Merge branch 'MaiM-with-u:dev' into dev

This commit is contained in:
infinitycat
2025-05-01 00:06:12 +08:00
committed by GitHub
47 changed files with 897 additions and 662 deletions

View File

@@ -61,7 +61,7 @@
### 📢 版本信息
**最新版本: v0.6.2** ([查看更新日志](changelogs/changelog.md))
**最新版本: v0.6.3** ([查看更新日志](changelogs/changelog.md))
> [!WARNING]
> 请阅读教程后更新!!!!!!!
> 请阅读教程后更新!!!!!!!
@@ -110,19 +110,20 @@
- [🚀 最新版本部署教程](https://docs.mai-mai.org/manual/deployment/mmc_deploy_windows.html) - 基于MaiCore的新版本部署方式与旧版本不兼容
## 🎯 功能介绍
## 🎯 0.6.3 功能介绍
| 模块 | 主要功能 | 特点 |
|----------|------------------------------------------------------------------|-------|
| 💬 聊天系统 | • 心流/推理聊天<br>• 关键词主动发言<br>• 多模型支持<br>• 动态prompt构建<br>• 私聊功能(PFC) | 拟人化交互 |
| 🧠 心流系统 | • 实时思考生成<br>• 自动启停机制<br>• 日程系统联动<br>工具调用能力 | 智能化决策 |
| 🧠 记忆系统 | • 优化记忆抽取<br>• 海马体记忆机制<br>• 聊天记录概括 | 持久化记忆 |
| 😊 表情系统 | • 情绪匹配发送<br>• GIF支持<br>• 自动收集与审查 | 丰富表达 |
| 💬 聊天系统 | • **统一调控不同回复逻辑**<br>• 智能交互模式 (普通聊天/专注聊天)<br>• 关键词主动发言<br>• 多模型支持<br>• 动态prompt构建<br>• 私聊功能(PFC)增强 | 拟人化交互 |
| 🧠 心流系统 | • 实时思考生成<br> **智能状态管理**<br>**概率回复机制**<br> 自动启停机制<br>• 日程系统联动<br>**上下文感知工具调用** | 智能化决策 |
| 🧠 记忆系统 | • **记忆整合与提取**<br>• 海马体记忆机制<br>• 聊天记录概括 | 持久化记忆 |
| 😊 表情系统 | • **全新表情包系统**<br>**优化选择逻辑**<br> 情绪匹配发送<br>• GIF支持<br>• 自动收集与审查 | 丰富表达 |
| 📅 日程系统 | • 动态日程生成<br>• 自定义想象力<br>• 思维流联动 | 智能规划 |
| 👥 关系系统 | • 关系管理优化<br>• 丰富接口支持<br>• 个性化交互 | 深度社交 |
| 👥 关系系统 | • **工具调用动态更新**<br> 关系管理优化<br>• 丰富接口支持<br>• 个性化交互 | 深度社交 |
| 📊 统计系统 | • 使用数据统计<br>• LLM调用记录<br>• 实时控制台显示 | 数据可视 |
| 🔧 系统功能 | • 优雅关闭机制<br>• 自动数据保存<br>异常处理完善 | 稳定可靠 |
| 🛠️ 工具系统 | • 知识获取工具<br>• 自动注册机制<br>• 多工具支持 | 扩展功能 |
| 🛠️ 工具系统 | • **LPMM知识库集成**<br>**上下文感知调用**<br>• 知识获取工具<br>• 自动注册机制<br>多工具支持 | 扩展功能 |
| 📚 **知识库(LPMM)** | • **全新LPMM系统**<br>**强大的信息检索能力** | 知识增强 |
| ✨ **昵称系统** | • **自动为群友取昵称**<br>**降低认错人概率** (早期阶段) | 身份识别 |
## 📐 项目架构
@@ -142,18 +143,6 @@ graph TD
E --> M[情绪识别]
```
## 开发计划TODOLIST
- 人格功能WIP
- 对特定对象的侧写功能
- 图片发送转发功能WIP
- 幽默和meme功能WIP
- 兼容gif的解析和保存
- 小程序转发链接解析
- 修复已知bug
- 自动生成的回复逻辑,例如自生成的回复方向,回复风格
## ✍如何给本项目报告BUG/提交建议/做贡献
MaiCore是一个开源项目我们非常欢迎你的参与。你的贡献无论是提交bug报告、功能需求还是代码pr都对项目非常宝贵。我们非常感谢你的支持🎉 但无序的讨论会降低沟通效率,进而影响问题的解决速度,因此在提交任何贡献前,请务必先阅读本项目的[贡献指南](depends-data/CONTRIBUTE.md)(待补完)

View File

@@ -33,7 +33,7 @@
- 调整了部分配置项的默认值
- 调整了配置项的顺序,将 `groups` 配置项移到了更靠前的位置
-`message` 配置项中:
- 新增了 `max_response_length` 参数
- 新增了 `model_max_output_length` 参数
-`willing` 配置项中新增了 `emoji_response_penalty` 参数
-`personality` 配置项中的 `prompt_schedule` 重命名为 `prompt_schedule_gen`

View File

@@ -344,9 +344,6 @@ class InterestMonitorApp:
self.stream_last_active[stream_id] = subflow_entry.get(
"chat_state_changed_time"
) # 存储原始时间戳
self.stream_last_interaction[stream_id] = subflow_entry.get(
"last_interaction_time"
) # 存储原始时间戳
# 添加数据点 (使用顶层时间戳)
new_stream_history[stream_id].append((entry_timestamp, interest_level_float))

View File

@@ -47,7 +47,7 @@ class BotConfig:
MAX_CONTEXT_SIZE: int # 上下文最大消息数
emoji_chance: float # 发送表情包的基础概率
thinking_timeout: int # 思考时间
max_response_length: int # 最大回复长度
model_max_output_length: int # 最大回复长度
message_buffer: bool # 消息缓冲器
ban_words: set
@@ -132,7 +132,7 @@ class BotConfig:
# llm_reasoning_minor: Dict[str, str]
llm_normal: Dict[str, str] # LLM普通
llm_topic_judge: Dict[str, str] # LLM话题判断
llm_summary_by_topic: Dict[str, str] # LLM话题总结
llm_summary: Dict[str, str] # LLM话题总结
llm_emotion_judge: Dict[str, str] # LLM情感判断
embedding: Dict[str, str] # 嵌入
vlm: Dict[str, str] # VLM

View File

@@ -621,22 +621,22 @@ CHAT_IMAGE_STYLE_CONFIG = {
},
}
# 兴趣log
INTEREST_STYLE_CONFIG = {
# HFC log
HFC_STYLE_CONFIG = {
"advanced": {
"console_format": (
"<white>{time:YYYY-MM-DD HH:mm:ss}</white> | "
"<level>{level: <8}</level> | "
"<light-yellow>兴趣</light-yellow> | "
"<light-green>专注聊天</light-green> | "
"<level>{message}</level>"
),
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 兴趣 | {message}",
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 专注聊天 | {message}",
},
"simple": {
"console_format": (
"<level>{time:MM-DD HH:mm}</level> | <light-green>兴趣</light-green> | <light-green>{message}</light-green>"
"<level>{time:MM-DD HH:mm}</level> | <light-green>专注聊天</light-green> | <light-green>{message}</light-green>"
),
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 兴趣 | {message}",
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 专注聊天 | {message}",
},
}
@@ -847,7 +847,7 @@ CONFIG_STYLE_CONFIG = CONFIG_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else CONFIG
TOOL_USE_STYLE_CONFIG = TOOL_USE_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TOOL_USE_STYLE_CONFIG["advanced"]
PFC_STYLE_CONFIG = PFC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else PFC_STYLE_CONFIG["advanced"]
LPMM_STYLE_CONFIG = LPMM_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else LPMM_STYLE_CONFIG["advanced"]
INTEREST_STYLE_CONFIG = INTEREST_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else INTEREST_STYLE_CONFIG["advanced"]
HFC_STYLE_CONFIG = HFC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else HFC_STYLE_CONFIG["advanced"]
TIANYI_STYLE_CONFIG = TIANYI_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TIANYI_STYLE_CONFIG["advanced"]
MODEL_UTILS_STYLE_CONFIG = MODEL_UTILS_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else MODEL_UTILS_STYLE_CONFIG["advanced"]
PROMPT_STYLE_CONFIG = PROMPT_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else PROMPT_STYLE_CONFIG["advanced"]

View File

@@ -23,7 +23,7 @@ from src.common.logger import (
PFC_ACTION_PLANNER_STYLE_CONFIG,
MAI_STATE_CONFIG,
LPMM_STYLE_CONFIG,
INTEREST_STYLE_CONFIG,
HFC_STYLE_CONFIG,
TIANYI_STYLE_CONFIG,
REMOTE_STYLE_CONFIG,
TOPIC_STYLE_CONFIG,
@@ -68,7 +68,7 @@ MODULE_LOGGER_CONFIGS = {
"pfc_action_planner": PFC_ACTION_PLANNER_STYLE_CONFIG, # PFC私聊规划
"mai_state": MAI_STATE_CONFIG, # 麦麦状态
"lpmm": LPMM_STYLE_CONFIG, # LPMM
"interest": INTEREST_STYLE_CONFIG, # 兴趣
"hfc": HFC_STYLE_CONFIG, # HFC
"tianyi": TIANYI_STYLE_CONFIG, # 天依
"remote": REMOTE_STYLE_CONFIG, # 远程
"topic": TOPIC_STYLE_CONFIG, # 话题

View File

@@ -20,9 +20,9 @@ from src.common.logger_manager import get_logger
logger = get_logger("config")
# 考虑到实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
is_test = True
is_test = False
mai_version_main = "0.6.3"
mai_version_fix = "snapshot-5"
mai_version_fix = ""
if mai_version_fix:
if is_test:
@@ -170,32 +170,34 @@ class BotConfig:
SCHEDULE_TEMPERATURE: float = 0.5 # 日程表温度建议0.5-1.0
TIME_ZONE: str = "Asia/Shanghai" # 时区
# message
MAX_CONTEXT_SIZE: int = 15 # 上下文最大消息数
emoji_chance: float = 0.2 # 发送表情包的基础概率
thinking_timeout: int = 120 # 思考时间
max_response_length: int = 1024 # 最大回复长度
# chat
allow_focus_mode: bool = True # 是否允许专注聊天状态
base_normal_chat_num: int = 3 # 最多允许多少个群进行普通聊天
base_focused_chat_num: int = 2 # 最多允许多少个群进行专注聊天
observation_context_size: int = 12 # 心流观察到的最长上下文大小,超过这个值的上下文会被压缩
message_buffer: bool = True # 消息缓冲器
ban_words = set()
ban_msgs_regex = set()
# [heartflow] # 启用启用heart_flowC(心流聊天)模式时生效, 需要填写token消耗量巨大的相关模型
# 启用后麦麦会自主选择进入heart_flowC模式(持续一段时间), 进行长时间高质量的聊天
# focus_chat
reply_trigger_threshold: float = 3.0 # 心流聊天触发阈值,越低越容易触发
probability_decay_factor_per_second: float = 0.2 # 概率衰减因子,越大衰减越快
default_decay_rate_per_second: float = 0.98 # 默认衰减率,越大衰减越慢
allow_focus_mode: bool = True # 是否允许子心流进入 FOCUSED 状态
consecutive_no_reply_threshold = 3
# sub_heart_flow_update_interval: int = 60 # 子心流更新频率,间隔 单位秒
# sub_heart_flow_freeze_time: int = 120 # 子心流冻结时间,超过这个时间没有回复,子心流会冻结,间隔 单位秒
sub_heart_flow_stop_time: int = 600 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
# heart_flow_update_interval: int = 300 # 心流更新频率,间隔 单位秒
observation_context_size: int = 20 # 心流观察到的最长上下文大小,超过这个值的上下文会被压缩
compressed_length: int = 5 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5
compress_length_limit: int = 5 # 最多压缩份数,超过该数值的压缩上下文会被删除
# willing
# normal_chat
model_reasoning_probability: float = 0.7 # 麦麦回答时选择推理模型(主要)模型概率
model_normal_probability: float = 0.3 # 麦麦回答时选择一般模型(次要)模型概率
emoji_chance: float = 0.2 # 发送表情包的基础概率
thinking_timeout: int = 120 # 思考时间
willing_mode: str = "classical" # 意愿模式
response_willing_amplifier: float = 1.0 # 回复意愿放大系数
response_interested_rate_amplifier: float = 1.0 # 回复兴趣度放大系数
@@ -204,12 +206,6 @@ class BotConfig:
mentioned_bot_inevitable_reply: bool = False # 提及 bot 必然回复
at_bot_inevitable_reply: bool = False # @bot 必然回复
# response
response_mode: str = "heart_flow" # 回复策略
model_reasoning_probability: float = 0.7 # 麦麦回答时选择推理模型(主要)模型概率
model_normal_probability: float = 0.3 # 麦麦回答时选择一般模型(次要)模型概率
# MODEL_R1_DISTILL_PROBABILITY: float = 0.1 # R1蒸馏模型概率
# emoji
max_emoji_num: int = 200 # 表情包最大数量
max_reach_deletion: bool = True # 开启则在达到最大数量时删除表情包,关闭则不会继续收集表情包
@@ -264,6 +260,8 @@ class BotConfig:
response_max_length = 100 # 回复允许的最大长度
response_max_sentence_num = 3 # 回复允许的最大句子数
model_max_output_length: int = 800 # 最大回复长度
# remote
remote_enable: bool = True # 是否启用远程控制
@@ -277,8 +275,7 @@ class BotConfig:
# llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
llm_normal: Dict[str, str] = field(default_factory=lambda: {})
llm_topic_judge: Dict[str, str] = field(default_factory=lambda: {})
llm_summary_by_topic: Dict[str, str] = field(default_factory=lambda: {})
llm_emotion_judge: Dict[str, str] = field(default_factory=lambda: {})
llm_summary: Dict[str, str] = field(default_factory=lambda: {})
embedding: Dict[str, str] = field(default_factory=lambda: {})
vlm: Dict[str, str] = field(default_factory=lambda: {})
