||
|
||||
def update_mood_from_emotion(self, emotion: str, intensity: float = 1.0) -> None:
|
||||
"""
|
||||
根据情绪词更新心情状态
|
||||
:param emotion: 情绪词(如'happy', 'sad'等)
|
||||
:param intensity: 情绪强度(0.0-1.0)
|
||||
"""
|
||||
if emotion not in self.emotion_map:
|
||||
return
|
||||
|
||||
valence_change, arousal_change = self.emotion_map[emotion]
|
||||
|
||||
# 应用情绪强度
|
||||
valence_change *= intensity
|
||||
arousal_change *= intensity
|
||||
|
||||
# 更新当前情绪状态
|
||||
self.current_mood.valence += valence_change
|
||||
self.current_mood.arousal += arousal_change
|
||||
|
||||
# 限制范围
|
||||
self.current_mood.valence = max(-1.0, min(1.0, self.current_mood.valence))
|
||||
self.current_mood.arousal = max(0.0, min(1.0, self.current_mood.arousal))
|
||||
|
||||
self._update_mood_text()
|
||||
@@ -1,12 +1,15 @@
|
||||
import datetime
|
||||
import os
|
||||
from typing import List, Dict, Union
|
||||
from ...common.database import Database # 使用正确的导入语法
|
||||
from src.plugins.chat.config import global_config
|
||||
from nonebot import get_driver
|
||||
from ..models.utils_model import LLM_request
|
||||
from loguru import logger
|
||||
import json
|
||||
from typing import Dict, Union
|
||||
|
||||
from loguru import logger
|
||||
from nonebot import get_driver
|
||||
|
||||
from src.plugins.chat.config import global_config
|
||||
|
||||
from ...common.database import Database # 使用正确的导入语法
|
||||
from ..models.utils_model import LLM_request
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
|
||||
|
||||
163
src/plugins/utils/statistic.py
Normal file
163
src/plugins/utils/statistic.py
Normal file
@@ -0,0 +1,163 @@
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict
|
||||
|
||||
from ...common.database import Database
|
||||
|
||||
|
||||
class LLMStatistics:
|
||||
def __init__(self, output_file: str = "llm_statistics.txt"):
|
||||
"""初始化LLM统计类
|
||||
|
||||
Args:
|
||||
output_file: 统计结果输出文件路径
|
||||
"""
|
||||
self.db = Database.get_instance()
|
||||
self.output_file = output_file
|
||||
self.running = False
|
||||
self.stats_thread = None
|
||||
|
||||
def start(self):
|
||||
"""启动统计线程"""
|
||||
if not self.running:
|
||||
self.running = True
|
||||
self.stats_thread = threading.Thread(target=self._stats_loop)
|
||||
self.stats_thread.daemon = True
|
||||
self.stats_thread.start()
|
||||
|
||||
def stop(self):
|
||||
"""停止统计线程"""
|
||||
self.running = False
|
||||
if self.stats_thread:
|
||||
self.stats_thread.join()
|
||||
|
||||
def _collect_statistics_for_period(self, start_time: datetime) -> Dict[str, Any]:
|
||||
"""收集指定时间段的LLM请求统计数据
|
||||
|
||||
Args:
|
||||
start_time: 统计开始时间
|
||||
"""
|
||||
stats = {
|
||||
"total_requests": 0,
|
||||
"requests_by_type": defaultdict(int),
|
||||
"requests_by_user": defaultdict(int),
|
||||
"requests_by_model": defaultdict(int),
|
||||
"average_tokens": 0,
|
||||
"total_tokens": 0,
|
||||
"total_cost": 0.0,
|
||||
"costs_by_user": defaultdict(float),
|
||||
"costs_by_type": defaultdict(float),
|
||||
"costs_by_model": defaultdict(float)
|
||||
}
|
||||
|
||||
cursor = self.db.db.llm_usage.find({
|
||||
"timestamp": {"$gte": start_time}
|
||||
})
|
||||
|
||||
total_requests = 0
|
||||
|
||||
for doc in cursor:
|
||||
stats["total_requests"] += 1
|
||||
request_type = doc.get("request_type", "unknown")
|
||||
user_id = str(doc.get("user_id", "unknown"))
|
||||
model_name = doc.get("model_name", "unknown")
|
||||
|
||||
stats["requests_by_type"][request_type] += 1
|
||||
stats["requests_by_user"][user_id] += 1
|
||||
stats["requests_by_model"][model_name] += 1
|
||||
|
||||
prompt_tokens = doc.get("prompt_tokens", 0)
|
||||
completion_tokens = doc.get("completion_tokens", 0)
|
||||
stats["total_tokens"] += prompt_tokens + completion_tokens
|
||||
|
||||
cost = doc.get("cost", 0.0)
|
||||
stats["total_cost"] += cost
|
||||
stats["costs_by_user"][user_id] += cost
|
||||
stats["costs_by_type"][request_type] += cost
|
||||
stats["costs_by_model"][model_name] += cost
|
||||
|
||||
total_requests += 1
|
||||
|
||||
if total_requests > 0:
|
||||
stats["average_tokens"] = stats["total_tokens"] / total_requests
|
||||
|
||||
return stats
|
||||
|
||||
def _collect_all_statistics(self) -> Dict[str, Dict[str, Any]]:
|
||||
"""收集所有时间范围的统计数据"""
|
||||
now = datetime.now()
|
||||
|
||||
return {
|
||||
"all_time": self._collect_statistics_for_period(datetime.min),
|
||||
"last_7_days": self._collect_statistics_for_period(now - timedelta(days=7)),
|
||||
"last_24_hours": self._collect_statistics_for_period(now - timedelta(days=1)),
|
||||
"last_hour": self._collect_statistics_for_period(now - timedelta(hours=1))
|
||||
}
|
||||
|
||||
def _format_stats_section(self, stats: Dict[str, Any], title: str) -> str:
|
||||
"""格式化统计部分的输出
|
||||
|
||||
Args:
|
||||
stats: 统计数据
|
||||
title: 部分标题
|
||||
"""
|
||||
output = []
|
||||
output.append(f"\n{title}")
|
||||
output.append("=" * len(title))
|
||||
|
||||
output.append(f"总请求数: {stats['total_requests']}")
|
||||
if stats['total_requests'] > 0:
|
||||
output.append(f"总Token数: {stats['total_tokens']}")
|
||||
output.append(f"总花费: ¥{stats['total_cost']:.4f}")
|
||||
|
||||
output.append("\n按模型统计:")
|
||||
for model_name, count in sorted(stats["requests_by_model"].items()):
|
||||
cost = stats["costs_by_model"][model_name]
|
||||
output.append(f"- {model_name}: {count}次 (花费: ¥{cost:.4f})")
|
||||
|
||||
output.append("\n按请求类型统计:")
|
||||
for req_type, count in sorted(stats["requests_by_type"].items()):
|
||||
cost = stats["costs_by_type"][req_type]
|
||||
output.append(f"- {req_type}: {count}次 (花费: ¥{cost:.4f})")
|
||||
|
||||
return "\n".join(output)
|
||||
|
||||
def _save_statistics(self, all_stats: Dict[str, Dict[str, Any]]):
|
||||
"""将统计结果保存到文件"""
|
||||
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
output = []
|
||||
output.append(f"LLM请求统计报告 (生成时间: {current_time})")
|
||||
output.append("=" * 50)
|
||||
|
||||
# 添加各个时间段的统计
|
||||
sections = [
|
||||
("所有时间统计", "all_time"),
|
||||
("最近7天统计", "last_7_days"),
|
||||
("最近24小时统计", "last_24_hours"),
|
||||
("最近1小时统计", "last_hour")
|
||||
]
|
||||
|
||||
for title, key in sections:
|
||||
output.append(self._format_stats_section(all_stats[key], title))
|
||||
|
||||
# 写入文件
|
||||
with open(self.output_file, "w", encoding="utf-8") as f:
|
||||
f.write("\n".join(output))
|
||||
|
||||
def _stats_loop(self):
|
||||
"""统计循环,每1分钟运行一次"""
|
||||
while self.running:
|
||||
try:
|
||||
all_stats = self._collect_all_statistics()
|
||||
self._save_statistics(all_stats)
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 统计数据处理失败: {e}")
|
||||
|
||||
# 等待1分钟
|
||||
for _ in range(60):
|
||||
if not self.running:
|
||||
break
|
||||
time.sleep(1)
|
||||
439
src/plugins/utils/typo_generator.py
Normal file
439
src/plugins/utils/typo_generator.py
Normal file
@@ -0,0 +1,439 @@
|
||||
"""
|
||||
错别字生成器 - 基于拼音和字频的中文错别字生成工具
|
||||
"""
|
||||
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import jieba
|
||||
from pypinyin import Style, pinyin
|
||||
|
||||
|
||||
class ChineseTypoGenerator:
|
||||
def __init__(self,
|
||||
error_rate=0.3,
|
||||
min_freq=5,
|
||||
tone_error_rate=0.2,
|
||||
word_replace_rate=0.3,
|
||||
max_freq_diff=200):
|
||||
"""
|
||||
初始化错别字生成器
|
||||
|
||||
参数:
|
||||
error_rate: 单字替换概率
|
||||
min_freq: 最小字频阈值
|
||||
tone_error_rate: 声调错误概率
|
||||
word_replace_rate: 整词替换概率
|
||||
max_freq_diff: 最大允许的频率差异
|
||||
"""
|
||||
self.error_rate = error_rate
|
||||
self.min_freq = min_freq
|
||||
self.tone_error_rate = tone_error_rate
|
||||
self.word_replace_rate = word_replace_rate
|
||||
self.max_freq_diff = max_freq_diff
|
||||
|
||||
# 加载数据
|
||||
print("正在加载汉字数据库,请稍候...")
