Files
Mofox-Core/src/plugins/chat/llm_generator.py
2025-03-08 16:10:55 +08:00

197 lines
8.4 KiB
Python

import random
import time
from typing import List, Optional, Tuple, Union
from nonebot import get_driver
from ...common.database import Database
from ..models.utils_model import LLM_request
from .config import global_config
from .message import Message
from .prompt_builder import prompt_builder
from .relationship_manager import relationship_manager
from .utils import process_llm_response
driver = get_driver()
config = driver.config
class ResponseGenerator:
def __init__(self):
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7,max_tokens=1000,stream=True)
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7,max_tokens=1000)
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7,max_tokens=1000)
self.model_v25 = LLM_request(model=global_config.llm_normal_minor, temperature=0.7,max_tokens=1000)
self.db = Database.get_instance()
self.current_model_type = 'r1' # 默认使用 R1
async def generate_response(self, message: Message) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型
rand = random.random()
if rand < global_config.MODEL_R1_PROBABILITY:
self.current_model_type = 'r1'
current_model = self.model_r1
elif rand < global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY:
self.current_model_type = 'v3'
current_model = self.model_v3
else:
self.current_model_type = 'r1_distill'
current_model = self.model_r1_distill
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
model_response = await self._generate_response_with_model(message, current_model)
raw_content=model_response
if model_response:
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
model_response = await self._process_response(model_response)
if model_response:
return model_response ,raw_content
return None,raw_content
async def _generate_response_with_model(self, message: Message, model: LLM_request) -> Optional[str]:
"""使用指定的模型生成回复"""
sender_name = message.user_nickname or f"用户{message.user_id}"
if message.user_cardname:
sender_name=f"[({message.user_id}){message.user_nickname}]{message.user_cardname}"
# 获取关系值
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value if relationship_manager.get_relationship(message.user_id) else 0.0
if relationship_value != 0.0:
# print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
pass
# 构建prompt
prompt, prompt_check = await prompt_builder._build_prompt(
message_txt=message.processed_plain_text,
sender_name=sender_name,
relationship_value=relationship_value,
group_id=message.group_id
)
# 读空气模块 简化逻辑,先停用
# if global_config.enable_kuuki_read:
# content_check, reasoning_content_check = await self.model_v3.generate_response(prompt_check)
# print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}")
# if 'yes' not in content_check.lower() and random.random() < 0.3:
# self._save_to_db(
# message=message,
# sender_name=sender_name,
# prompt=prompt,
# prompt_check=prompt_check,
# content="",
# content_check=content_check,
# reasoning_content="",
# reasoning_content_check=reasoning_content_check
# )
# return None
# 生成回复
try:
content, reasoning_content = await model.generate_response(prompt)
except Exception as e:
print(f"生成回复时出错: {e}")
return None
# 保存到数据库
self._save_to_db(
message=message,
sender_name=sender_name,
prompt=prompt,
prompt_check=prompt_check,
content=content,
# content_check=content_check if global_config.enable_kuuki_read else "",
reasoning_content=reasoning_content,
# reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
)
return content
# def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
# content: str, content_check: str, reasoning_content: str, reasoning_content_check: str):
def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
content: str, reasoning_content: str,):
"""保存对话记录到数据库"""
self.db.db.reasoning_logs.insert_one({
'time': time.time(),
'group_id': message.group_id,
'user': sender_name,
'message': message.processed_plain_text,
'model': self.current_model_type,
# 'reasoning_check': reasoning_content_check,
# 'response_check': content_check,
'reasoning': reasoning_content,
'response': content,
'prompt': prompt,
'prompt_check': prompt_check
})
async def _get_emotion_tags(self, content: str) -> List[str]:
"""提取情感标签"""
try:
prompt = f'''请从以下内容中,从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签并输出
只输出标签就好,不要输出其他内容:
内容:{content}
输出:
'''
content, _ = await self.model_v25.generate_response(prompt)
content=content.strip()
if content in ['happy','angry','sad','surprised','disgusted','fearful','neutral']:
return [content]
else:
return ["neutral"]
except Exception as e:
print(f"获取情感标签时出错: {e}")
return ["neutral"]
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
"""处理响应内容,返回处理后的内容和情感标签"""
if not content:
return None, []
processed_response = process_llm_response(content)
return processed_response
class InitiativeMessageGenerate:
def __init__(self):
self.db = Database.get_instance()
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7)
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7)
self.model_r1_distill = LLM_request(
model=global_config.llm_reasoning_minor, temperature=0.7
)
def gen_response(self, message: Message):
topic_select_prompt, dots_for_select, prompt_template = (
prompt_builder._build_initiative_prompt_select(message.group_id)
)
content_select, reasoning = self.model_v3.generate_response(topic_select_prompt)
print(f"[DEBUG] {content_select} {reasoning}")
topics_list = [dot[0] for dot in dots_for_select]
if content_select:
if content_select in topics_list:
select_dot = dots_for_select[topics_list.index(content_select)]
else:
return None
else:
return None
prompt_check, memory = prompt_builder._build_initiative_prompt_check(
select_dot[1], prompt_template
)
content_check, reasoning_check = self.model_v3.generate_response(prompt_check)
print(f"[DEBUG] {content_check} {reasoning_check}")
if "yes" not in content_check.lower():
return None
prompt = prompt_builder._build_initiative_prompt(
select_dot, prompt_template, memory
)
content, reasoning = self.model_r1.generate_response_async(prompt)
print(f"[DEBUG] {content} {reasoning}")
return content