moderation: Dict[str, str] = field(default_factory=lambda: {})
@@ -409,63 +406,62 @@ class BotConfig:
config.BOT_NICKNAME = bot_config.get("nickname", config.BOT_NICKNAME)
config.BOT_ALIAS_NAMES = bot_config.get("alias_names", config.BOT_ALIAS_NAMES)
def response(parent: dict):
response_config = parent["response"]
config.model_reasoning_probability = response_config.get(
def chat(parent: dict):
chat_config = parent["chat"]
config.allow_focus_mode = chat_config.get("allow_focus_mode", config.allow_focus_mode)
config.base_normal_chat_num = chat_config.get("base_normal_chat_num", config.base_normal_chat_num)
config.base_focused_chat_num = chat_config.get("base_focused_chat_num", config.base_focused_chat_num)
config.observation_context_size = chat_config.get(
"observation_context_size", config.observation_context_size
)
config.message_buffer = chat_config.get("message_buffer", config.message_buffer)
config.ban_words = chat_config.get("ban_words", config.ban_words)
for r in chat_config.get("ban_msgs_regex", config.ban_msgs_regex):
config.ban_msgs_regex.add(re.compile(r))
def normal_chat(parent: dict):
normal_chat_config = parent["normal_chat"]
config.model_reasoning_probability = normal_chat_config.get(
"model_reasoning_probability", config.model_reasoning_probability
)
config.model_normal_probability = response_config.get(
config.model_normal_probability = normal_chat_config.get(
"model_normal_probability", config.model_normal_probability
)
config.emoji_chance = normal_chat_config.get("emoji_chance", config.emoji_chance)
config.thinking_timeout = normal_chat_config.get("thinking_timeout", config.thinking_timeout)
def heartflow(parent: dict):
heartflow_config = parent["heartflow"]
config.sub_heart_flow_stop_time = heartflow_config.get(
"sub_heart_flow_stop_time", config.sub_heart_flow_stop_time
config.willing_mode = normal_chat_config.get("willing_mode", config.willing_mode)
config.response_willing_amplifier = normal_chat_config.get(
"response_willing_amplifier", config.response_willing_amplifier
)
config.response_interested_rate_amplifier = normal_chat_config.get(
"response_interested_rate_amplifier", config.response_interested_rate_amplifier
)
config.down_frequency_rate = normal_chat_config.get("down_frequency_rate", config.down_frequency_rate)
config.emoji_response_penalty = normal_chat_config.get(
"emoji_response_penalty", config.emoji_response_penalty
)
if config.INNER_VERSION in SpecifierSet(">=1.3.0"):
config.observation_context_size = heartflow_config.get(
"observation_context_size", config.observation_context_size
)
config.compressed_length = heartflow_config.get("compressed_length", config.compressed_length)
config.compress_length_limit = heartflow_config.get(
"compress_length_limit", config.compress_length_limit
)
if config.INNER_VERSION in SpecifierSet(">=1.4.0"):
config.reply_trigger_threshold = heartflow_config.get(
"reply_trigger_threshold", config.reply_trigger_threshold
)
config.probability_decay_factor_per_second = heartflow_config.get(
"probability_decay_factor_per_second", config.probability_decay_factor_per_second
)
config.default_decay_rate_per_second = heartflow_config.get(
"default_decay_rate_per_second", config.default_decay_rate_per_second
)
if config.INNER_VERSION in SpecifierSet(">=1.5.1"):
config.allow_focus_mode = heartflow_config.get("allow_focus_mode", config.allow_focus_mode)
def willing(parent: dict):
willing_config = parent["willing"]
config.willing_mode = willing_config.get("willing_mode", config.willing_mode)
config.mentioned_bot_inevitable_reply = normal_chat_config.get(
"mentioned_bot_inevitable_reply", config.mentioned_bot_inevitable_reply
)
config.at_bot_inevitable_reply = normal_chat_config.get(
"at_bot_inevitable_reply", config.at_bot_inevitable_reply
)
if config.INNER_VERSION in SpecifierSet(">=0.0.11"):
config.response_willing_amplifier = willing_config.get(
"response_willing_amplifier", config.response_willing_amplifier
)
config.response_interested_rate_amplifier = willing_config.get(
"response_interested_rate_amplifier", config.response_interested_rate_amplifier
)
config.down_frequency_rate = willing_config.get("down_frequency_rate", config.down_frequency_rate)
config.emoji_response_penalty = willing_config.get(
"emoji_response_penalty", config.emoji_response_penalty
)
if config.INNER_VERSION in SpecifierSet(">=1.2.5"):
config.mentioned_bot_inevitable_reply = willing_config.get(
"mentioned_bot_inevitable_reply", config.mentioned_bot_inevitable_reply
)
config.at_bot_inevitable_reply = willing_config.get(
"at_bot_inevitable_reply", config.at_bot_inevitable_reply
)
def focus_chat(parent: dict):
focus_chat_config = parent["focus_chat"]
config.compressed_length = focus_chat_config.get("compressed_length", config.compressed_length)
config.compress_length_limit = focus_chat_config.get("compress_length_limit", config.compress_length_limit)
config.reply_trigger_threshold = focus_chat_config.get(
"reply_trigger_threshold", config.reply_trigger_threshold
)
config.default_decay_rate_per_second = focus_chat_config.get(
"default_decay_rate_per_second", config.default_decay_rate_per_second
)
config.consecutive_no_reply_threshold = focus_chat_config.get(
"consecutive_no_reply_threshold", config.consecutive_no_reply_threshold
)
def model(parent: dict):
# 加载模型配置
@@ -476,8 +472,7 @@ class BotConfig:
# "llm_reasoning_minor",
"llm_normal",
"llm_topic_judge",
"llm_summary_by_topic",
"llm_emotion_judge",
"llm_summary",
"vlm",
"embedding",
"llm_tool_use",
@@ -556,26 +551,6 @@ class BotConfig:
logger.error(f"模型 {item} 在config中不存在请检查或尝试更新配置文件")
raise KeyError(f"模型 {item} 在config中不存在请检查或尝试更新配置文件")
def message(parent: dict):
msg_config = parent["message"]
config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
config.ban_words = msg_config.get("ban_words", config.ban_words)
config.thinking_timeout = msg_config.get("thinking_timeout", config.thinking_timeout)
config.response_willing_amplifier = msg_config.get(
"response_willing_amplifier", config.response_willing_amplifier
)
config.response_interested_rate_amplifier = msg_config.get(
"response_interested_rate_amplifier", config.response_interested_rate_amplifier
)
config.down_frequency_rate = msg_config.get("down_frequency_rate", config.down_frequency_rate)
for r in msg_config.get("ban_msgs_regex", config.ban_msgs_regex):
config.ban_msgs_regex.add(re.compile(r))
if config.INNER_VERSION in SpecifierSet(">=0.0.11"):
config.max_response_length = msg_config.get("max_response_length", config.max_response_length)
if config.INNER_VERSION in SpecifierSet(">=1.1.4"):
config.message_buffer = msg_config.get("message_buffer", config.message_buffer)
def memory(parent: dict):
memory_config = parent["memory"]
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
@@ -650,6 +625,10 @@ class BotConfig:
config.enable_kaomoji_protection = response_splitter_config.get(
"enable_kaomoji_protection", config.enable_kaomoji_protection
)
if config.INNER_VERSION in SpecifierSet(">=1.6.0"):
config.model_max_output_length = response_splitter_config.get(
"model_max_output_length", config.model_max_output_length
)
def groups(parent: dict):
groups_config = parent["groups"]
@@ -695,10 +674,7 @@ class BotConfig:
"personality": {"func": personality, "support": ">=0.0.0"},
"identity": {"func": identity, "support": ">=1.2.4"},
"schedule": {"func": schedule, "support": ">=0.0.11", "necessary": False},
"message": {"func": message, "support": ">=0.0.0"},
"willing": {"func": willing, "support": ">=0.0.9", "necessary": False},
"emoji": {"func": emoji, "support": ">=0.0.0"},
"response": {"func": response, "support": ">=0.0.0"},
"model": {"func": model, "support": ">=0.0.0"},
"memory": {"func": memory, "support": ">=0.0.0", "necessary": False},
"mood": {"func": mood, "support": ">=0.0.0"},
@@ -708,7 +684,9 @@ class BotConfig:
"platforms": {"func": platforms, "support": ">=1.0.0"},
"response_splitter": {"func": response_splitter, "support": ">=0.0.11", "necessary": False},
"experimental": {"func": experimental, "support": ">=0.0.11", "necessary": False},
"heartflow": {"func": heartflow, "support": ">=1.0.2", "necessary": False},
"chat": {"func": chat, "support": ">=1.6.0", "necessary": False},
"normal_chat": {"func": normal_chat, "support": ">=1.6.0", "necessary": False},
"focus_chat": {"func": focus_chat, "support": ">=1.6.0", "necessary": False},
}
# 原地修改,将 字符串版本表达式 转换成 版本对象

View File

@@ -62,7 +62,7 @@ def register_tool(tool_class: Type[BaseTool]):
raise ValueError(f"工具类 {tool_class.__name__} 没有定义 name 属性")
TOOL_REGISTRY[tool_name] = tool_class
logger.info(f"已注册工具: {tool_name}")
logger.info(f"已注册: {tool_name}")
def discover_tools():

View File

@@ -14,7 +14,7 @@ class SearchKnowledgeFromLPMMTool(BaseTool):
"""从LPMM知识库中搜索相关信息的工具"""
name = "lpmm_search_knowledge"
description = "从知识库中搜索相关信息"
description = "从知识库中搜索相关信息,如果你需要知识,就使用这个工具"
parameters = {
"type": "object",
"properties": {

View File

@@ -129,7 +129,6 @@ class ToolUser:
payload = {
"model": self.llm_model_tool.model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": global_config.max_response_length,
"tools": tools,
"temperature": 0.2,
}

View File

@@ -1,48 +0,0 @@
# 0.6.3 版本发布前待办事项
- [0.6.3]**统一化人格配置:**
- 检查代码中是否存在硬编码的人格相关配置。
- 将所有硬编码的人格配置替换为使用 `individual` 模块进行管理。
- [0.6.3]**在 Planner 中添加回复计数信息:**
- 修改 `HeartFlowChatInstance``Plan` 阶段逻辑。