|
||||
self.pinyin_dict = self._create_pinyin_dict()
|
||||
self.char_frequency = self._load_or_create_char_frequency()
|
||||
|
||||
def _load_or_create_char_frequency(self):
|
||||
"""
|
||||
加载或创建汉字频率字典
|
||||
"""
|
||||
cache_file = Path("char_frequency.json")
|
||||
|
||||
# 如果缓存文件存在,直接加载
|
||||
if cache_file.exists():
|
||||
with open(cache_file, 'r', encoding='utf-8') as f:
|
||||
return json.load(f)
|
||||
|
||||
# 使用内置的词频文件
|
||||
char_freq = defaultdict(int)
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
|
||||
# 读取jieba的词典文件
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
word, freq = line.strip().split()[:2]
|
||||
# 对词中的每个字进行频率累加
|
||||
for char in word:
|
||||
if self._is_chinese_char(char):
|
||||
char_freq[char] += int(freq)
|
||||
|
||||
# 归一化频率值
|
||||
max_freq = max(char_freq.values())
|
||||
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
||||
|
||||
# 保存到缓存文件
|
||||
with open(cache_file, 'w', encoding='utf-8') as f:
|
||||
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
|
||||
|
||||
return normalized_freq
|
||||
|
||||
def _create_pinyin_dict(self):
|
||||
"""
|
||||
创建拼音到汉字的映射字典
|
||||
"""
|
||||
# 常用汉字范围
|
||||
chars = [chr(i) for i in range(0x4e00, 0x9fff)]
|
||||
pinyin_dict = defaultdict(list)
|
||||
|
||||
# 为每个汉字建立拼音映射
|
||||
for char in chars:
|
||||
try:
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
pinyin_dict[py].append(char)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return pinyin_dict
|
||||
|
||||
def _is_chinese_char(self, char):
|
||||
"""
|
||||
判断是否为汉字
|
||||
"""
|
||||
try:
|
||||
return '\u4e00' <= char <= '\u9fff'
|
||||
except:
|
||||
return False
|
||||
|
||||
def _get_pinyin(self, sentence):
|
||||
"""
|
||||
将中文句子拆分成单个汉字并获取其拼音
|
||||
"""
|
||||
# 将句子拆分成单个字符
|
||||
characters = list(sentence)
|
||||
|
||||
# 获取每个字符的拼音
|
||||
result = []
|
||||
for char in characters:
|
||||
# 跳过空格和非汉字字符
|
||||
if char.isspace() or not self._is_chinese_char(char):
|
||||
continue
|
||||
# 获取拼音(数字声调)
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
result.append((char, py))
|
||||
|
||||
return result
|
||||
|
||||
def _get_similar_tone_pinyin(self, py):
|
||||
"""
|
||||
获取相似声调的拼音
|
||||
"""
|
||||
# 检查拼音是否为空或无效
|
||||
if not py or len(py) < 1:
|
||||
return py
|
||||
|
||||
# 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况
|
||||
if not py[-1].isdigit():
|
||||
# 为非数字结尾的拼音添加数字声调1
|
||||
return py + '1'
|
||||
|
||||
base = py[:-1] # 去掉声调
|
||||
tone = int(py[-1]) # 获取声调
|
||||
|
||||
# 处理轻声(通常用5表示)或无效声调
|
||||
if tone not in [1, 2, 3, 4]:
|
||||
return base + str(random.choice([1, 2, 3, 4]))
|
||||
|
||||
# 正常处理声调
|
||||
possible_tones = [1, 2, 3, 4]
|
||||
possible_tones.remove(tone) # 移除原声调
|
||||
new_tone = random.choice(possible_tones) # 随机选择一个新声调
|
||||
return base + str(new_tone)
|
||||
|
||||
def _calculate_replacement_probability(self, orig_freq, target_freq):
|
||||
"""
|
||||
根据频率差计算替换概率
|
||||
"""
|
||||
if target_freq > orig_freq:
|
||||
return 1.0 # 如果替换字频率更高,保持原有概率
|
||||
|
||||
freq_diff = orig_freq - target_freq
|
||||
if freq_diff > self.max_freq_diff:
|
||||
return 0.0 # 频率差太大,不替换
|
||||
|
||||
# 使用指数衰减函数计算概率
|
||||
# 频率差为0时概率为1,频率差为max_freq_diff时概率接近0
|
||||
return math.exp(-3 * freq_diff / self.max_freq_diff)
|
||||
|
||||
def _get_similar_frequency_chars(self, char, py, num_candidates=5):
|
||||
"""
|
||||
获取与给定字频率相近的同音字,可能包含声调错误
|
||||
"""
|
||||
homophones = []
|
||||
|
||||
# 有一定概率使用错误声调
|
||||
if random.random() < self.tone_error_rate:
|
||||
wrong_tone_py = self._get_similar_tone_pinyin(py)
|
||||
homophones.extend(self.pinyin_dict[wrong_tone_py])
|
||||
|
||||
# 添加正确声调的同音字
|
||||
homophones.extend(self.pinyin_dict[py])
|
||||
|
||||
if not homophones:
|
||||
return None
|
||||
|
||||
# 获取原字的频率
|
||||
orig_freq = self.char_frequency.get(char, 0)
|
||||
|
||||
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
||||
freq_diff = [(h, self.char_frequency.get(h, 0))
|
||||
for h in homophones
|
||||
if h != char and self.char_frequency.get(h, 0) >= self.min_freq]
|
||||
|
||||
if not freq_diff:
|
||||
return None
|
||||
|
||||
# 计算每个候选字的替换概率
|
||||
candidates_with_prob = []
|
||||
for h, freq in freq_diff:
|
||||
prob = self._calculate_replacement_probability(orig_freq, freq)
|
||||
if prob > 0: # 只保留有效概率的候选字
|
||||
candidates_with_prob.append((h, prob))
|
||||
|
||||
if not candidates_with_prob:
|
||||
return None
|
||||
|
||||
# 根据概率排序
|
||||
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 返回概率最高的几个字
|
||||
return [char for char, _ in candidates_with_prob[:num_candidates]]
|
||||
|
||||
def _get_word_pinyin(self, word):
|
||||
"""
|
||||
获取词语的拼音列表
|
||||
"""
|
||||
return [py[0] for py in pinyin(word, style=Style.TONE3)]
|
||||
|
||||
def _segment_sentence(self, sentence):
|
||||
"""
|
||||
使用jieba分词,返回词语列表
|
||||
"""
|
||||
return list(jieba.cut(sentence))
|
||||
|
||||
def _get_word_homophones(self, word):
|
||||
"""
|
||||
获取整个词的同音词,只返回高频的有意义词语
|
||||
"""
|
||||
if len(word) == 1:
|
||||
return []
|
||||
|
||||
# 获取词的拼音
|
||||
word_pinyin = self._get_word_pinyin(word)
|
||||
|
||||
# 遍历所有可能的同音字组合
|
||||
candidates = []
|
||||
for py in word_pinyin:
|
||||
chars = self.pinyin_dict.get(py, [])
|
||||
if not chars:
|
||||
return []
|
||||
candidates.append(chars)
|
||||
|
||||
# 生成所有可能的组合
|
||||
import itertools
|
||||
all_combinations = itertools.product(*candidates)
|
||||
|
||||
# 获取jieba词典和词频信息
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
valid_words = {} # 改用字典存储词语及其频率