- 将当前周期的回复计数(或其他相关统计信息)作为输入提供给 Planner。
- 目的是为 Planner 提供负反馈,减少连续回复或不当回复的可能性。
- [0.6.3]**恢复/检查被停止的功能:**
- 全面审查代码,特别是对比之前的版本或设计文档。
- 识别并重新启用那些暂时被禁用但应该恢复的功能。
- 确认没有核心功能意外丢失。
- [0.6.3]**参数提取与配置化:**
- 识别代码中散落的各种可调参数例如概率阈值、时间间隔、次数限制、LLM 模型名称等)。
- 将这些参数统一提取到模块或类的顶部。
- 最终将这些参数移至外部配置文件(如 YAML 或 JSON 文件),方便用户自定义。
- **[0.6.3]提供 HFC (HeartFlowChatInstance) 开启/关闭选项:**
- 增加一个全局或针对特定子心流的配置选项。
- 允许用户控制是否启用 `FOCUSED` 状态以及关联的 `HeartFlowChatInstance`
- 如果禁用 HFC子心流可能只会在 `ABSENT``CHAT` 状态间切换。
- [0.6.3]**添加防破线机制 (针对接收消息):**
- 在消息处理流程的早期阶段 (例如 `HeartHC_processor` 或类似模块),增加对接收到的消息文本长度的检查。
- 对超过预设长度阈值的*接收*消息进行截断处理。
- 目的是防止过长的输入(可能包含"破限"提示词影响后续的兴趣计算、LLM 回复生成等环节。
- [0.6.3]**NormalChat 模式下的记忆与 Prompt 优化:**
- 重点审视 `NormalChatInstance` (闲聊/推理模式) 中记忆调用 (例如 `HippocampusManager` 的使用) 的方式。
- 评估在该模式下引入工具调用 (Tool Calling) 机制以更结构化访问记忆的必要性。
- 优化 `NormalChatInstance` 中与记忆检索、应用相关的 Prompt。
- [0.6.3]**完善简易兴趣监控 GUI:**
- 改进现有的、用于监控聊天兴趣度 (`InterestChatting`?) 的简单 GUI 界面。
- 使其能更清晰地展示关键参数和状态,作为查看日志之外的更直观的监控方式。
- 作为完整外部 UI 开发完成前的临时替代方案。
- [0.6.3]**修复/完善中期记忆 (Midterm Memory):**
- 检查当前中期记忆模块的状态。
- 修复已知问题,使其能够稳定运行。
- (优先级视开发时间而定)
对于有些群频繁激活HFC却不回复需要处理一下

View File

@@ -81,4 +81,14 @@
- **基于人格生成预设知识:**
- 开发利用 LLM 和人格配置生成背景知识的功能。
- 这些知识应符合角色的行为风格和可能的经历。
- 作为一种"冷启动"或丰富角色深度的方式。
- 作为一种"冷启动"或丰富角色深度的方式。
## 开发计划TODOLIST
- 人格功能WIP
- 对特定对象的侧写功能
- 图片发送转发功能WIP
- 幽默和meme功能WIP
- 小程序转发链接解析
- 自动生成的回复逻辑,例如自生成的回复方向,回复风格

View File

@@ -106,8 +106,8 @@ c HeartFChatting工作方式
- 负责所有 `SubHeartflow` 实例的生命周期管理,包括:
- 创建和获取 (`get_or_create_subheartflow`)。
- 停止和清理 (`sleep_subheartflow`, `cleanup_inactive_subheartflows`)。
- 根据 `Heartflow` 的状态 (`self.mai_state_info`) 和限制条件,激活、停用或调整子心流的状态(例如 `enforce_subheartflow_limits`, `randomly_deactivate_subflows`, `evaluate_interest_and_promote`)。
- **新增**: 通过调用 `evaluate_and_transition_subflows_by_llm` 方法,使用 LLM (配置与 `Heartflow` 主 LLM 相同) 评估处于 `ABSENT``CHAT` 状态的子心流,根据观察到的活动摘要和 `Heartflow` 的当前状态,判断是否应在 `ABSENT``CHAT` 之间进行转换 (同样受限于 `CHAT` 状态的数量上限)。
- 根据 `Heartflow` 的状态 (`self.mai_state_info`) 和限制条件,激活、停用或调整子心流的状态(例如 `enforce_subheartflow_limits`, `randomly_deactivate_subflows`, `sbhf_absent_into_focus`)。
- **新增**: 通过调用 `sbhf_absent_into_chat` 方法,使用 LLM (配置与 `Heartflow` 主 LLM 相同) 评估处于 `ABSENT``CHAT` 状态的子心流,根据观察到的活动摘要和 `Heartflow` 的当前状态,判断是否应在 `ABSENT``CHAT` 之间进行转换 (同样受限于 `CHAT` 状态的数量上限)。
- **清理机制**: 通过后台任务 (`BackgroundTaskManager`) 定期调用 `cleanup_inactive_subheartflows` 方法,此方法会识别并**删除**那些处于 `ABSENT` 状态超过一小时 (`INACTIVE_THRESHOLD_SECONDS`) 的子心流实例。
### 1.5. 消息处理与回复流程 (Message Processing vs. Replying Flow)
@@ -155,20 +155,20 @@ c HeartFChatting工作方式
- **初始状态**: 新创建的 `SubHeartflow` 默认为 `ABSENT` 状态。
- **`ABSENT` -> `CHAT` (激活闲聊)**:
- **触发条件**: `Heartflow` 的主状态 (`MaiState`) 允许 `CHAT` 模式,且当前 `CHAT` 状态的子心流数量未达上限。
- **判定机制**: `SubHeartflowManager` 中的 `evaluate_and_transition_subflows_by_llm` 方法调用大模型(LLM)。LLM 读取该群聊的近期内容和结合自身个性信息,判断是否"想"在该群开始聊天。
- **判定机制**: `SubHeartflowManager` 中的 `sbhf_absent_into_chat` 方法调用大模型(LLM)。LLM 读取该群聊的近期内容和结合自身个性信息,判断是否"想"在该群开始聊天。
- **执行**: 若 LLM 判断为是,且名额未满,`SubHeartflowManager` 调用 `change_chat_state(ChatState.CHAT)`
- **`CHAT` -> `FOCUSED` (激活专注)**:
- **触发条件**: 子心流处于 `CHAT` 状态,其内部维护的"开屎热聊"概率 (`InterestChatting.start_hfc_probability`) 达到预设阈值(表示对当前聊天兴趣浓厚),同时 `Heartflow` 的主状态允许 `FOCUSED` 模式,且 `FOCUSED` 名额未满。
- **判定机制**: `SubHeartflowManager` 中的 `evaluate_interest_and_promote` 方法定期检查满足条件的 `CHAT` 子心流。
- **判定机制**: `SubHeartflowManager` 中的 `sbhf_absent_into_focus` 方法定期检查满足条件的 `CHAT` 子心流。
- **执行**: 若满足所有条件,`SubHeartflowManager` 调用 `change_chat_state(ChatState.FOCUSED)`
- **注意**: 无法从 `ABSENT` 直接跳到 `FOCUSED`,必须先经过 `CHAT`
- **`FOCUSED` -> `ABSENT` (退出专注)**:
- **主要途径 (内部驱动)**: 在 `FOCUSED` 状态下运行的 `HeartFlowChatInstance` 连续多次决策为 `no_reply` (例如达到 5 次,次数可配),它会通过回调函数 (`request_absent_transition`) 请求 `SubHeartflowManager` 将其状态**直接**设置为 `ABSENT`
- **主要途径 (内部驱动)**: 在 `FOCUSED` 状态下运行的 `HeartFlowChatInstance` 连续多次决策为 `no_reply` (例如达到 5 次,次数可配),它会通过回调函数 (`sbhf_focus_into_absent`) 请求 `SubHeartflowManager` 将其状态**直接**设置为 `ABSENT`
- **其他途径 (外部驱动)**:
- `Heartflow` 主状态变为 `OFFLINE``SubHeartflowManager` 强制所有子心流变为 `ABSENT`
- `SubHeartflowManager``FOCUSED` 名额超限 (`enforce_subheartflow_limits`) 或随机停用 (`randomly_deactivate_subflows`) 而将其设置为 `ABSENT`
- **`CHAT` -> `ABSENT` (退出闲聊)**:
- **主要途径 (内部驱动)**: `SubHeartflowManager` 中的 `evaluate_and_transition_subflows_by_llm` 方法调用 LLM。LLM 读取群聊内容和结合自身状态,判断是否"不想"继续在此群闲聊。
- **主要途径 (内部驱动)**: `SubHeartflowManager` 中的 `sbhf_absent_into_chat` 方法调用 LLM。LLM 读取群聊内容和结合自身状态,判断是否"不想"继续在此群闲聊。
- **执行**: 若 LLM 判断为是,`SubHeartflowManager` 调用 `change_chat_state(ChatState.ABSENT)`
- **其他途径 (外部驱动)**:
- `Heartflow` 主状态变为 `OFFLINE`

View File

@@ -12,10 +12,17 @@ from src.heart_flow.interest_logger import InterestLogger
logger = get_logger("background_tasks")
# 新增随机停用间隔 (5 分钟)
RANDOM_DEACTIVATION_INTERVAL_SECONDS = 300
# 新增兴趣评估间隔
INTEREST_EVAL_INTERVAL_SECONDS = 5
# 新增聊天超时检查间隔
NORMAL_CHAT_TIMEOUT_CHECK_INTERVAL_SECONDS = 60
# 新增状态评估间隔
HF_JUDGE_STATE_UPDATE_INTERVAL_SECONDS = 60
CLEANUP_INTERVAL_SECONDS = 1200
STATE_UPDATE_INTERVAL_SECONDS = 60
LOG_INTERVAL_SECONDS = 3
class BackgroundTaskManager:
@@ -27,33 +34,19 @@ class BackgroundTaskManager:
mai_state_manager: MaiStateManager,
subheartflow_manager: SubHeartflowManager,
interest_logger: InterestLogger,
update_interval: int,
cleanup_interval: int,
log_interval: int,
# 新增兴趣评估间隔参数
interest_eval_interval: int = INTEREST_EVAL_INTERVAL_SECONDS,
# 新增随机停用间隔参数
random_deactivation_interval: int = RANDOM_DEACTIVATION_INTERVAL_SECONDS,
):
self.mai_state_info = mai_state_info
self.mai_state_manager = mai_state_manager
self.subheartflow_manager = subheartflow_manager
self.interest_logger = interest_logger
# Intervals
self.update_interval = update_interval
self.cleanup_interval = cleanup_interval
self.log_interval = log_interval
self.interest_eval_interval = interest_eval_interval # 存储兴趣评估间隔
self.random_deactivation_interval = random_deactivation_interval # 存储随机停用间隔
# Task references
self._state_update_task: Optional[asyncio.Task] = None
self._cleanup_task: Optional[asyncio.Task] = None
self._logging_task: Optional[asyncio.Task] = None
self._interest_eval_task: Optional[asyncio.Task] = None # 新增兴趣评估任务引用
self._random_deactivation_task: Optional[asyncio.Task] = None # 新增随机停用任务引用
self._hf_judge_state_update_task: Optional[asyncio.Task] = None # 新增状态评估任务引用
self._normal_chat_timeout_check_task: Optional[asyncio.Task] = None # Nyaa~ 添加聊天超时检查任务引用
self._hf_judge_state_update_task: Optional[asyncio.Task] = None # Nyaa~ 添加状态评估任务引用
self._into_focus_task: Optional[asyncio.Task] = None # Nyaa~ 添加兴趣评估任务引用
self._tasks: List[Optional[asyncio.Task]] = [] # Keep track of all tasks
async def start_tasks(self):
@@ -65,57 +58,53 @@ class BackgroundTaskManager:
- 将任务引用保存到任务列表
"""
# 任务配置列表: (任务变量名, 任务函数, 任务名称, 日志级别, 额外日志信息, 任务对象引用属性名)
# 任务配置列表: (任务函数, 任务名称, 日志级别, 额外日志信息, 任务对象引用属性名)
task_configs = [
(
self._state_update_task,
lambda: self._run_state_update_cycle(self.update_interval),
"hf_state_update",
lambda: self._run_state_update_cycle(STATE_UPDATE_INTERVAL_SECONDS),
"debug",
f"聊天状态更新任务已启动 间隔:{self.update_interval}s",
f"聊天状态更新任务已启动 间隔:{STATE_UPDATE_INTERVAL_SECONDS}s",
"_state_update_task",
),
(
self._hf_judge_state_update_task,
lambda: self._run_hf_judge_state_update_cycle(60),
"hf_judge_state_update",
lambda: self._run_normal_chat_timeout_check_cycle(NORMAL_CHAT_TIMEOUT_CHECK_INTERVAL_SECONDS),
"debug",
f"状态评估任务已启动 间隔:{60}s",
f"聊天超时检查任务已启动 间隔:{NORMAL_CHAT_TIMEOUT_CHECK_INTERVAL_SECONDS}s",
"_normal_chat_timeout_check_task",
),
(
lambda: self._run_absent_into_chat(HF_JUDGE_STATE_UPDATE_INTERVAL_SECONDS),
"debug",
f"状态评估任务已启动 间隔:{HF_JUDGE_STATE_UPDATE_INTERVAL_SECONDS}s",
"_hf_judge_state_update_task",
),
(
self._cleanup_task,
self._run_cleanup_cycle,
"hf_cleanup",
"info",
f"清理任务已启动 间隔:{self.cleanup_interval}s",
f"清理任务已启动 间隔:{CLEANUP_INTERVAL_SECONDS}s",
"_cleanup_task",
),
(
self._logging_task,
self._run_logging_cycle,
"hf_logging",
"info",
f"日志任务已启动 间隔:{self.log_interval}s",
f"日志任务已启动 间隔:{LOG_INTERVAL_SECONDS}s",
"_logging_task",
),
# 新增兴趣评估任务配置
(
self._interest_eval_task,
self._run_interest_eval_cycle,
"hf_interest_eval",
self._run_into_focus_cycle,
"debug", # 设为debug避免过多日志
f"兴趣评估任务已启动 间隔:{self.interest_eval_interval}s",
"_interest_eval_task",
f"专注评估任务已启动 间隔:{INTEREST_EVAL_INTERVAL_SECONDS}s",
"_into_focus_task",
),
]
# 统一启动所有任务
for _task_var, task_func, task_name, log_level, log_msg, task_attr_name in task_configs:
for task_func, log_level, log_msg, task_attr_name in task_configs:
# 检查任务变量是否存在且未完成
current_task_var = getattr(self, task_attr_name)
if current_task_var is None or current_task_var.done():
new_task = asyncio.create_task(task_func(), name=task_name)
new_task = asyncio.create_task(task_func())
setattr(self, task_attr_name, new_task) # 更新任务变量
if new_task not in self._tasks: # 避免重复添加
self._tasks.append(new_task)
@@ -123,7 +112,7 @@ class BackgroundTaskManager:
# 根据配置记录不同级别的日志
getattr(logger, log_level)(log_msg)
else:
logger.warning(f"{task_name}任务已在运行")
logger.warning(f"{task_attr_name}任务已在运行")
async def stop_tasks(self):
"""停止所有后台任务。
@@ -209,10 +198,15 @@ class BackgroundTaskManager:
logger.info("检测到离线,停用所有子心流")
await self.subheartflow_manager.deactivate_all_subflows()
async def _perform_hf_judge_state_update_work(self):
async def _perform_absent_into_chat(self):
"""调用llm检测是否转换ABSENT-CHAT状态"""
logger.info("[状态评估任务] 开始基于LLM评估子心流状态...")