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
parts = line.strip().split()
|
||||
if len(parts) >= 2:
|
||||
word_text = parts[0]
|
||||
word_freq = float(parts[1]) # 获取词频
|
||||
valid_words[word_text] = word_freq
|
||||
|
||||
# 获取原词的词频作为参考
|
||||
original_word_freq = valid_words.get(word, 0)
|
||||
min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10%
|
||||
|
||||
# 过滤和计算频率
|
||||
homophones = []
|
||||
for combo in all_combinations:
|
||||
new_word = ''.join(combo)
|
||||
if new_word != word and new_word in valid_words:
|
||||
new_word_freq = valid_words[new_word]
|
||||
# 只保留词频达到阈值的词
|
||||
if new_word_freq >= min_word_freq:
|
||||
# 计算词的平均字频(考虑字频和词频)
|
||||
char_avg_freq = sum(self.char_frequency.get(c, 0) for c in new_word) / len(new_word)
|
||||
# 综合评分:结合词频和字频
|
||||
combined_score = (new_word_freq * 0.7 + char_avg_freq * 0.3)
|
||||
if combined_score >= self.min_freq:
|
||||
homophones.append((new_word, combined_score))
|
||||
|
||||
# 按综合分数排序并限制返回数量
|
||||
sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True)
|
||||
return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果
|
||||
|
||||
def create_typo_sentence(self, sentence):
|
||||
"""
|
||||
创建包含同音字错误的句子,支持词语级别和字级别的替换
|
||||
|
||||
参数:
|
||||
sentence: 输入的中文句子
|
||||
|
||||
返回:
|
||||
typo_sentence: 包含错别字的句子
|
||||
typo_info: 错别字信息列表
|
||||
"""
|
||||
result = []
|
||||
typo_info = []
|
||||
|
||||
# 分词
|
||||
words = self._segment_sentence(sentence)
|
||||
|
||||
for word in words:
|
||||
# 如果是标点符号或空格,直接添加
|
||||
if all(not self._is_chinese_char(c) for c in word):
|
||||
result.append(word)
|
||||
continue
|
||||
|
||||
# 获取词语的拼音
|
||||
word_pinyin = self._get_word_pinyin(word)
|
||||
|
||||
# 尝试整词替换
|
||||
if len(word) > 1 and random.random() < self.word_replace_rate:
|
||||
word_homophones = self._get_word_homophones(word)
|
||||
if word_homophones:
|
||||
typo_word = random.choice(word_homophones)
|
||||
# 计算词的平均频率
|
||||
orig_freq = sum(self.char_frequency.get(c, 0) for c in word) / len(word)
|
||||
typo_freq = sum(self.char_frequency.get(c, 0) for c in typo_word) / len(typo_word)
|
||||
|
||||
# 添加到结果中
|
||||
result.append(typo_word)
|
||||
typo_info.append((word, typo_word,
|
||||
' '.join(word_pinyin),
|
||||
' '.join(self._get_word_pinyin(typo_word)),
|
||||
orig_freq, typo_freq))
|
||||
continue
|
||||
|
||||
# 如果不进行整词替换,则进行单字替换
|
||||
if len(word) == 1:
|
||||
char = word
|
||||
py = word_pinyin[0]
|
||||
if random.random() < self.error_rate:
|
||||
similar_chars = self._get_similar_frequency_chars(char, py)
|
||||
if similar_chars:
|
||||
typo_char = random.choice(similar_chars)
|
||||
typo_freq = self.char_frequency.get(typo_char, 0)
|
||||
orig_freq = self.char_frequency.get(char, 0)
|
||||
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
|
||||
if random.random() < replace_prob:
|
||||
result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
continue
|
||||
result.append(char)
|
||||
else:
|
||||
# 处理多字词的单字替换
|
||||
word_result = []
|
||||
for i, (char, py) in enumerate(zip(word, word_pinyin)):
|
||||
# 词中的字替换概率降低
|
||||
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))
|
||||
|
||||
if random.random() < word_error_rate:
|
||||
similar_chars = self._get_similar_frequency_chars(char, py)
|
||||
if similar_chars:
|
||||
typo_char = random.choice(similar_chars)
|
||||
typo_freq = self.char_frequency.get(typo_char, 0)
|
||||
orig_freq = self.char_frequency.get(char, 0)
|
||||
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
|
||||
if random.random() < replace_prob:
|
||||
word_result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
continue
|
||||
word_result.append(char)
|
||||
result.append(''.join(word_result))
|
||||
|
||||
return ''.join(result), typo_info
|
||||
|
||||
def format_typo_info(self, typo_info):
|
||||
"""
|
||||
格式化错别字信息
|
||||
|
||||
参数:
|
||||
typo_info: 错别字信息列表
|
||||
|
||||
返回:
|
||||
格式化后的错别字信息字符串
|
||||
"""
|
||||
if not typo_info:
|
||||
return "未生成错别字"
|
||||
|
||||
result = []
|
||||
for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info:
|
||||
# 判断是否为词语替换
|
||||
is_word = ' ' in orig_py
|
||||
if is_word:
|
||||
error_type = "整词替换"
|
||||
else:
|
||||
tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1]
|
||||
error_type = "声调错误" if tone_error else "同音字替换"
|
||||
|
||||
result.append(f"原文:{orig}({orig_py}) [频率:{orig_freq:.2f}] -> "
|
||||
f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]")
|
||||
|
||||
return "\n".join(result)
|
||||
|
||||
def set_params(self, **kwargs):
|
||||
"""
|
||||
设置参数
|
||||
|
||||
可设置参数:
|
||||
error_rate: 单字替换概率
|
||||
min_freq: 最小字频阈值
|
||||
tone_error_rate: 声调错误概率
|
||||
word_replace_rate: 整词替换概率
|
||||
max_freq_diff: 最大允许的频率差异
|
||||
"""
|
||||
for key, value in kwargs.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
print(f"参数 {key} 已设置为 {value}")
|
||||
else:
|
||||
print(f"警告: 参数 {key} 不存在")
|
||||
|
||||
def main():
|
||||
# 创建错别字生成器实例
|
||||
typo_generator = ChineseTypoGenerator(
|
||||
error_rate=0.03,
|
||||
min_freq=7,
|
||||
tone_error_rate=0.02,
|
||||
word_replace_rate=0.3
|
||||
)
|
||||
|
||||
# 获取用户输入
|
||||
sentence = input("请输入中文句子:")
|
||||
|
||||
# 创建包含错别字的句子
|
||||
start_time = time.time()
|
||||
typo_sentence, typo_info = typo_generator.create_typo_sentence(sentence)
|
||||
|
||||
# 打印结果
|
||||
print("\n原句:", sentence)
|
||||
print("错字版:", typo_sentence)
|
||||
|
||||
# 打印错别字信息
|
||||
if typo_info:
|
||||
print("\n错别字信息:")
|
||||
print(typo_generator.format_typo_info(typo_info))
|
||||
|
||||
# 计算并打印总耗时
|