await self.subheartflow_manager.evaluate_and_transition_subflows_by_llm()
logger.debug("[状态评估任务] 开始基于LLM评估子心流状态...")
await self.subheartflow_manager.sbhf_absent_into_chat()
async def _normal_chat_timeout_check_work(self):
"""检查处于CHAT状态的子心流是否因长时间未发言而超时并将其转为ABSENT"""
logger.debug("[聊天超时检查] 开始检查处于CHAT状态的子心流...")
await self.subheartflow_manager.sbhf_chat_into_absent()
async def _perform_cleanup_work(self):
"""执行子心流清理任务
@@ -244,10 +238,10 @@ class BackgroundTaskManager:
await self.interest_logger.log_all_states()
# --- 新增兴趣评估工作函数 ---
async def _perform_interest_eval_work(self):
async def _perform_into_focus_work(self):
"""执行一轮子心流兴趣评估与提升检查。"""
# 直接调用 subheartflow_manager 的方法,并传递当前状态信息
await self.subheartflow_manager.evaluate_interest_and_promote()
await self.subheartflow_manager.sbhf_absent_into_focus()
# --- 结束新增 ---
@@ -259,25 +253,30 @@ class BackgroundTaskManager:
task_name="State Update", interval=interval, task_func=self._perform_state_update_work
)
async def _run_hf_judge_state_update_cycle(self, interval: int):
async def _run_absent_into_chat(self, interval: int):
await self._run_periodic_loop(
task_name="State Update", interval=interval, task_func=self._perform_hf_judge_state_update_work
task_name="Into Chat", interval=interval, task_func=self._perform_absent_into_chat
)
async def _run_normal_chat_timeout_check_cycle(self, interval: int):
await self._run_periodic_loop(
task_name="Normal Chat Timeout Check", interval=interval, task_func=self._normal_chat_timeout_check_work
)
async def _run_cleanup_cycle(self):
await self._run_periodic_loop(
task_name="Subflow Cleanup", interval=self.cleanup_interval, task_func=self._perform_cleanup_work
task_name="Subflow Cleanup", interval=CLEANUP_INTERVAL_SECONDS, task_func=self._perform_cleanup_work
)
async def _run_logging_cycle(self):
await self._run_periodic_loop(
task_name="State Logging", interval=self.log_interval, task_func=self._perform_logging_work
task_name="State Logging", interval=LOG_INTERVAL_SECONDS, task_func=self._perform_logging_work
)
# --- 新增兴趣评估任务运行器 ---
async def _run_interest_eval_cycle(self):
async def _run_into_focus_cycle(self):
await self._run_periodic_loop(
task_name="Interest Evaluation",
interval=self.interest_eval_interval,
task_func=self._perform_interest_eval_work,
task_name="Into Focus",
interval=INTEREST_EVAL_INTERVAL_SECONDS,
task_func=self._perform_into_focus_work,
)

View File

@@ -11,20 +11,10 @@ from src.heart_flow.subheartflow_manager import SubHeartflowManager
from src.heart_flow.mind import Mind
from src.heart_flow.interest_logger import InterestLogger # Import InterestLogger
from src.heart_flow.background_tasks import BackgroundTaskManager # Import BackgroundTaskManager
# --- End import ---
logger = get_logger("heartflow")
# Task Intervals (should be in BackgroundTaskManager or config)
CLEANUP_INTERVAL_SECONDS = 1200
STATE_UPDATE_INTERVAL_SECONDS = 60
# Thresholds (should be in SubHeartflowManager or config)
INACTIVE_THRESHOLD_SECONDS = 1200
# --- End Constants --- #
class Heartflow:
"""主心流协调器,负责初始化并协调各个子系统:
- 状态管理 (MaiState)
@@ -65,9 +55,6 @@ class Heartflow:
mai_state_manager=self.mai_state_manager,
subheartflow_manager=self.subheartflow_manager,
interest_logger=self.interest_logger,
update_interval=STATE_UPDATE_INTERVAL_SECONDS,
cleanup_interval=CLEANUP_INTERVAL_SECONDS,
log_interval=3, # Example: Using value directly, ideally get from config
)
async def get_or_create_subheartflow(self, subheartflow_id: Any) -> Optional["SubHeartflow"]:

View File

@@ -4,24 +4,30 @@ import random
from typing import List, Tuple, Optional
from src.common.logger_manager import get_logger
from src.plugins.moods.moods import MoodManager
from src.config.config import global_config
logger = get_logger("mai_state")
# -- 状态相关的可配置参数 (可以从 glocal_config 加载) --
enable_unlimited_hfc_chat = True # 调试用:无限专注聊天
# enable_unlimited_hfc_chat = False
prevent_offline_state = True # 调试用:防止进入离线状态
# enable_unlimited_hfc_chat = True # 调试用:无限专注聊天
enable_unlimited_hfc_chat = False
prevent_offline_state = True
# 目前默认不启用OFFLINE状态
# 不同状态下普通聊天的最大消息数
MAX_NORMAL_CHAT_NUM_PEEKING = 30
MAX_NORMAL_CHAT_NUM_NORMAL = 40
MAX_NORMAL_CHAT_NUM_FOCUSED = 30
base_normal_chat_num = global_config.base_normal_chat_num
base_focused_chat_num = global_config.base_focused_chat_num
MAX_NORMAL_CHAT_NUM_PEEKING = int(base_normal_chat_num / 2)
MAX_NORMAL_CHAT_NUM_NORMAL = base_normal_chat_num
MAX_NORMAL_CHAT_NUM_FOCUSED = base_normal_chat_num + 1
# 不同状态下专注聊天的最大消息数
MAX_FOCUSED_CHAT_NUM_PEEKING = 20
MAX_FOCUSED_CHAT_NUM_NORMAL = 30
MAX_FOCUSED_CHAT_NUM_FOCUSED = 40
MAX_FOCUSED_CHAT_NUM_PEEKING = int(base_focused_chat_num / 2)
MAX_FOCUSED_CHAT_NUM_NORMAL = base_focused_chat_num
MAX_FOCUSED_CHAT_NUM_FOCUSED = base_focused_chat_num + 2
# -- 状态定义 --
@@ -164,7 +170,7 @@ class MaiStateManager:
if random.random() < 0.03: # 3% 概率切换到 OFFLINE
potential_next = MaiState.OFFLINE
resolved_next = _resolve_offline(potential_next)
logger.debug(f"规则1概率触发下线resolve 为 {resolved_next.value}")
logger.debug(f"概率触发下线resolve 为 {resolved_next.value}")
# 只有当解析后的状态与当前状态不同时才设置 next_state
if resolved_next != current_status:
next_state = resolved_next

View File

@@ -146,7 +146,7 @@ class ChattingObservation(Observation):
self.talking_message_str = await build_readable_messages(
messages=self.talking_message,
timestamp_mode="normal",
timestamp_mode="lite",
read_mark=last_obs_time_mark,
)
self.talking_message_str_truncate = await build_readable_messages(

View File

@@ -5,7 +5,6 @@ import time
from typing import Optional, List, Dict, Tuple, Callable, Coroutine
import traceback
from src.common.logger_manager import get_logger
import random
from src.plugins.chat.message import MessageRecv
from src.plugins.chat.chat_stream import chat_manager
import math
@@ -15,20 +14,15 @@ from src.heart_flow.mai_state_manager import MaiStateInfo
from src.heart_flow.chat_state_info import ChatState, ChatStateInfo
from src.heart_flow.sub_mind import SubMind
# # --- REMOVE: Conditional import --- #
# if TYPE_CHECKING:
# from src.heart_flow.subheartflow_manager import SubHeartflowManager
# # --- END REMOVE --- #
# 定义常量 (从 interest.py 移动过来)
MAX_INTEREST = 15.0
logger = get_logger("subheartflow")
base_reply_probability = 0.05
probability_increase_rate_per_second = 0.08
max_reply_probability = 1
PROBABILITY_INCREASE_RATE_PER_SECOND = 0.1
PROBABILITY_DECREASE_RATE_PER_SECOND = 0.1
MAX_REPLY_PROBABILITY = 1
class InterestChatting:
@@ -37,24 +31,15 @@ class InterestChatting:
decay_rate=global_config.default_decay_rate_per_second,
max_interest=MAX_INTEREST,
trigger_threshold=global_config.reply_trigger_threshold,
base_reply_probability=base_reply_probability,
increase_rate=probability_increase_rate_per_second,
decay_factor=global_config.probability_decay_factor_per_second,
max_probability=max_reply_probability,
max_probability=MAX_REPLY_PROBABILITY,
):
# 基础属性初始化
self.interest_level: float = 0.0
self.last_update_time: float = time.time()
self.decay_rate_per_second: float = decay_rate
self.max_interest: float = max_interest
self.last_interaction_time: float = self.last_update_time
self.trigger_threshold: float = trigger_threshold
self.base_reply_probability: float = base_reply_probability
self.probability_increase_rate: float = increase_rate
self.probability_decay_factor: float = decay_factor
self.max_reply_probability: float = max_probability
self.current_reply_probability: float = 0.0
self.is_above_threshold: bool = False
# 任务相关属性初始化
@@ -100,7 +85,6 @@ class InterestChatting:
"""
# 添加新消息
self.interest_dict[message.message_info.message_id] = (message, interest_value, is_mentioned)
self.last_interaction_time = time.time()
# 如果字典长度超过10删除最旧的消息
if len(self.interest_dict) > 10:
@@ -144,10 +128,10 @@ class InterestChatting:
async def _update_reply_probability(self):
self.above_threshold = self.interest_level >= self.trigger_threshold
if self.above_threshold:
self.start_hfc_probability += 0.1
self.start_hfc_probability += PROBABILITY_INCREASE_RATE_PER_SECOND
else:
if self.start_hfc_probability > 0:
self.start_hfc_probability = max(0, self.start_hfc_probability - 0.1)
self.start_hfc_probability = max(0, self.start_hfc_probability - PROBABILITY_DECREASE_RATE_PER_SECOND)
async def increase_interest(self, value: float):
self.interest_level += value
@@ -168,13 +152,6 @@ class InterestChatting:
"above_threshold": self.above_threshold,
}
async def should_evaluate_reply(self) -> bool:
if self.current_reply_probability > 0:
trigger = random.random() < self.current_reply_probability
return trigger
else:
return False
# --- 新增后台更新任务相关方法 ---
async def _run_update_loop(self, update_interval: float = 1.0):
"""后台循环,定期更新兴趣和回复概率。"""
@@ -322,7 +299,7 @@ class SubHeartflow:
chat_stream = chat_manager.get_stream(self.chat_id)
self.normal_chat_instance = NormalChat(chat_stream=chat_stream, interest_dict=self.get_interest_dict())
logger.info(f"{log_prefix} 启动 NormalChat 随便水群...")
logger.info(f"{log_prefix} 开始普通聊天,随便水群...")
await self.normal_chat_instance.start_chat() # <--- 修正:调用 start_chat
return True
except Exception as e:
@@ -334,7 +311,7 @@ class SubHeartflow:
async def _stop_heart_fc_chat(self):
"""停止并清理 HeartFChatting 实例"""
if self.heart_fc_instance:
logger.info(f"{self.log_prefix} 关闭 HeartFChatting 实例...")
logger.debug(f"{self.log_prefix} 结束专注聊天...")