||||
end_time = time.time()
|
||||
total_time = end_time - start_time
|
||||
print(f"\n总耗时:{total_time:.2f}秒")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
827
src/test/typo.py
827
src/test/typo.py
@@ -1,455 +1,376 @@
|
||||
"""
|
||||
错别字生成器 - 流程说明
|
||||
|
||||
整体替换逻辑:
|
||||
1. 数据准备
|
||||
- 加载字频词典:使用jieba词典计算汉字使用频率
|
||||
- 创建拼音映射:建立拼音到汉字的映射关系
|
||||
- 加载词频信息:从jieba词典获取词语使用频率
|
||||
|
||||
2. 分词处理
|
||||
- 使用jieba将输入句子分词
|
||||
- 区分单字词和多字词
|
||||
- 保留标点符号和空格
|
||||
|
||||
3. 词语级别替换(针对多字词)
|
||||
- 触发条件:词长>1 且 随机概率<0.3
|
||||
- 替换流程:
|
||||
a. 获取词语拼音
|
||||
b. 生成所有可能的同音字组合
|
||||
c. 过滤条件:
|
||||
- 必须是jieba词典中的有效词
|
||||
- 词频必须达到原词频的10%以上
|
||||
- 综合评分(词频70%+字频30%)必须达到阈值
|
||||
d. 按综合评分排序,选择最合适的替换词
|
||||
|
||||
4. 字级别替换(针对单字词或未进行整词替换的多字词)
|
||||
- 单字替换概率:0.3
|
||||
- 多字词中的单字替换概率:0.3 * (0.7 ^ (词长-1))
|
||||
- 替换流程:
|
||||
a. 获取字的拼音
|
||||
b. 声调错误处理(20%概率)
|
||||
c. 获取同音字列表
|
||||
d. 过滤条件:
|
||||
- 字频必须达到最小阈值
|
||||
- 频率差异不能过大(指数衰减计算)
|
||||
e. 按频率排序选择替换字
|
||||
|
||||
5. 频率控制机制
|
||||
- 字频控制:使用归一化的字频(0-1000范围)
|
||||
- 词频控制:使用jieba词典中的词频
|
||||
- 频率差异计算:使用指数衰减函数
|
||||
- 最小频率阈值:确保替换字/词不会太生僻
|
||||
|
||||
6. 输出信息
|
||||
- 原文和错字版本的对照
|
||||
- 每个替换的详细信息(原字/词、替换后字/词、拼音、频率)
|
||||
- 替换类型说明(整词替换/声调错误/同音字替换)
|
||||
- 词语分析和完整拼音
|
||||
|
||||
注意事项:
|
||||
1. 所有替换都必须使用有意义的词语
|
||||
2. 替换词的使用频率不能过低
|
||||
3. 多字词优先考虑整词替换
|
||||
4. 考虑声调变化的情况
|
||||
5. 保持标点符号和空格不变
|
||||
错别字生成器 - 基于拼音和字频的中文错别字生成工具
|
||||
"""
|
||||
|
||||
from pypinyin import pinyin, Style
|
||||
from collections import defaultdict
|
||||
import json
|
||||
import os
|
||||
import unicodedata
|
||||
import jieba
|
||||
import jieba.posseg as pseg
|
||||
from pathlib import Path
|
||||
import random
|
||||
import math
|
||||
import time
|
||||
|
||||
def load_or_create_char_frequency():
|
||||
"""
|
||||
加载或创建汉字频率字典
|
||||
"""
|
||||
cache_file = Path("char_frequency.json")
|
||||
|
||||
# 如果缓存文件存在,直接加载
|
||||
if cache_file.exists():
|
||||
with open(cache_file, 'r', encoding='utf-8') as f:
|
||||
return json.load(f)
|
||||
|
||||
# 使用内置的词频文件
|
||||
char_freq = defaultdict(int)
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
|
||||
# 读取jieba的词典文件
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
word, freq = line.strip().split()[:2]
|
||||
# 对词中的每个字进行频率累加
|
||||
for char in word:
|
||||
if is_chinese_char(char):
|
||||
char_freq[char] += int(freq)
|
||||
|
||||
# 归一化频率值
|
||||
max_freq = max(char_freq.values())
|
||||
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
||||
|
||||
# 保存到缓存文件
|
||||
with open(cache_file, 'w', encoding='utf-8') as f:
|
||||
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
|
||||
|
||||
return normalized_freq
|
||||
|
||||
# 创建拼音到汉字的映射字典
|
||||
def create_pinyin_dict():
|
||||
"""
|
||||
创建拼音到汉字的映射字典
|
||||
"""
|
||||
# 常用汉字范围
|
||||
chars = [chr(i) for i in range(0x4e00, 0x9fff)]
|
||||
pinyin_dict = defaultdict(list)
|
||||
|
||||
# 为每个汉字建立拼音映射
|
||||
for char in chars:
|
||||
try:
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
pinyin_dict[py].append(char)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return pinyin_dict
|
||||
|
||||
def is_chinese_char(char):
|
||||
"""
|
||||
判断是否为汉字
|
||||
"""
|
||||
try:
|
||||
return '\u4e00' <= char <= '\u9fff'
|
||||
except:
|
||||
return False
|
||||
|
||||
def get_pinyin(sentence):
|
||||
"""
|
||||
将中文句子拆分成单个汉字并获取其拼音
|
||||
:param sentence: 输入的中文句子
|
||||
:return: 每个汉字及其拼音的列表
|
||||
"""
|
||||
# 将句子拆分成单个字符
|
||||
characters = list(sentence)
|
||||
|
||||
# 获取每个字符的拼音
|
||||
result = []
|
||||
for char in characters:
|
||||
# 跳过空格和非汉字字符
|
||||
if char.isspace() or not is_chinese_char(char):
|
||||
continue
|
||||
# 获取拼音(数字声调)
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
result.append((char, py))
|
||||
|
||||
return result
|
||||
|
||||
def get_homophone(char, py, pinyin_dict, char_frequency, min_freq=5):
|
||||
"""
|
||||
获取同音字,按照使用频率排序
|
||||
"""
|
||||
homophones = pinyin_dict[py]
|
||||
# 移除原字并过滤低频字
|
||||
if char in homophones:
|
||||
homophones.remove(char)
|
||||
|
||||
# 过滤掉低频字
|
||||
homophones = [h for h in homophones if char_frequency.get(h, 0) >= min_freq]
|
||||
|
||||
# 按照字频排序
|
||||
sorted_homophones = sorted(homophones,
|
||||
key=lambda x: char_frequency.get(x, 0),
|
||||
reverse=True)
|
||||
|
||||
# 只返回前10个同音字,避免输出过多
|
||||
return sorted_homophones[:10]
|
||||
|
||||
def get_similar_tone_pinyin(py):
|
||||
"""
|
||||
获取相似声调的拼音
|
||||
例如:'ni3' 可能返回 'ni2' 或 'ni4'
|
||||
处理特殊情况:
|
||||
1. 轻声(如 'de5' 或 'le')
|
||||
2. 非数字结尾的拼音
|
||||
"""
|
||||
# 检查拼音是否为空或无效
|
||||
if not py or len(py) < 1:
|
||||
return py
|
||||
class ChineseTypoGenerator:
|
||||
def __init__(self,
|
||||
error_rate=0.3,
|
||||
min_freq=5,
|
||||
tone_error_rate=0.2,
|
||||
word_replace_rate=0.3,
|
||||
max_freq_diff=200):
|
||||
"""
|
||||
初始化错别字生成器
|
||||
|
||||
# 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况
|
||||
if not py[-1].isdigit():
|
||||
# 为非数字结尾的拼音添加数字声调1
|
||||
return py + '1'
|
||||
|
||||
base = py[:-1] # 去掉声调
|
||||
tone = int(py[-1]) # 获取声调
|
||||
|
||||
# 处理轻声(通常用5表示)或无效声调
|
||||
if tone not in [1, 2, 3, 4]:
|
||||
return base + str(random.choice([1, 2, 3, 4]))
|
||||
|
||||
# 正常处理声调
|
||||
possible_tones = [1, 2, 3, 4]
|
||||
possible_tones.remove(tone) # 移除原声调
|
||||
new_tone = random.choice(possible_tones) # 随机选择一个新声调
|
||||
return base + str(new_tone)
|
||||
|
||||
def calculate_replacement_probability(orig_freq, target_freq, max_freq_diff=200):
|
||||
"""
|
||||
根据频率差计算替换概率
|
||||
频率差越大,概率越低
|
||||
:param orig_freq: 原字频率
|
||||
:param target_freq: 目标字频率
|
||||
:param max_freq_diff: 最大允许的频率差
|
||||
:return: 0-1之间的概率值
|
||||
"""
|
||||
if target_freq > orig_freq:
|
||||
return 1.0 # 如果替换字频率更高,保持原有概率
|
||||
|
||||
freq_diff = orig_freq - target_freq
|
||||
if freq_diff > max_freq_diff:
|
||||
return 0.0 # 频率差太大,不替换
|
||||
|
||||
# 使用指数衰减函数计算概率
|
||||
# 频率差为0时概率为1,频率差为max_freq_diff时概率接近0
|
||||
return math.exp(-3 * freq_diff / max_freq_diff)
|
||||
|
||||
def get_similar_frequency_chars(char, py, pinyin_dict, char_frequency, num_candidates=5, min_freq=5, tone_error_rate=0.2):
|
||||
"""
|
||||
获取与给定字频率相近的同音字,可能包含声调错误
|
||||
"""
|
||||
homophones = []
|
||||
|
||||
# 有20%的概率使用错误声调
|
||||
if random.random() < tone_error_rate:
|
||||
wrong_tone_py = get_similar_tone_pinyin(py)
|
||||
homophones.extend(pinyin_dict[wrong_tone_py])
|
||||
|
||||
# 添加正确声调的同音字
|
||||
homophones.extend(pinyin_dict[py])
|
||||
|
||||
if not homophones:
|
||||
return None
|
||||
参数:
|
||||
error_rate: 单字替换概率
|
||||
min_freq: 最小字频阈值
|
||||
tone_error_rate: 声调错误概率
|
||||
word_replace_rate: 整词替换概率
|
||||
max_freq_diff: 最大允许的频率差异
|
||||
"""
|
||||
self.error_rate = error_rate
|
||||
self.min_freq = min_freq
|
||||
self.tone_error_rate = tone_error_rate
|
||||
self.word_replace_rate = word_replace_rate
|
||||
self.max_freq_diff = max_freq_diff
|
||||
|
||||
# 获取原字的频率
|
||||
orig_freq = char_frequency.get(char, 0)
|
||||
# 加载数据
|
||||
print("正在加载汉字数据库,请稍候...")
|
||||
self.pinyin_dict = self._create_pinyin_dict()
|
||||
self.char_frequency = self._load_or_create_char_frequency()
|
||||
|
||||
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
||||
freq_diff = [(h, char_frequency.get(h, 0))
|
||||
for h in homophones
|
||||
if h != char and char_frequency.get(h, 0) >= min_freq]
|
||||
|
||||
if not freq_diff:
|
||||
return None
|
||||
|
||||
# 计算每个候选字的替换概率
|
||||
candidates_with_prob = []
|
||||
for h, freq in freq_diff:
|
||||
prob = calculate_replacement_probability(orig_freq, freq)
|
||||
if prob > 0: # 只保留有效概率的候选字
|
||||
candidates_with_prob.append((h, prob))
|
||||
|
||||
if not candidates_with_prob:
|
||||
return None
|
||||
|
||||
# 根据概率排序
|
||||
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 返回概率最高的几个字
|
||||
return [char for char, _ in candidates_with_prob[:num_candidates]]
|
||||
|
||||
def get_word_pinyin(word):
|
||||
"""
|
||||
获取词语的拼音列表
|
||||
"""
|
||||
return [py[0] for py in pinyin(word, style=Style.TONE3)]
|
||||
|
||||
def segment_sentence(sentence):
|
||||
"""
|
||||
使用jieba分词,返回词语列表
|
||||
"""
|
||||
return list(jieba.cut(sentence))
|
||||
|
||||
def get_word_homophones(word, pinyin_dict, char_frequency, min_freq=5):
|
||||
"""
|
||||
获取整个词的同音词,只返回高频的有意义词语
|
||||
:param word: 输入词语
|
||||
:param pinyin_dict: 拼音字典
|
||||
:param char_frequency: 字频字典
|
||||
:param min_freq: 最小频率阈值
|
||||
:return: 同音词列表
|
||||
"""
|
||||
if len(word) == 1:
|
||||
return []
|
||||
def _load_or_create_char_frequency(self):
|
||||
"""
|
||||
加载或创建汉字频率字典
|
||||
"""
|
||||
cache_file = Path("char_frequency.json")
|
||||
|
||||
# 获取词的拼音
|
||||
word_pinyin = get_word_pinyin(word)
|
||||
word_pinyin_str = ''.join(word_pinyin)
|
||||
|
||||
# 创建词语频率字典
|
||||
word_freq = defaultdict(float)
|
||||
|
||||
# 遍历所有可能的同音字组合
|
||||
candidates = []
|
||||
for py in word_pinyin:
|
||||
chars = pinyin_dict.get(py, [])
|
||||
if not chars:
|
||||
return []
|
||||
candidates.append(chars)
|
||||
|
||||
# 生成所有可能的组合
|
||||
import itertools
|
||||
all_combinations = itertools.product(*candidates)
|
||||
|
||||
# 获取jieba词典和词频信息
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
valid_words = {} # 改用字典存储词语及其频率
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
parts = line.strip().split()
|
||||
if len(parts) >= 2:
|
||||
word_text = parts[0]
|
||||
word_freq = float(parts[1]) # 获取词频
|
||||
valid_words[word_text] = word_freq
|
||||
|
||||
# 获取原词的词频作为参考
|
||||
original_word_freq = valid_words.get(word, 0)
|
||||
min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10%
|
||||
|
||||
# 过滤和计算频率
|
||||
homophones = []
|
||||
for combo in all_combinations:
|
||||
new_word = ''.join(combo)
|
||||
if new_word != word and new_word in valid_words:
|
||||
new_word_freq = valid_words[new_word]
|
||||
# 只保留词频达到阈值的词
|
||||
if new_word_freq >= min_word_freq:
|
||||
# 计算词的平均字频(考虑字频和词频)
|
||||
char_avg_freq = sum(char_frequency.get(c, 0) for c in new_word) / len(new_word)
|
||||
# 综合评分:结合词频和字频
|
||||
combined_score = (new_word_freq * 0.7 + char_avg_freq * 0.3)
|
||||
if combined_score >= min_freq:
|
||||
homophones.append((new_word, combined_score))
|
||||
|
||||
# 按综合分数排序并限制返回数量
|
||||
sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True)
|
||||
return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果
|
||||
|
||||
def create_typo_sentence(sentence, pinyin_dict, char_frequency, error_rate=0.5, min_freq=5, tone_error_rate=0.2, word_replace_rate=0.3):
|
||||
"""
|
||||
创建包含同音字错误的句子,支持词语级别和字级别的替换
|
||||
只使用高频的有意义词语进行替换
|
||||
"""
|
||||
result = []
|
||||
typo_info = []
|
||||
|
||||
# 分词
|
||||
words = segment_sentence(sentence)
|
||||
|
||||
for word in words:
|
||||
# 如果是标点符号或空格,直接添加
|
||||
if all(not is_chinese_char(c) for c in word):
|
||||
result.append(word)
|
||||
continue
|
||||
|
||||
# 获取词语的拼音
|
||||
word_pinyin = get_word_pinyin(word)
|
||||
# 如果缓存文件存在,直接加载
|
||||
if cache_file.exists():
|
||||
with open(cache_file, 'r', encoding='utf-8') as f:
|
||||
return json.load(f)
|
||||
|
||||
# 尝试整词替换
|
||||
if len(word) > 1 and random.random() < word_replace_rate:
|
||||