try:
await self.heart_fc_instance.shutdown()
except Exception as e:
@@ -409,7 +386,7 @@ class SubHeartflow:
# 移除限额检查逻辑
logger.debug(f"{log_prefix} 准备进入或保持 聊天 状态")
if await self._start_normal_chat():
logger.info(f"{log_prefix} 成功进入或保持 NormalChat 状态。")
# logger.info(f"{log_prefix} 成功进入或保持 NormalChat 状态。")
state_changed = True
else:
logger.error(f"{log_prefix} 启动 NormalChat 失败,无法进入 CHAT 状态。")
@@ -439,7 +416,7 @@ class SubHeartflow:
self.history_chat_state.append((current_state, self.chat_state_last_time))
logger.info(
f"{log_prefix} 麦麦的聊天状态从 {current_state.value} (持续了 {self.chat_state_last_time} 秒) 变更为 {new_state.value}"
f"{log_prefix} 麦麦的聊天状态从 {current_state.value} (持续了 {int(self.chat_state_last_time)} 秒) 变更为 {new_state.value}"
)
self.chat_state.chat_status = new_state
@@ -493,11 +470,10 @@ class SubHeartflow:
async def get_interest_state(self) -> dict:
return await self.interest_chatting.get_state()
async def get_interest_level(self) -> float:
return await self.interest_chatting.get_interest()
async def should_evaluate_reply(self) -> bool:
return await self.interest_chatting.should_evaluate_reply()
def get_normal_chat_last_speak_time(self) -> float:
if self.normal_chat_instance:
return self.normal_chat_instance.last_speak_time
return 0
def get_interest_dict(self) -> Dict[str, tuple[MessageRecv, float, bool]]:
return self.interest_chatting.interest_dict

View File

@@ -140,11 +140,11 @@ class SubMind:
individuality = Individuality.get_instance()
relation_prompt = ""
print(f"person_list: {person_list}")
# print(f"person_list: {person_list}")
for person in person_list:
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
print(f"relat22222ion_prompt: {relation_prompt}")
# print(f"relat22222ion_prompt: {relation_prompt}")
# 构建个性部分
prompt_personality = individuality.get_prompt(x_person=2, level=2)

View File

@@ -1,7 +1,7 @@
import asyncio
import time
import random
from typing import Dict, Any, Optional, List
from typing import Dict, Any, Optional, List, Tuple
import json # 导入 json 模块
import functools # <-- 新增导入
@@ -29,6 +29,7 @@ logger = get_logger("subheartflow_manager")
# 子心流管理相关常量
INACTIVE_THRESHOLD_SECONDS = 3600 # 子心流不活跃超时时间(秒)
NORMAL_CHAT_TIMEOUT_SECONDS = 30 * 60 # 30分钟
class SubHeartflowManager:
@@ -256,7 +257,7 @@ class SubHeartflowManager:
f"{log_prefix} 完成,共处理 {processed_count} 个子心流,成功将 {changed_count} 个非 ABSENT 子心流的状态更改为 ABSENT。"
)
async def evaluate_interest_and_promote(self):
async def sbhf_absent_into_focus(self):
"""评估子心流兴趣度满足条件且未达上限则提升到FOCUSED状态基于start_hfc_probability"""
try:
log_prefix = "[兴趣评估]"
@@ -271,10 +272,7 @@ class SubHeartflowManager:
return # 如果不允许,直接返回
# --- 结束新增 ---
logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 开始尝试提升到FOCUSED状态")
if int(time.time()) % 20 == 0: # 每20秒输出一次
logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 可以在{focused_limit}个群激情聊天")
logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 可以在{focused_limit}个群激情聊天")
if focused_limit <= 0:
# logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 不允许 FOCUSED 子心流")
@@ -333,139 +331,207 @@ class SubHeartflowManager:
except Exception as e:
logger.error(f"启动HFC 兴趣评估失败: {e}", exc_info=True)
async def evaluate_and_transition_subflows_by_llm(self):
async def sbhf_absent_into_chat(self):
"""
使用LLM评估每个子心流的状态并根据LLM的判断执行状态转换ABSENT <-> CHAT
注意此函数包含对假设的LLM函数的调用
随机选一个 ABSENT 状态的子心流,评估是否应转换为 CHAT 状态
每次调用最多转换一个
"""
# 获取当前状态和限制用于CHAT激活检查
current_mai_state = self.mai_state_info.get_current_state()
chat_limit = current_mai_state.get_normal_chat_max_num()
transitioned_to_chat = 0
transitioned_to_absent = 0
async with self._lock:
# 1. 筛选出所有 ABSENT 状态的子心流
absent_subflows = [
hf for hf in self.subheartflows.values() if hf.chat_state.chat_status == ChatState.ABSENT
]
async with self._lock: # 在锁内获取快照并迭代
subflows_snapshot = list(self.subheartflows.values())
# 使用不上锁的版本,因为我们已经在锁内
if not absent_subflows:
logger.debug("没有摸鱼的子心流可以评估。") # 日志太频繁,注释掉
return # 没有目标,直接返回
# 2. 随机选一个幸运儿
sub_hf_to_evaluate = random.choice(absent_subflows)
flow_id = sub_hf_to_evaluate.subheartflow_id
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
log_prefix = f"[{stream_name}]"
# 3. 检查 CHAT 上限
current_chat_count = self.count_subflows_by_state_nolock(ChatState.CHAT)
if current_chat_count >= chat_limit:
logger.info(f"{log_prefix} 想看看能不能聊,但是聊天太多了, ({current_chat_count}/{chat_limit}) 满了。")
return # 满了,这次就算了
# --- 获取 FOCUSED 计数 ---
current_focused_count = self.count_subflows_by_state_nolock(ChatState.FOCUSED)
focused_limit = current_mai_state.get_focused_chat_max_num()
# --- 新增:获取聊天和专注群名 ---
chatting_group_names = []
focused_group_names = []
for flow_id, hf in self.subheartflows.items():
stream_name = chat_manager.get_stream_name(flow_id) or str(flow_id) # 保证有名字
if hf.chat_state.chat_status == ChatState.CHAT:
chatting_group_names.append(stream_name)
elif hf.chat_state.chat_status == ChatState.FOCUSED:
focused_group_names.append(stream_name)
# --- 结束新增 ---
# --- 获取观察信息和构建 Prompt ---
first_observation = sub_hf_to_evaluate.observations[0] # 喵~第一个观察者肯定存在的说
await first_observation.observe()
current_chat_log = first_observation.talking_message_str or "当前没啥聊天内容。"
_observation_summary = f"最近聊了这些:\n{current_chat_log}"
mai_state_description = f"你当前状态: {current_mai_state.value}"
individuality = Individuality.get_instance()
personality_prompt = individuality.get_prompt(x_person=2, level=2)
prompt_personality = f"你正在扮演名为{individuality.name}的人类,{personality_prompt}"
# --- 修改:在 prompt 中加入当前聊天计数和群名信息 (条件显示) ---
chat_status_lines = []
if chatting_group_names:
chat_status_lines.append(
f"正在闲聊 ({current_chat_count}/{chat_limit}): {', '.join(chatting_group_names)}"
)
if focused_group_names:
chat_status_lines.append(
f"正在专注 ({current_focused_count}/{focused_limit}): {', '.join(focused_group_names)}"
)
chat_status_prompt = "当前没有在任何群聊中。" # 默认消息喵~
if chat_status_lines:
chat_status_prompt = "当前聊天情况:\n" + "\n".join(chat_status_lines) # 拼接状态信息
prompt = (
f"{prompt_personality}\\n"
f"你当前没在 [{stream_name}] 群聊天。\\n"
f"{mai_state_description}\\n"
f"{chat_status_prompt}\\n" # <-- 喵!用了新的状态信息~
f"{_observation_summary}\\n---\\n"
f"基于以上信息,你想不想开始在这个群闲聊?\\n"
f"请说明理由,并以 JSON 格式回答,包含 'decision' (布尔值) 和 'reason' (字符串)。\\n"
f'例如:{{"decision": true, "reason": "看起来挺热闹的,插个话"}}\\n'
f'例如:{{"decision": false, "reason": "已经聊了好多,休息一下"}}\\n'
f"请只输出有效的 JSON 对象。"
)
# --- 结束修改 ---
# --- 4. LLM 评估是否想聊 ---
yao_kai_shi_liao_ma, reason = await self._llm_evaluate_state_transition(prompt)
if reason:
if yao_kai_shi_liao_ma:
logger.info(f"{log_prefix} 打算开始聊,原因是: {reason}")
else:
logger.info(f"{log_prefix} 不打算聊,原因是: {reason}")
else:
logger.info(f"{log_prefix} 结果: {yao_kai_shi_liao_ma}")
if yao_kai_shi_liao_ma is None:
logger.debug(f"{log_prefix} 问AI想不想聊失败了这次算了。")
return # 评估失败,结束
if not yao_kai_shi_liao_ma:
# logger.info(f"{log_prefix} 现在不想聊这个群。")
return # 不想聊,结束
# --- 5. AI想聊再次检查额度并尝试转换 ---
# 再次检查以防万一
current_chat_count_before_change = self.count_subflows_by_state_nolock(ChatState.CHAT)
if current_chat_count_before_change < chat_limit:
logger.info(
f"{log_prefix} 想聊,而且还有精力 ({current_chat_count_before_change}/{chat_limit}),这就去聊!"
)
await sub_hf_to_evaluate.change_chat_state(ChatState.CHAT)
# 确认转换成功
if sub_hf_to_evaluate.chat_state.chat_status == ChatState.CHAT:
logger.debug(f"{log_prefix} 成功进入聊天状态!本次评估圆满结束。")
else:
logger.warning(
f"{log_prefix} 奇怪,尝试进入聊天状态失败了。当前状态: {sub_hf_to_evaluate.chat_state.chat_status.value}"
)
else:
logger.warning(
f"{log_prefix} AI说想聊但是刚问完就没空位了 ({current_chat_count_before_change}/{chat_limit})。真不巧,下次再说吧。"
)
# 无论转换成功与否,本次评估都结束了
# 锁在这里自动释放
# --- 新增:单独检查 CHAT 状态超时的任务 ---
async def sbhf_chat_into_absent(self):
"""定期检查处于 CHAT 状态的子心流是否因长时间未发言而超时,并将其转为 ABSENT。"""
log_prefix_task = "[聊天超时检查]"
transitioned_to_absent = 0
checked_count = 0
async with self._lock:
subflows_snapshot = list(self.subheartflows.values())
checked_count = len(subflows_snapshot)
if not subflows_snapshot:
logger.info("当前没有子心流需要评估。")
# logger.debug(f"{log_prefix_task} 没有子心流需要检查超时。")
return
for sub_hf in subflows_snapshot:
# 只检查 CHAT 状态的子心流
if sub_hf.chat_state.chat_status != ChatState.CHAT:
continue
flow_id = sub_hf.subheartflow_id
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
log_prefix = f"[{stream_name}]"
current_subflow_state = sub_hf.chat_state.chat_status
log_prefix = f"[{stream_name}]({log_prefix_task})"
_observation_summary = "没有可用的观察信息。" # 默认值
should_deactivate = False
reason = ""
first_observation = sub_hf.observations[0]
if isinstance(first_observation, ChattingObservation):
# 组合中期记忆和当前聊天内容
await first_observation.observe()
current_chat = first_observation.talking_message_str or "当前无聊天内容。"
combined_summary = f"当前聊天内容:\n{current_chat}"
else:
logger.warning(f"{log_prefix} [{stream_name}] 第一个观察者不是 ChattingObservation 类型。")
try:
# 使用变量名 last_bot_dong_zuo_time 替代 last_bot_activity_time
last_bot_dong_zuo_time = sub_hf.get_normal_chat_last_speak_time()
# --- 获取麦麦状态 ---
mai_state_description = f"你当前状态: {current_mai_state.value}"
if last_bot_dong_zuo_time > 0:
current_time = time.time()
# 使用变量名 time_since_last_bb 替代 time_since_last_reply
time_since_last_bb = current_time - last_bot_dong_zuo_time
# 获取个性化信息
individuality = Individuality.get_instance()
# 构建个性部分
prompt_personality = f"你正在扮演名为{individuality.personality.bot_nickname}的人类,你"
prompt_personality += individuality.personality.personality_core
# 随机添加个性侧面
if individuality.personality.personality_sides:
random_side = random.choice(individuality.personality.personality_sides)
prompt_personality += f"{random_side}"
# 随机添加身份细节
if individuality.identity.identity_detail:
random_detail = random.choice(individuality.identity.identity_detail)
prompt_personality += f"{random_detail}"
# --- 针对 ABSENT 状态 ---
if current_subflow_state == ChatState.ABSENT:
# 构建Prompt
prompt = (
f"{prompt_personality}\n"
f"你当前没有在: [{stream_name}] 群中聊天。\n"
f"{mai_state_description}\n"
f"这个群里最近的聊天内容是:\n---\n{combined_summary}\n---\n"
f"基于以上信息,请判断你是否愿意在这个群开始闲聊,"
f"进入常规聊天(CHAT)状态?\n"
f"给出你的判断,和理由,然后以 JSON 格式回答"
f"包含键 'decision',如果要开始聊天,值为 true ,否则为 false.\n"
f"包含键 'reason',其值为你的理由。\n"
f'例如:{{"decision": true, "reason": "因为我想聊天"}}\n'
f"请只输出有效的 JSON 对象。"
)
# 调用LLM评估
should_activate = await self._llm_evaluate_state_transition(prompt)
if should_activate is None: # 处理解析失败或意外情况
logger.warning(f"{log_prefix}LLM评估返回无效结果跳过。")
continue
if should_activate:
# 检查CHAT限额
# 使用不上锁的版本,因为我们已经在锁内
current_chat_count = self.count_subflows_by_state_nolock(ChatState.CHAT)
if current_chat_count < chat_limit:
if time_since_last_bb > NORMAL_CHAT_TIMEOUT_SECONDS:
should_deactivate = True
reason = f"超过 {NORMAL_CHAT_TIMEOUT_SECONDS / 60:.0f} 分钟没 BB"
logger.info(
f"{log_prefix}LLM建议激活到CHAT状态且未达上限({current_chat_count}/{chat_limit})。正在尝试转换..."
f"{log_prefix} 太久没有发言 ({reason}),不看了。上次活动时间: {last_bot_dong_zuo_time:.0f}"
)
await sub_hf.change_chat_state(ChatState.CHAT)
if sub_hf.chat_state.chat_status == ChatState.CHAT:
transitioned_to_chat += 1
else:
logger.warning(f"{log_prefix}尝试激活到CHAT失败。")
else:
logger.info(
f"{log_prefix}LLM建议激活到CHAT状态但已达到上限({current_chat_count}/{chat_limit})。跳过转换。"
)
else:
logger.info(f"{log_prefix}LLM建议不激活到CHAT状态。")
# else:
# logger.debug(f"{log_prefix} Bot活动时间未超时 ({time_since_last_bb:.0f}s < {NORMAL_CHAT_TIMEOUT_SECONDS}s),保持 CHAT 状态。")
# else:
# 如果没有记录到Bot的活动时间暂时不因为超时而转换状态
# logger.debug(f"{log_prefix} 未找到有效的 Bot 最后活动时间记录,不执行超时检查。")
# --- 针对 CHAT 状态 ---
elif current_subflow_state == ChatState.CHAT:
# 构建Prompt
prompt = (
f"{prompt_personality}\n"
f"你正在在: [{stream_name}] 群中聊天。\n"
f"{mai_state_description}\n"
f"这个群里最近的聊天内容是:\n---\n{combined_summary}\n---\n"
f"基于以上信息,请判断你是否愿意在这个群继续闲聊,"
f"还是暂时离开聊天,进入休眠状态?\n"
f"给出你的判断,和理由,然后以 JSON 格式回答"
f"包含键 'decision',如果要离开聊天,值为 true ,否则为 false.\n"
f"包含键 'reason',其值为你的理由。\n"
f'例如:{{"decision": true, "reason": "因为我想休息"}}\n'
f"请只输出有效的 JSON 对象。"
except AttributeError:
logger.error(
f"{log_prefix} 无法获取 Bot 最后 BB 时间,请确保 SubHeartflow 相关实现正确。跳过超时检查。"
)
except Exception as e:
logger.error(f"{log_prefix} 检查 Bot 超时状态时出错: {e}", exc_info=True)
# 调用LLM评估
should_deactivate = await self._llm_evaluate_state_transition(prompt)
if should_deactivate is None: # 处理解析失败或意外情况
logger.warning(f"{log_prefix}LLM评估返回无效结果跳过。")
continue
if should_deactivate:
logger.info(f"{log_prefix}LLM建议进入ABSENT状态。正在尝试转换...")
await sub_hf.change_chat_state(ChatState.ABSENT)
if sub_hf.chat_state.chat_status == ChatState.ABSENT:
transitioned_to_absent += 1
# --- 执行状态转换(如果超时) ---
if should_deactivate:
logger.debug(f"{log_prefix} 因超时 ({reason}),尝试转换为 ABSENT 状态。")
await sub_hf.change_chat_state(ChatState.ABSENT)
# 再次检查确保状态已改变
if sub_hf.chat_state.chat_status == ChatState.ABSENT:
transitioned_to_absent += 1
logger.info(f"{log_prefix} 不看了。")
else:
logger.info(f"{log_prefix}LLM建议不进入ABSENT状态")
logger.warning(f"{log_prefix} 尝试因超时转换为 ABSENT 失败")
async def _llm_evaluate_state_transition(self, prompt: str) -> Optional[bool]:
if transitioned_to_absent > 0:
logger.debug(
f"{log_prefix_task} 完成,共检查 {checked_count} 个子心流,{transitioned_to_absent} 个因超时转为 ABSENT。"
)
# --- 结束新增 ---
async def _llm_evaluate_state_transition(self, prompt: str) -> Tuple[Optional[bool], Optional[str]]:
"""
使用 LLM 评估是否应进行状态转换,期望 LLM 返回 JSON 格式。
@@ -482,7 +548,7 @@ class SubHeartflowManager:
response_text, _ = await self.llm_state_evaluator.generate_response_async(prompt)
# logger.debug(f"{log_prefix} 使用模型 {self.llm_state_evaluator.model_name} 评估")
logger.debug(f"{log_prefix} 原始输入: {prompt}")
logger.debug(f"{log_prefix} 原始响应: {response_text}")
logger.debug(f"{log_prefix} 原始评估结果: {response_text}")
# --- 解析 JSON 响应 ---
try:
@@ -493,34 +559,36 @@ class SubHeartflowManager:
data = json.loads(cleaned_response)
decision = data.get("decision") # 使用 .get() 避免 KeyError
reason = data.get("reason")
if isinstance(decision, bool):
logger.debug(f"{log_prefix} LLM评估结果 (来自JSON): {'建议转换' if decision else '建议不转换'}")
return decision
return decision, reason
else:
logger.warning(
f"{log_prefix} LLM 返回的 JSON 中 'decision' 键的值不是布尔型: {decision}。响应: {response_text}"
)
return None # 值类型不正确
return None, None # 值类型不正确
except json.JSONDecodeError as json_err:
logger.warning(f"{log_prefix} LLM 返回的响应不是有效的 JSON: {json_err}。响应: {response_text}")
# 尝试在非JSON响应中查找关键词作为后备方案 (可选)
if "true" in response_text.lower():
logger.debug(f"{log_prefix} 在非JSON响应中找到 'true',解释为建议转换")
return True
return True, None
if "false" in response_text.lower():
logger.debug(f"{log_prefix} 在非JSON响应中找到 'false',解释为建议不转换")
return False
return None # JSON 解析失败,也未找到关键词
return False, None
return None, None # JSON 解析失败,也未找到关键词
except Exception as parse_err: # 捕获其他可能的解析错误
logger.warning(f"{log_prefix} 解析 LLM JSON 响应时发生意外错误: {parse_err}。响应: {response_text}")
return None
return None, None
except Exception as e:
logger.error(f"{log_prefix} 调用 LLM 或处理其响应时出错: {e}", exc_info=True)
traceback.print_exc()
return None # LLM 调用或处理失败
return None, None # LLM 调用或处理失败
def count_subflows_by_state(self, state: ChatState) -> int:
"""统计指定状态的子心流数量"""
@@ -579,14 +647,14 @@ class SubHeartflowManager:
# --- 新增:处理 HFC 无回复回调的专用方法 --- #
async def _handle_hfc_no_reply(self, subheartflow_id: Any):
"""处理来自 HeartFChatting 的连续无回复信号 (通过 partial 绑定 ID)"""
# 注意:这里不需要再获取锁,因为 request_absent_transition 内部会处理锁
# 注意:这里不需要再获取锁,因为 sbhf_focus_into_absent 内部会处理锁
logger.debug(f"[管理器 HFC 处理器] 接收到来自 {subheartflow_id} 的 HFC 无回复信号")
await self.request_absent_transition(subheartflow_id)
await self.sbhf_focus_into_absent(subheartflow_id)
# --- 结束新增 --- #
# --- 新增:处理来自 HeartFChatting 的状态转换请求 --- #
async def request_absent_transition(self, subflow_id: Any):
async def sbhf_focus_into_absent(self, subflow_id: Any):
"""
接收来自 HeartFChatting 的请求,将特定子心流的状态转换为 ABSENT。
通常在连续多次 "no_reply" 后被调用。
@@ -606,12 +674,52 @@ class SubHeartflowManager:
# 仅当子心流处于 FOCUSED 状态时才进行转换
# 因为 HeartFChatting 只在 FOCUSED 状态下运行
if current_state == ChatState.FOCUSED:
logger.info(f"[状态转换请求] 接收到请求,将 {stream_name} (当前: {current_state.value}) 转换为 ABSENT")
target_state = ChatState.ABSENT # 默认目标状态
log_reason = "默认转换"
# 决定是去 ABSENT 还是 CHAT
if random.random() < 0.5:
target_state = ChatState.ABSENT
log_reason = "随机选择 ABSENT"
logger.debug(f"[状态转换请求] {stream_name} ({current_state.value}) 随机决定进入 ABSENT")
else:
# 尝试进入 CHAT先检查限制
current_mai_state = self.mai_state_info.get_current_state()
chat_limit = current_mai_state.get_normal_chat_max_num()
# 使用不上锁的版本,因为我们已经在锁内
current_chat_count = self.count_subflows_by_state_nolock(ChatState.CHAT)
if current_chat_count < chat_limit:
target_state = ChatState.CHAT
log_reason = f"随机选择 CHAT (当前 {current_chat_count}/{chat_limit})"
logger.debug(
f"[状态转换请求] {stream_name} ({current_state.value}) 随机决定进入 CHAT未达上限 ({current_chat_count}/{chat_limit})"
)
else:
target_state = ChatState.ABSENT
log_reason = f"随机选择 CHAT 但已达上限 ({current_chat_count}/{chat_limit}),转为 ABSENT"
logger.debug(
f"[状态转换请求] {stream_name} ({current_state.value}) 随机决定进入 CHAT但已达上限 ({current_chat_count}/{chat_limit}),改为进入 ABSENT"
)
# 开始转换
logger.info(
f"[状态转换请求] 接收到请求,将 {stream_name} (当前: {current_state.value}) 尝试转换为 {target_state.value} ({log_reason})"
)
try:
await subflow.change_chat_state(ChatState.ABSENT)
logger.info(f"[状态转换请求] {stream_name} 状态已成功转换为 ABSENT")
await subflow.change_chat_state(target_state)
# 检查最终状态
final_state = subflow.chat_state.chat_status
if final_state == target_state:
logger.debug(f"[状态转换请求] {stream_name} 状态已成功转换为 {final_state.value}")
else:
logger.warning(
f"[状态转换请求] 尝试将 {stream_name} 转换为 {target_state.value} 后,状态实际为 {final_state.value}"
)
except Exception as e:
logger.error(f"[状态转换请求] 转换 {stream_name} 到 ABSENT 时出错: {e}", exc_info=True)
logger.error(
f"[状态转换请求] 转换 {stream_name}{target_state.value} 时出错: {e}", exc_info=True
)
elif current_state == ChatState.ABSENT:
logger.debug(f"[状态转换请求] {stream_name} 已处于 ABSENT 状态,无需转换")
else:

View File

@@ -191,7 +191,7 @@ class Individuality:
获取合并的个体特征prompt
Args:
level (int): 详细程度 (1: 核心/随机细节, 2: 核心+侧面/细节+其他, 3: 全部)
level (int): 详细程度 (1: 核心/随机细节, 2: 核心+随机侧面/全部细节, 3: 全部)
x_person (int, optional): 人称代词 (0: 无人称, 1: 我, 2: 你). 默认为 2.