word_homophones = get_word_homophones(word, pinyin_dict, char_frequency, min_freq)
|
||||
if word_homophones:
|
||||
typo_word = random.choice(word_homophones)
|
||||
# 计算词的平均频率
|
||||
orig_freq = sum(char_frequency.get(c, 0) for c in word) / len(word)
|
||||
typo_freq = sum(char_frequency.get(c, 0) for c in typo_word) / len(typo_word)
|
||||
|
||||
# 添加到结果中
|
||||
result.append(typo_word)
|
||||
typo_info.append((word, typo_word,
|
||||
' '.join(word_pinyin),
|
||||
' '.join(get_word_pinyin(typo_word)),
|
||||
orig_freq, typo_freq))
|
||||
# 使用内置的词频文件
|
||||
char_freq = defaultdict(int)
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
|
||||
# 读取jieba的词典文件
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
word, freq = line.strip().split()[:2]
|
||||
# 对词中的每个字进行频率累加
|
||||
for char in word:
|
||||
if self._is_chinese_char(char):
|
||||
char_freq[char] += int(freq)
|
||||
|
||||
# 归一化频率值
|
||||
max_freq = max(char_freq.values())
|
||||
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
||||
|
||||
# 保存到缓存文件
|
||||
with open(cache_file, 'w', encoding='utf-8') as f:
|
||||
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
|
||||
|
||||
return normalized_freq
|
||||
|
||||
def _create_pinyin_dict(self):
|
||||
"""
|
||||
创建拼音到汉字的映射字典
|
||||
"""
|
||||
# 常用汉字范围
|
||||
chars = [chr(i) for i in range(0x4e00, 0x9fff)]
|
||||
pinyin_dict = defaultdict(list)
|
||||
|
||||
# 为每个汉字建立拼音映射
|
||||
for char in chars:
|
||||
try:
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
pinyin_dict[py].append(char)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
# 如果不进行整词替换,则进行单字替换
|
||||
return pinyin_dict
|
||||
|
||||
def _is_chinese_char(self, char):
|
||||
"""
|
||||
判断是否为汉字
|
||||
"""
|
||||
try:
|
||||
return '\u4e00' <= char <= '\u9fff'
|
||||
except:
|
||||
return False
|
||||
|
||||
def _get_pinyin(self, sentence):
|
||||
"""
|
||||
将中文句子拆分成单个汉字并获取其拼音
|
||||
"""
|
||||
# 将句子拆分成单个字符
|
||||
characters = list(sentence)
|
||||
|
||||
# 获取每个字符的拼音
|
||||
result = []
|
||||
for char in characters:
|
||||
# 跳过空格和非汉字字符
|
||||
if char.isspace() or not self._is_chinese_char(char):
|
||||
continue
|
||||
# 获取拼音(数字声调)
|
||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||
result.append((char, py))
|
||||
|
||||
return result
|
||||
|
||||
def _get_similar_tone_pinyin(self, py):
|
||||
"""
|
||||
获取相似声调的拼音
|
||||
"""
|
||||
# 检查拼音是否为空或无效
|
||||
if not py or len(py) < 1:
|
||||
return py
|
||||
|
||||
# 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况
|
||||
if not py[-1].isdigit():
|
||||
# 为非数字结尾的拼音添加数字声调1
|
||||
return py + '1'
|
||||
|
||||
base = py[:-1] # 去掉声调
|
||||
tone = int(py[-1]) # 获取声调
|
||||
|
||||
# 处理轻声(通常用5表示)或无效声调
|
||||
if tone not in [1, 2, 3, 4]:
|
||||
return base + str(random.choice([1, 2, 3, 4]))
|
||||
|
||||
# 正常处理声调
|
||||
possible_tones = [1, 2, 3, 4]
|
||||
possible_tones.remove(tone) # 移除原声调
|
||||
new_tone = random.choice(possible_tones) # 随机选择一个新声调
|
||||
return base + str(new_tone)
|
||||
|
||||
def _calculate_replacement_probability(self, orig_freq, target_freq):
|
||||
"""
|
||||
根据频率差计算替换概率
|
||||
"""
|
||||
if target_freq > orig_freq:
|
||||
return 1.0 # 如果替换字频率更高,保持原有概率
|
||||
|
||||
freq_diff = orig_freq - target_freq
|
||||
if freq_diff > self.max_freq_diff:
|
||||
return 0.0 # 频率差太大,不替换
|
||||
|
||||
# 使用指数衰减函数计算概率
|
||||
# 频率差为0时概率为1,频率差为max_freq_diff时概率接近0
|
||||
return math.exp(-3 * freq_diff / self.max_freq_diff)
|
||||
|
||||
def _get_similar_frequency_chars(self, char, py, num_candidates=5):
|
||||
"""
|
||||
获取与给定字频率相近的同音字,可能包含声调错误
|
||||
"""
|
||||
homophones = []
|
||||
|
||||
# 有一定概率使用错误声调
|
||||
if random.random() < self.tone_error_rate:
|
||||
wrong_tone_py = self._get_similar_tone_pinyin(py)
|
||||
homophones.extend(self.pinyin_dict[wrong_tone_py])
|
||||
|
||||
# 添加正确声调的同音字
|
||||
homophones.extend(self.pinyin_dict[py])
|
||||
|
||||
if not homophones:
|
||||
return None
|
||||
|
||||
# 获取原字的频率
|
||||
orig_freq = self.char_frequency.get(char, 0)
|
||||
|
||||
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
||||
freq_diff = [(h, self.char_frequency.get(h, 0))
|
||||
for h in homophones
|
||||
if h != char and self.char_frequency.get(h, 0) >= self.min_freq]
|
||||
|
||||
if not freq_diff:
|
||||
return None
|
||||
|
||||
# 计算每个候选字的替换概率
|
||||
candidates_with_prob = []
|
||||
for h, freq in freq_diff:
|
||||
prob = self._calculate_replacement_probability(orig_freq, freq)
|
||||
if prob > 0: # 只保留有效概率的候选字
|
||||
candidates_with_prob.append((h, prob))
|
||||
|
||||
if not candidates_with_prob:
|
||||
return None
|
||||
|
||||
# 根据概率排序
|
||||
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 返回概率最高的几个字
|
||||
return [char for char, _ in candidates_with_prob[:num_candidates]]
|
||||
|
||||
def _get_word_pinyin(self, word):
|
||||
"""
|
||||
获取词语的拼音列表
|
||||
"""
|
||||
return [py[0] for py in pinyin(word, style=Style.TONE3)]
|
||||
|
||||
def _segment_sentence(self, sentence):
|
||||
"""
|
||||
使用jieba分词,返回词语列表
|
||||
"""
|
||||
return list(jieba.cut(sentence))
|
||||
|
||||
def _get_word_homophones(self, word):
|
||||
"""
|
||||
获取整个词的同音词,只返回高频的有意义词语
|
||||
"""
|
||||
if len(word) == 1:
|
||||
char = word
|
||||
py = word_pinyin[0]
|
||||
if random.random() < error_rate:
|
||||
similar_chars = get_similar_frequency_chars(char, py, pinyin_dict, char_frequency,
|
||||
min_freq=min_freq, tone_error_rate=tone_error_rate)
|
||||
if similar_chars:
|
||||
typo_char = random.choice(similar_chars)
|
||||
typo_freq = char_frequency.get(typo_char, 0)
|
||||