Returns:

View File

@@ -21,6 +21,7 @@ PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊
【当前对话目标】
{goals_str}
{knowledge_info_str}
【最近行动历史概要】
{action_history_summary}
@@ -33,7 +34,7 @@ PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊
------
可选行动类型以及解释:
fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择
fetch_knowledge: 需要调取知识或记忆,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择
listening: 倾听对方发言,当你认为对方话才说到一半,发言明显未结束时选择
direct_reply: 直接回复对方
rethink_goal: 思考一个对话目标,当你觉得目前对话需要目标,或当前目标不再适用,或话题卡住时选择。注意私聊的环境是灵活的,有可能需要经常选择
@@ -53,6 +54,7 @@ PROMPT_FOLLOW_UP = """{persona_text}。现在你在参与一场QQ私聊刚刚
【当前对话目标】
{goals_str}
{knowledge_info_str}
【最近行动历史概要】
{action_history_summary}
@@ -224,6 +226,41 @@ class ActionPlanner:
logger.error(f"[私聊][{self.private_name}]构建对话目标字符串时出错: {e}")
goals_str = "- 构建对话目标时出错。\n"
# --- 知识信息字符串构建开始 ---
knowledge_info_str = "【已获取的相关知识和记忆】\n"
try:
# 检查 conversation_info 是否有 knowledge_list 并且不为空
if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list:
# 最多只显示最近的 5 条知识,防止 Prompt 过长
recent_knowledge = conversation_info.knowledge_list[-5:]
for i, knowledge_item in enumerate(recent_knowledge):
if isinstance(knowledge_item, dict):
query = knowledge_item.get("query", "未知查询")
knowledge = knowledge_item.get("knowledge", "无知识内容")
source = knowledge_item.get("source", "未知来源")
# 只取知识内容的前 2000 个字,避免太长
knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge
knowledge_info_str += (
f"{i + 1}. 关于 '{query}' 的知识 (来源: {source}):\n {knowledge_snippet}\n"
)
else:
# 处理列表里不是字典的异常情况
knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n"
if not recent_knowledge: # 如果 knowledge_list 存在但为空
knowledge_info_str += "- 暂无相关知识和记忆。\n"
else:
# 如果 conversation_info 没有 knowledge_list 属性,或者列表为空
knowledge_info_str += "- 暂无相关知识记忆。\n"
except AttributeError:
logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。")
knowledge_info_str += "- 获取知识列表时出错。\n"
except Exception as e:
logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}")
knowledge_info_str += "- 处理知识列表时出错。\n"
# --- 知识信息字符串构建结束 ---
# 获取聊天历史记录 (chat_history_text)
chat_history_text = ""
try:
@@ -349,6 +386,7 @@ class ActionPlanner:
time_since_last_bot_message_info=time_since_last_bot_message_info,
timeout_context=timeout_context,
chat_history_text=chat_history_text if chat_history_text.strip() else "还没有聊天记录。",
knowledge_info_str=knowledge_info_str,
)
logger.debug(f"[私聊][{self.private_name}]发送到LLM的最终提示词:\n------\n{prompt}\n------")

View File

@@ -525,9 +525,9 @@ class Conversation:
)
action_successful = True
except Exception as fetch_err:
logger.error(f"[私聊][{self.private_name}]获取知识时出错: {fetch_err}")
logger.error(f"[私聊][{self.private_name}]获取知识时出错: {str(fetch_err)}")
conversation_info.done_action[action_index].update(
{"status": "recall", "final_reason": f"获取知识失败: {fetch_err}"}
{"status": "recall", "final_reason": f"获取知识失败: {str(fetch_err)}"}
)
self.conversation_info.last_successful_reply_action = None # 重置状态

View File

@@ -50,21 +50,18 @@ class MessageStorage(ABC):
class MongoDBMessageStorage(MessageStorage):
"""MongoDB消息存储实现"""
def __init__(self):
self.db = db
async def get_messages_after(self, chat_id: str, message_time: float) -> List[Dict[str, Any]]:
query = {"chat_id": chat_id}
# print(f"storage_check_message: {message_time}")
query["time"] = {"$gt": message_time}
return list(self.db.messages.find(query).sort("time", 1))
return list(db.messages.find(query).sort("time", 1))
async def get_messages_before(self, chat_id: str, time_point: float, limit: int = 5) -> List[Dict[str, Any]]:
query = {"chat_id": chat_id, "time": {"$lt": time_point}}
messages = list(self.db.messages.find(query).sort("time", -1).limit(limit))
messages = list(db.messages.find(query).sort("time", -1).limit(limit))
# 将消息按时间正序排列
messages.reverse()
@@ -73,7 +70,7 @@ class MongoDBMessageStorage(MessageStorage):
async def has_new_messages(self, chat_id: str, after_time: float) -> bool:
query = {"chat_id": chat_id, "time": {"$gt": after_time}}
return self.db.messages.find_one(query) is not None
return db.messages.find_one(query) is not None
# # 创建一个内存消息存储实现,用于测试

View File

@@ -68,16 +68,18 @@ class KnowledgeFetcher:
max_depth=3,
fast_retrieval=False,
)
knowledge = ""
knowledge_text = ""
sources_text = "无记忆匹配" # 默认值
if related_memory:
sources = []
for memory in related_memory:
knowledge += memory[1] + "\n"
knowledge_text += memory[1] + "\n"
sources.append(f"记忆片段{memory[0]}")
knowledge = knowledge.strip(), "".join(sources)
knowledge_text = knowledge_text.strip()
sources_text = "".join(sources)
knowledge += "现在有以下**知识**可供参考:\n "
knowledge += self._lpmm_get_knowledge(query)
knowledge += "请记住这些**知识**,并根据**知识**回答问题。\n"
knowledge_text += "\n现在有以下**知识**可供参考:\n "
knowledge_text += self._lpmm_get_knowledge(query)
knowledge_text += "\n请记住这些**知识**,并根据**知识**回答问题。\n"
return "未找到相关知识", "无记忆匹配"
return knowledge_text or "未找到相关知识", sources_text or "无记忆匹配"

View File

@@ -17,6 +17,9 @@ logger = get_module_logger("reply_generator")
PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊请根据以下信息生成一条回复
当前对话目标:{goals_str}
{knowledge_info_str}
最近的聊天记录:
{chat_history_text}
@@ -25,7 +28,7 @@ PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊
1. 符合对话目标,以""的角度发言(不要自己与自己对话!)
2. 符合你的性格特征和身份细节
3. 通俗易懂自然流畅像正常聊天一样简短通常20字以内除非特殊情况
4. 适当利用相关知识,但不要生硬引用
4. 可以适当利用相关知识,但不要生硬引用
5. 自然、得体,结合聊天记录逻辑合理,且没有重复表达同质内容
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清""和对方说的话,不要把""说的话当做对方说的话,这是你自己说的话。
@@ -39,6 +42,9 @@ PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊
PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊**刚刚你已经发送了一条或多条消息**,现在请根据以下信息再发一条新消息:
当前对话目标:{goals_str}
{knowledge_info_str}
最近的聊天记录:
{chat_history_text}
@@ -47,7 +53,7 @@ PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊
1. 符合对话目标,以""的角度发言(不要自己与自己对话!)
2. 符合你的性格特征和身份细节
3. 通俗易懂自然流畅像正常聊天一样简短通常20字以内除非特殊情况
4. 适当利用相关知识,但不要生硬引用
4. 可以适当利用相关知识,但不要生硬引用
5. 跟之前你发的消息自然的衔接,逻辑合理,且没有重复表达同质内容或部分重叠内容
请注意把握聊天内容,不用太有条理,可以有个性。请分清""和对方说的话,不要把""说的话当做对方说的话,这是你自己说的话。
@@ -131,6 +137,38 @@ class ReplyGenerator:
else:
goals_str = "- 目前没有明确对话目标\n" # 简化无目标情况
# --- 新增:构建知识信息字符串 ---
knowledge_info_str = "【供参考的相关知识和记忆】\n" # 稍微改下标题,表明是供参考
try:
# 检查 conversation_info 是否有 knowledge_list 并且不为空
if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list:
# 最多只显示最近的 5 条知识
recent_knowledge = conversation_info.knowledge_list[-5:]
for i, knowledge_item in enumerate(recent_knowledge):
if isinstance(knowledge_item, dict):
query = knowledge_item.get("query", "未知查询")
knowledge = knowledge_item.get("knowledge", "无知识内容")
source = knowledge_item.get("source", "未知来源")
# 只取知识内容的前 2000 个字
knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge
knowledge_info_str += (
f"{i + 1}. 关于 '{query}' (来源: {source}): {knowledge_snippet}\n" # 格式微调,更简洁
)
else:
knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n"
if not recent_knowledge:
knowledge_info_str += "- 暂无。\n" # 更简洁的提示
else:
knowledge_info_str += "- 暂无。\n"
except AttributeError:
logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。")
knowledge_info_str += "- 获取知识列表时出错。\n"
except Exception as e:
logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}")
knowledge_info_str += "- 处理知识列表时出错。\n"
# 获取聊天历史记录 (chat_history_text)
chat_history_text = observation_info.chat_history_str
if observation_info.new_messages_count > 0 and observation_info.unprocessed_messages:
@@ -162,7 +200,10 @@ class ReplyGenerator:
# --- 格式化最终的 Prompt ---
prompt = prompt_template.format(
persona_text=persona_text, goals_str=goals_str, chat_history_text=chat_history_text
persona_text=persona_text,
goals_str=goals_str,
chat_history_text=chat_history_text,
knowledge_info_str=knowledge_info_str,
)
# --- 调用 LLM 生成 ---

View File

@@ -99,15 +99,20 @@ class ChatBot:
template_group_name = None
async def preprocess():
logger.trace("开始预处理消息...")
# 如果在私聊中
if groupinfo is None:
logger.trace("检测到私聊消息")
# 是否在配置信息中开启私聊模式
if global_config.enable_friend_chat:
logger.trace("私聊模式已启用")
# 是否进入PFC
if global_config.enable_pfc_chatting:
logger.trace("进入PFC私聊处理流程")
userinfo = message.message_info.user_info
messageinfo = message.message_info
# 创建聊天流
logger.trace(f"{userinfo.user_id}创建/获取聊天流")
chat = await chat_manager.get_or_create_stream(
platform=messageinfo.platform,
user_info=userinfo,
@@ -118,9 +123,11 @@ class ChatBot:
await self._create_pfc_chat(message)
# 禁止PFC进入普通的心流消息处理逻辑
else:
logger.trace("进入普通心流私聊处理")
await self.heartflow_processor.process_message(message_data)
# 群聊默认进入心流消息处理逻辑
else:
logger.trace(f"检测到群聊消息群ID: {groupinfo.group_id}")
await self.heartflow_processor.process_message(message_data)
if template_group_name:

View File

@@ -159,16 +159,16 @@ class MessageManager:
logger.warning("Processor task already running.")
return
self._processor_task = asyncio.create_task(self._start_processor_loop())
logger.info("MessageManager processor task started.")
logger.debug("MessageManager processor task started.")
def stop(self):
"""停止后台处理器任务。"""
self._running = False
if hasattr(self, "_processor_task") and not self._processor_task.done():
self._processor_task.cancel()
logger.info("MessageManager processor task stopping.")
logger.debug("MessageManager processor task stopping.")
else:
logger.info("MessageManager processor task not running or already stopped.")
logger.debug("MessageManager processor task not running or already stopped.")
async def get_container(self, chat_id: str) -> MessageContainer:
"""获取或创建聊天流的消息容器 (异步,使用锁)"""

View File

@@ -732,6 +732,9 @@ def translate_timestamp_to_human_readable(timestamp: float, mode: str = "normal"
return f"{int(diff / 86400)}天前:\n"
else:
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp)) + ":\n"
elif mode == "lite":
# 只返回时分秒格式,喵~
return time.strftime("%H:%M:%S", time.localtime(timestamp))
return None

View File

@@ -5,6 +5,7 @@ import hashlib
from typing import Optional
from PIL import Image
import io
import numpy as np
from ...common.database import db
@@ -231,14 +232,16 @@ class ImageManager:
return "[图片]"
@staticmethod
def transform_gif(gif_base64: str) -> str:
"""将GIF转换为水平拼接的静态图像
def transform_gif(gif_base64: str, similarity_threshold: float = 1000.0, max_frames: int = 15) -> Optional[str]:
"""将GIF转换为水平拼接的静态图像, 跳过相似的帧
Args:
gif_base64: GIF的base64编码字符串
similarity_threshold: 判定帧相似的阈值 (MSE)越小表示要求差异越大才算不同帧默认1000.0
max_frames: 最大抽取的帧数默认15
Returns:
str: 拼接后的JPG图像的base64编码字符串
Optional[str]: 拼接后的JPG图像的base64编码字符串, 或者在失败时返回None
"""
try:
# 解码base64
@@ -246,41 +249,88 @@ class ImageManager:
gif = Image.open(io.BytesIO(gif_data))
# 收集所有帧
frames = []
all_frames = []
try:
while True:
gif.seek(len(frames))
gif.seek(len(all_frames))
# 确保是RGB格式方便比较
frame = gif.convert("RGB")
frames.append(frame.copy())
all_frames.append(frame.copy())
except EOFError:
pass
pass # 读完啦
if not frames:
raise ValueError("No frames found in GIF")
if not all_frames:
logger.warning("GIF中没有找到任何帧")
return None # 空的GIF直接返回None
# 计算需要抽取的帧的索引
total_frames = len(frames)
if total_frames <= 15:
selected_frames = frames
else:
# 均匀抽取10帧
indices = [int(i * (total_frames - 1) / 14) for i in range(15)]
selected_frames = [frames[i] for i in indices]
# --- 新的帧选择逻辑 ---
selected_frames = []
last_selected_frame_np = None
# 获取单帧的尺寸
for i, current_frame in enumerate(all_frames):
current_frame_np = np.array(current_frame)
# 第一帧总是要选的
if i == 0:
selected_frames.append(current_frame)
last_selected_frame_np = current_frame_np
continue
# 计算和上一张选中帧的差异(均方误差 MSE
if last_selected_frame_np is not None:
mse = np.mean((current_frame_np - last_selected_frame_np) ** 2)