orig_freq = char_frequency.get(char, 0)
|
||||
replace_prob = calculate_replacement_probability(orig_freq, typo_freq)
|
||||
if random.random() < replace_prob:
|
||||
result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
continue
|
||||
result.append(char)
|
||||
else:
|
||||
# 处理多字词的单字替换
|
||||
word_result = []
|
||||
for i, (char, py) in enumerate(zip(word, word_pinyin)):
|
||||
# 词中的字替换概率降低
|
||||
word_error_rate = error_rate * (0.7 ** (len(word) - 1))
|
||||
return []
|
||||
|
||||
# 获取词的拼音
|
||||
word_pinyin = self._get_word_pinyin(word)
|
||||
|
||||
# 遍历所有可能的同音字组合
|
||||
candidates = []
|
||||
for py in word_pinyin:
|
||||
chars = self.pinyin_dict.get(py, [])
|
||||
if not chars:
|
||||
return []
|
||||
candidates.append(chars)
|
||||
|
||||
# 生成所有可能的组合
|
||||
import itertools
|
||||
all_combinations = itertools.product(*candidates)
|
||||
|
||||
# 获取jieba词典和词频信息
|
||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||
valid_words = {} # 改用字典存储词语及其频率
|
||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
parts = line.strip().split()
|
||||
if len(parts) >= 2:
|
||||
word_text = parts[0]
|
||||
word_freq = float(parts[1]) # 获取词频
|
||||
valid_words[word_text] = word_freq
|
||||
|
||||
# 获取原词的词频作为参考
|
||||
original_word_freq = valid_words.get(word, 0)
|
||||
min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10%
|
||||
|
||||
# 过滤和计算频率
|
||||
homophones = []
|
||||
for combo in all_combinations:
|
||||
new_word = ''.join(combo)
|
||||
if new_word != word and new_word in valid_words:
|
||||
new_word_freq = valid_words[new_word]
|
||||
# 只保留词频达到阈值的词
|
||||
if new_word_freq >= min_word_freq:
|
||||
# 计算词的平均字频(考虑字频和词频)
|
||||
char_avg_freq = sum(self.char_frequency.get(c, 0) for c in new_word) / len(new_word)
|
||||
# 综合评分:结合词频和字频
|
||||
combined_score = (new_word_freq * 0.7 + char_avg_freq * 0.3)
|
||||
if combined_score >= self.min_freq:
|
||||
homophones.append((new_word, combined_score))
|
||||
|
||||
# 按综合分数排序并限制返回数量
|
||||
sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True)
|
||||
return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果
|
||||
|
||||
def create_typo_sentence(self, sentence):
|
||||
"""
|
||||
创建包含同音字错误的句子,支持词语级别和字级别的替换
|
||||
|
||||
参数:
|
||||
sentence: 输入的中文句子
|
||||
|
||||
返回:
|
||||
typo_sentence: 包含错别字的句子
|
||||
typo_info: 错别字信息列表
|
||||
"""
|
||||
result = []
|
||||
typo_info = []
|
||||
|
||||
# 分词
|
||||
words = self._segment_sentence(sentence)
|
||||
|
||||
for word in words:
|
||||
# 如果是标点符号或空格,直接添加
|
||||
if all(not self._is_chinese_char(c) for c in word):
|
||||
result.append(word)
|
||||
continue
|
||||
|
||||
if random.random() < word_error_rate:
|
||||
similar_chars = get_similar_frequency_chars(char, py, pinyin_dict, char_frequency,
|
||||
min_freq=min_freq, tone_error_rate=tone_error_rate)
|
||||
# 获取词语的拼音
|
||||
word_pinyin = self._get_word_pinyin(word)
|
||||
|
||||
# 尝试整词替换
|
||||
if len(word) > 1 and random.random() < self.word_replace_rate:
|
||||
word_homophones = self._get_word_homophones(word)
|
||||
if word_homophones:
|
||||
typo_word = random.choice(word_homophones)
|
||||
# 计算词的平均频率
|
||||
orig_freq = sum(self.char_frequency.get(c, 0) for c in word) / len(word)
|
||||
typo_freq = sum(self.char_frequency.get(c, 0) for c in typo_word) / len(typo_word)
|
||||
|
||||
# 添加到结果中
|
||||
result.append(typo_word)
|
||||
typo_info.append((word, typo_word,
|
||||
' '.join(word_pinyin),
|
||||
' '.join(self._get_word_pinyin(typo_word)),
|
||||
orig_freq, typo_freq))
|
||||
continue
|
||||
|
||||
# 如果不进行整词替换,则进行单字替换
|
||||
if len(word) == 1:
|
||||
char = word
|
||||
py = word_pinyin[0]
|
||||
if random.random() < self.error_rate:
|
||||
similar_chars = self._get_similar_frequency_chars(char, py)
|
||||
if similar_chars:
|
||||
typo_char = random.choice(similar_chars)
|
||||
typo_freq = char_frequency.get(typo_char, 0)
|
||||
orig_freq = char_frequency.get(char, 0)
|
||||
replace_prob = calculate_replacement_probability(orig_freq, typo_freq)
|
||||
typo_freq = self.char_frequency.get(typo_char, 0)
|
||||
orig_freq = self.char_frequency.get(char, 0)
|
||||
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
|
||||
if random.random() < replace_prob:
|
||||
word_result.append(typo_char)
|
||||
result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
continue
|
||||
word_result.append(char)
|
||||
result.append(''.join(word_result))
|
||||
|
||||
return ''.join(result), typo_info
|
||||
result.append(char)
|
||||
else:
|
||||
# 处理多字词的单字替换
|
||||
word_result = []
|
||||
for i, (char, py) in enumerate(zip(word, word_pinyin)):
|
||||
# 词中的字替换概率降低
|
||||
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))
|
||||
|
||||
if random.random() < word_error_rate:
|
||||
similar_chars = self._get_similar_frequency_chars(char, py)
|
||||
if similar_chars:
|
||||
typo_char = random.choice(similar_chars)
|
||||
typo_freq = self.char_frequency.get(typo_char, 0)
|
||||
orig_freq = self.char_frequency.get(char, 0)
|
||||
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
|
||||
if random.random() < replace_prob:
|
||||
word_result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
continue
|
||||
word_result.append(char)
|
||||
result.append(''.join(word_result))
|
||||
|
||||
return ''.join(result), typo_info
|
||||
|
||||
def format_frequency(freq):
|
||||
"""
|
||||
格式化频率显示
|
||||
"""
|
||||
return f"{freq:.2f}"
|
||||
|
||||
def main():
|
||||
# 记录开始时间
|
||||
start_time = time.time()
|
||||
|
||||
# 首先创建拼音字典和加载字频统计
|
||||
print("正在加载汉字数据库,请稍候...")
|
||||
pinyin_dict = create_pinyin_dict()
|
||||
char_frequency = load_or_create_char_frequency()
|
||||
|
||||
# 获取用户输入
|
||||
sentence = input("请输入中文句子:")
|
||||
|
||||
# 创建包含错别字的句子
|
||||
typo_sentence, typo_info = create_typo_sentence(sentence, pinyin_dict, char_frequency,
|
||||
error_rate=0.3, min_freq=5,
|
||||
tone_error_rate=0.2, word_replace_rate=0.3)
|
||||
|
||||
# 打印结果
|
||||
print("\n原句:", sentence)
|
||||
print("错字版:", typo_sentence)
|
||||
|
||||
if typo_info:
|
||||
print("\n错别字信息:")
|
||||
def format_typo_info(self, typo_info):
|
||||
"""
|
||||
格式化错别字信息
|
||||
|
||||
参数:
|
||||
typo_info: 错别字信息列表
|
||||
|
||||
返回:
|
||||
格式化后的错别字信息字符串
|
||||
"""
|
||||
if not typo_info:
|
||||
return "未生成错别字"
|
||||
|
||||
result = []
|
||||
for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info:
|
||||
# 判断是否为词语替换
|
||||
is_word = ' ' in orig_py
|
||||
@@ -459,25 +380,53 @@ def main():
|
||||
tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1]
|
||||
error_type = "声调错误" if tone_error else "同音字替换"
|
||||
|
||||
print(f"原文:{orig}({orig_py}) [频率:{format_frequency(orig_freq)}] -> "
|
||||
f"替换:{typo}({typo_py}) [频率:{format_frequency(typo_freq)}] [{error_type}]")
|
||||
result.append(f"原文:{orig}({orig_py}) [频率:{orig_freq:.2f}] -> "
|
||||
f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]")
|
||||
|
||||
return "\n".join(result)
|
||||
|
||||
# 获取拼音结果
|
||||
result = get_pinyin(sentence)
|
||||
def set_params(self, **kwargs):
|
||||
"""
|
||||
设置参数
|
||||
|
||||
可设置参数:
|
||||
error_rate: 单字替换概率
|
||||
min_freq: 最小字频阈值
|
||||
tone_error_rate: 声调错误概率
|
||||
word_replace_rate: 整词替换概率
|
||||
max_freq_diff: 最大允许的频率差异
|
||||
"""
|
||||
for key, value in kwargs.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
print(f"参数 {key} 已设置为 {value}")
|
||||
else:
|
||||
print(f"警告: 参数 {key} 不存在")
|
||||
|
||||
def main():
|
||||
# 创建错别字生成器实例
|
||||
typo_generator = ChineseTypoGenerator(
|
||||
error_rate=0.03,
|
||||
min_freq=7,
|
||||
tone_error_rate=0.02,
|
||||
word_replace_rate=0.3
|
||||
)
|
||||
|
||||
# 打印完整拼音
|
||||
print("\n完整拼音:")
|
||||
print(" ".join(py for _, py in result))
|
||||
# 获取用户输入
|
||||
sentence = input("请输入中文句子:")
|
||||
|
||||
# 打印词语分析
|
||||
print("\n词语分析:")
|
||||
words = segment_sentence(sentence)
|
||||
for word in words:
|
||||
if any(is_chinese_char(c) for c in word):
|
||||
word_pinyin = get_word_pinyin(word)
|
||||
print(f"词语:{word}")
|
||||
print(f"拼音:{' '.join(word_pinyin)}")
|
||||
print("---")
|
||||
# 创建包含错别字的句子
|
||||
start_time = time.time()
|
||||
typo_sentence, typo_info = typo_generator.create_typo_sentence(sentence)
|
||||
|
||||
# 打印结果
|
||||
print("\n原句:", sentence)
|
||||
print("错字版:", typo_sentence)
|
||||
|
||||
# 打印错别字信息
|
||||
if typo_info:
|
||||
print("\n错别字信息:")
|
||||
print(typo_generator.format_typo_info(typo_info))
|
||||
|
||||
# 计算并打印总耗时
|
||||
end_time = time.time()
|
||||
|
||||
@@ -5,7 +5,7 @@ PORT=8080
|
||||
PLUGINS=["src2.plugins.chat"]
|
||||
|
||||
# 默认配置
|
||||
MONGODB_HOST=127.0.0.1
|
||||
MONGODB_HOST=127.0.0.1 # 如果工作在Docker下,请改成 MONGODB_HOST=mongodb
|
||||
MONGODB_PORT=27017
|
||||
DATABASE_NAME=MegBot
|
||||
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
import tomli
|
||||
import tomli_w
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
import os
|
||||
|
||||
import tomli
|
||||
import tomli_w
|
||||
|
||||
|
||||
def sync_configs():
|
||||
# 读取两个配置文件
|
||||
143
template/bot_config_template.toml
Normal file
143
template/bot_config_template.toml
Normal file
@@ -0,0 +1,143 @@
|
||||
[bot]
|
||||
qq = 123
|
||||
nickname = "麦麦"
|
||||
|
||||
[personality]
|
||||
prompt_personality = [
|
||||
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧", # 贴吧人格
|
||||
"是一个女大学生,你有黑色头发,你会刷小红书", # 小红书人格
|
||||
"是一个女大学生,你会刷b站,对ACG文化感兴趣" # b站人格
|
||||
]
|
||||
personality_1_probability = 0.6 # 第一种人格出现概率
|
||||
personality_2_probability = 0.3 # 第二种人格出现概率
|
||||
personality_3_probability = 0.1 # 第三种人格出现概率,请确保三个概率相加等于1
|
||||
prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
[message]
|
||||
min_text_length = 2 # 与麦麦聊天时麦麦只会回答文本大于等于此数的消息
|
||||
max_context_size = 15 # 麦麦获得的上文数量
|
||||
emoji_chance = 0.2 # 麦麦使用表情包的概率
|
||||
thinking_timeout = 10 # 麦麦思考时间
|
||||
|
||||
response_willing_amplifier = 1 # 麦麦回复意愿放大系数,一般为1
|
||||
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
|
||||
down_frequency_rate = 3.5 # 降低回复频率的群组回复意愿降低系数
|
||||
ban_words = [
|
||||
# "403","张三"
|
||||
]
|
||||
|
||||
[emoji]
|
||||
check_interval = 120 # 检查表情包的时间间隔
|
||||
register_interval = 10 # 注册表情包的时间间隔
|
||||
auto_save = true # 自动偷表情包
|
||||
enable_check = false # 是否启用表情包过滤
|
||||
check_prompt = "符合公序良俗" # 表情包过滤要求
|
||||
|
||||
[cq_code]
|
||||
enable_pic_translate = false
|
||||
|
||||
[response]
|
||||
model_r1_probability = 0.8 # 麦麦回答时选择主要回复模型1 模型的概率
|
||||
model_v3_probability = 0.1 # 麦麦回答时选择次要回复模型2 模型的概率
|
||||
model_r1_distill_probability = 0.1 # 麦麦回答时选择次要回复模型3 模型的概率
|
||||
max_response_length = 1024 # 麦麦回答的最大token数
|
||||
|
||||
[memory]
|
||||
build_memory_interval = 300 # 记忆构建间隔 单位秒
|
||||
forget_memory_interval = 300 # 记忆遗忘间隔 单位秒
|
||||
|
||||
[mood]
|
||||
mood_update_interval = 1.0 # 情绪更新间隔 单位秒
|
||||
mood_decay_rate = 0.95 # 情绪衰减率
|
||||
mood_intensity_factor = 1.0 # 情绪强度因子
|
||||
|
||||
[others]
|
||||
enable_advance_output = true # 是否启用高级输出
|
||||
enable_kuuki_read = true # 是否启用读空气功能
|
||||
|
||||
[groups]
|
||||
talk_allowed = [
|
||||
123,
|
||||
123,
|
||||
] #可以回复消息的群
|
||||
talk_frequency_down = [] #降低回复频率的群
|
||||
ban_user_id = [] #禁止回复消息的QQ号
|
||||
|
||||
|
||||
#V3
|
||||
#name = "deepseek-chat"
|
||||
#base_url = "DEEP_SEEK_BASE_URL"
|
||||
#key = "DEEP_SEEK_KEY"
|
||||
|
||||
#R1
|
||||
#name = "deepseek-reasoner"
|
||||
#base_url = "DEEP_SEEK_BASE_URL"
|
||||
#key = "DEEP_SEEK_KEY"
|
||||
|
||||
#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env.prod自定义的宏,使用自定义模型则选择定位相似的模型自己填写
|
||||
|
||||
#推理模型:
|
||||
|
||||
[model.llm_reasoning] #回复模型1 主要回复模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
pri_in = 0 #模型的输入价格(非必填,可以记录消耗)
|
||||
pri_out = 0 #模型的输出价格(非必填,可以记录消耗)
|
||||
|
||||
[model.llm_reasoning_minor] #回复模型3 次要回复模型
|
||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
#非推理模型
|
||||
|
||||
[model.llm_normal] #V3 回复模型2 次要回复模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_normal_minor] #V2.5
|
||||
name = "deepseek-ai/DeepSeek-V2.5"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_emotion_judge] #主题判断 0.7/m
|
||||
name = "Qwen/Qwen2.5-14B-Instruct"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_topic_judge] #主题判断:建议使用qwen2.5 7b
|
||||
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.llm_summary_by_topic] #建议使用qwen2.5 32b 及以上
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
pri_in = 0
|
||||
pri_out = 0
|
||||
|
||||
[model.moderation] #内容审核 未启用
|
||||
name = ""
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
pri_in = 0
|
||||
pri_out = 0
|
||||
|
||||
# 识图模型
|
||||
|
||||
[model.vlm] #图像识别 0.35/m
|
||||
name = "Pro/Qwen/Qwen2-VL-7B-Instruct"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
|
||||
|
||||
|
||||
#嵌入模型
|
||||
|
||||
[model.embedding] #嵌入
|
||||
name = "BAAI/bge-m3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
Reference in New Issue
Block a user