# logger.trace(f"帧 {i} 与上一选中帧的 MSE: {mse}") # 可以取消注释来看差异值
# 如果差异够大,就选它!
if mse > similarity_threshold:
selected_frames.append(current_frame)
last_selected_frame_np = current_frame_np
# 检查是不是选够了
if len(selected_frames) >= max_frames:
# logger.debug(f"已选够 {max_frames} 帧,停止选择。")
break
# 如果差异不大就跳过这一帧啦
# --- 帧选择逻辑结束 ---
# 如果选择后连一帧都没有比如GIF只有一帧且后续处理失败或者原始GIF就没帧也返回None
if not selected_frames:
logger.warning("处理后没有选中任何帧")
return None
# logger.debug(f"总帧数: {len(all_frames)}, 选中帧数: {len(selected_frames)}")
# 获取选中的第一帧的尺寸(假设所有帧尺寸一致)
frame_width, frame_height = selected_frames[0].size
# 计算目标尺寸,保持宽高比
target_height = 200 # 固定高度
# 防止除以零
if frame_height == 0:
logger.error("帧高度为0无法计算缩放尺寸")
return None
target_width = int((target_height / frame_height) * frame_width)
# 宽度也不能是0
if target_width == 0:
logger.warning(f"计算出的目标宽度为0 (原始尺寸 {frame_width}x{frame_height})调整为1")
target_width = 1
# 调整所有帧的大小
# 调整所有选中帧的大小
resized_frames = [
frame.resize((target_width, target_height), Image.Resampling.LANCZOS) for frame in selected_frames
]
# 创建拼接图像
total_width = target_width * len(resized_frames)
# 防止总宽度为0
if total_width == 0 and len(resized_frames) > 0:
logger.warning("计算出的总宽度为0但有选中帧可能目标宽度太小")
# 至少给点宽度吧
total_width = len(resized_frames)
elif total_width == 0:
logger.error("计算出的总宽度为0且无选中帧")
return None
combined_image = Image.new("RGB", (total_width, target_height))
# 水平拼接图像
@@ -289,14 +339,17 @@ class ImageManager:
# 转换为base64
buffer = io.BytesIO()
combined_image.save(buffer, format="JPEG", quality=85)
combined_image.save(buffer, format="JPEG", quality=85) # 保存为JPEG
result_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
return result_base64
except MemoryError:
logger.error("GIF转换失败: 内存不足可能是GIF太大或帧数太多")
return None # 内存不够啦
except Exception as e:
logger.error(f"GIF转换失败: {str(e)}")
return None
logger.error(f"GIF转换失败: {str(e)}", exc_info=True) # 记录详细错误信息
return None # 其他错误也返回None
# 创建全局单例

View File

@@ -106,7 +106,7 @@ class MaiEmoji:
os.remove(destination_path)
os.rename(source_path, destination_path)
logger.info(f"[移动] 文件从 {source_path} 移动到 {destination_path}")
logger.debug(f"[移动] 文件从 {source_path} 移动到 {destination_path}")
# 更新实例的路径属性为新目录
self.path = EMOJI_REGISTED_DIR
except Exception as move_error:
@@ -131,7 +131,8 @@ class MaiEmoji:
# 使用upsert确保记录存在或被更新
db["emoji"].update_one({"hash": self.hash}, {"$set": emoji_record}, upsert=True)
logger.success(f"[注册] 表情包信息保存到数据库: {self.description}")
logger.success(f"[注册] 表情包信息保存到数据库: {self.emotion}")
return True
@@ -158,7 +159,7 @@ class MaiEmoji:
if os.path.exists(os.path.join(self.path, self.filename)):
try:
os.remove(os.path.join(self.path, self.filename))
logger.info(f"[删除] 文件: {os.path.join(self.path, self.filename)}")
logger.debug(f"[删除] 文件: {os.path.join(self.path, self.filename)}")
except Exception as e:
logger.error(f"[错误] 删除文件失败 {os.path.join(self.path, self.filename)}: {str(e)}")
# 继续执行,即使文件删除失败也尝试删除数据库记录
@@ -168,7 +169,7 @@ class MaiEmoji:
deleted_in_db = result.deleted_count > 0
if deleted_in_db:
logger.success(f"[删除] 成功删除表情包记录: {self.description}")
logger.info(f"[删除] 表情包 {self.filename} 无对应文件,已删除")
# 3. 标记对象已被删除
self.is_deleted = True
@@ -195,7 +196,7 @@ class EmojiManager:
self._scan_task = None
self.vlm = LLMRequest(model=global_config.vlm, temperature=0.3, max_tokens=1000, request_type="emoji")
self.llm_emotion_judge = LLMRequest(
model=global_config.llm_emotion_judge, max_tokens=600, temperature=0.8, request_type="emoji"
model=global_config.llm_normal, max_tokens=600, request_type="emoji"
) # 更高的温度更少的token后续可以根据情绪来调整温度
self.emoji_num = 0
@@ -268,7 +269,7 @@ class EmojiManager:
"""
try:
self._ensure_db()
time_start = time.time()
_time_start = time.time()
# 获取所有表情包
all_emojis = self.emoji_objects
@@ -286,35 +287,41 @@ class EmojiManager:
# 计算与每个emotion标签的相似度取最大值
max_similarity = 0
best_matching_emotion = "" # 记录最匹配的 emotion 喵~
for emotion in emotions:
# 使用编辑距离计算相似度
distance = self._levenshtein_distance(text_emotion, emotion)
max_len = max(len(text_emotion), len(emotion))
similarity = 1 - (distance / max_len if max_len > 0 else 0)
max_similarity = max(max_similarity, similarity)
if similarity > max_similarity: # 如果找到更相似的喵~
max_similarity = similarity
best_matching_emotion = emotion # 就记下这个 emotion 喵~
emoji_similarities.append((emoji, max_similarity))
if best_matching_emotion: # 确保有匹配的情感才添加喵~
emoji_similarities.append((emoji, max_similarity, best_matching_emotion)) # 把 emotion 也存起来喵~
# 按相似度降序排序
emoji_similarities.sort(key=lambda x: x[1], reverse=True)
# 获取前5个最相似的表情包
top_5_emojis = emoji_similarities[:10] if len(emoji_similarities) > 10 else emoji_similarities
# 获取前10个最相似的表情包
top_emojis = (
emoji_similarities[:10] if len(emoji_similarities) > 10 else emoji_similarities
) # 改个名字,更清晰喵~
if not top_5_emojis:
if not top_emojis:
logger.warning("未找到匹配的表情包")
return None
# 从前5个中随机选择一个
selected_emoji, similarity = random.choice(top_5_emojis)
# 从前个中随机选择一个
selected_emoji, similarity, matched_emotion = random.choice(top_emojis) # 把匹配的 emotion 也拿出来喵~
# 更新使用次数
self.record_usage(selected_emoji.hash)
time_end = time.time()
_time_end = time.time()
logger.info(
f"找到[{text_emotion}]表情包,用时:{time_end - time_start:.2f}秒: {selected_emoji.description} (相似度: {similarity:.4f})"
logger.info( # 使用匹配到的 emotion 记录日志喵~
f"[{text_emotion}]找到表情包: {matched_emotion},({similarity:.4f})"
)
return selected_emoji.path, f"[ {selected_emoji.description} ]"
@@ -656,11 +663,11 @@ class EmojiManager:
# 调用大模型进行决策
decision, _ = await self.llm_emotion_judge.generate_response_async(prompt, temperature=0.8)
logger.info(f"[决策] 大模型决策结果: {decision}")
logger.info(f"[决策] 结果: {decision}")
# 解析决策结果
if "不删除" in decision:
logger.info("[决策] 决定不删除任何表情包")
logger.info("[决策] 不删除任何表情包")
return False
# 尝试从决策中提取表情包编号
@@ -673,7 +680,7 @@ class EmojiManager:
emoji_to_delete = selected_emojis[emoji_index]
# 删除选定的表情包
logger.info(f"[决策] 决定删除表情包: {emoji_to_delete.description}")
logger.info(f"[决策] 删除表情包: {emoji_to_delete.description}")
delete_success = await self.delete_emoji(emoji_to_delete.hash)
if delete_success:
@@ -682,7 +689,7 @@ class EmojiManager:
if register_success:
self.emoji_objects.append(new_emoji)
self.emoji_num += 1
logger.success(f"[成功] 注册表情包: {new_emoji.description}")
logger.success(f"[成功] 注册: {new_emoji.filename}")
return True
else:
logger.error(f"[错误] 注册表情包到数据库失败: {new_emoji.filename}")
@@ -719,10 +726,10 @@ class EmojiManager:
# 调用AI获取描述
if image_format == "gif" or image_format == "GIF":
image_base64 = image_manager.transform_gif(image_base64)
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,详细描述一下表情包表达的情感和内容,请关注其幽默和讽刺意味"
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, "jpg")
else:
prompt = "这是一个表情包,请详细描述一下表情包所表达的情感和内容,请关注其幽默和讽刺意味"
prompt = "这是一个表情包,请详细描述一下表情包所表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format)
# 审核表情包
@@ -741,17 +748,22 @@ class EmojiManager:
# 分析情感含义
emotion_prompt = f"""
基于这个表情包的描述:'{description}'请列出1-2个可能的情感标签每个标签用一个词组表示格式如下
幽默的讽刺
悲伤的无奈
愤怒的抗议
愤怒的讽刺
直接输出词组,词组检用逗号分隔。"""
请你识别这个表情包的含义和适用场景给我简短的描述每个描述不要超过15个字
这是一个基于这个表情包的描述:'{description}'
你可以关注其幽默和讽刺意味,动用贴吧,微博,小红书的知识,必须从互联网梗,meme的角度去分析
请直接输出描述,不要出现任何其他内容,如果有多个描述,可以用逗号分隔
"""
emotions_text, _ = await self.llm_emotion_judge.generate_response_async(emotion_prompt, temperature=0.7)
# 处理情感列表
emotions = [e.strip() for e in emotions_text.split(",") if e.strip()]
# 根据情感标签数量随机选择喵~超过5个选3个超过2个选2个
if len(emotions) > 5:
emotions = random.sample(emotions, 3)
elif len(emotions) > 2:
emotions = random.sample(emotions, 2)
return f"[表情包:{description}]", emotions
except Exception as e:
@@ -797,7 +809,7 @@ class EmojiManager:
if register_success:
self.emoji_objects.append(new_emoji)
self.emoji_num += 1
logger.success(f"[成功] 注册表情包: {filename}")
logger.success(f"[成功] 注册: {filename}")
return True
else:
logger.error(f"[错误] 注册表情包到数据库失败: {filename}")
@@ -814,7 +826,7 @@ class EmojiManager:
当目录中文件数超过50时会全部删除
"""
logger.info("[清理] 开始清理临时表情包...")
logger.info("[清理] 开始清理缓存...")
# 清理emoji目录
emoji_dir = os.path.join(BASE_DIR, "emoji")
@@ -826,7 +838,7 @@ class EmojiManager:
file_path = os.path.join(emoji_dir, filename)
if os.path.isfile(file_path):
os.remove(file_path)
logger.debug(f"[清理] 删除表情包文件: {filename}")
logger.debug(f"[清理] 删除: {filename}")
# 清理image目录
image_dir = os.path.join(BASE_DIR, "image")
@@ -838,14 +850,19 @@ class EmojiManager:
file_path = os.path.join(image_dir, filename)
if os.path.isfile(file_path):
os.remove(file_path)
logger.debug(f"[清理] 删除图片文件: {filename}")
logger.debug(f"[清理] 删除图片: {filename}")
logger.success("[清理] 临时文件清理完成")
logger.success("[清理] 完成")
async def clean_unused_emojis(self, emoji_dir, emoji_objects):
"""清理未使用的表情包文件
遍历指定文件夹中的所有文件删除未在emoji_objects列表中的文件
"""
# 首先检查目录是否存在喵~
if not os.path.exists(emoji_dir):
logger.warning(f"[清理] 表情包目录不存在,跳过清理: {emoji_dir}")
return
# 获取所有表情包路径
emoji_paths = {emoji.path for emoji in emoji_objects}

View File

@@ -30,12 +30,14 @@ from src.plugins.moods.moods import MoodManager
from src.individuality.individuality import Individuality
INITIAL_DURATION = 60.0
WAITING_TIME_THRESHOLD = 300 # 等待新消息时间阈值,单位秒
EMOJI_SEND_PRO = 0.3 # 设置一个概率,比如 30% 才真的发
logger = get_logger("interest") # Logger Name Changed
CONSECUTIVE_NO_REPLY_THRESHOLD = 3 # 连续不回复的阈值
logger = get_logger("HFC") # Logger Name Changed
# 默认动作定义
@@ -179,8 +181,6 @@ class HeartFChatting:
其生命周期现在由其关联的 SubHeartflow 的 FOCUSED 状态控制。
"""
CONSECUTIVE_NO_REPLY_THRESHOLD = 3 # 连续不回复的阈值
def __init__(
self,
chat_id: str,
@@ -644,14 +644,14 @@ class HeartFChatting:
self._lian_xu_bu_hui_fu_ci_shu += 1
self._lian_xu_deng_dai_shi_jian += dang_qian_deng_dai # 累加等待时间
logger.debug(
f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{self.CONSECUTIVE_NO_REPLY_THRESHOLD}, "
f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{CONSECUTIVE_NO_REPLY_THRESHOLD}, "
f"本次等待: {dang_qian_deng_dai:.2f}秒, 累计等待: {self._lian_xu_deng_dai_shi_jian:.2f}"
)
# 检查是否同时达到次数和时间阈值
time_threshold = 0.66 * WAITING_TIME_THRESHOLD * self.CONSECUTIVE_NO_REPLY_THRESHOLD
time_threshold = 0.66 * WAITING_TIME_THRESHOLD * CONSECUTIVE_NO_REPLY_THRESHOLD
if (
self._lian_xu_bu_hui_fu_ci_shu >= self.CONSECUTIVE_NO_REPLY_THRESHOLD
self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD
and self._lian_xu_deng_dai_shi_jian >= time_threshold
):
logger.info(
@@ -661,7 +661,7 @@ class HeartFChatting:
)
# 调用回调。注意:这里不重置计数器和时间,依赖回调函数成功改变状态来隐式重置上下文。
await self.on_consecutive_no_reply_callback()
elif self._lian_xu_bu_hui_fu_ci_shu >= self.CONSECUTIVE_NO_REPLY_THRESHOLD:
elif self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD:
# 仅次数达到阈值,但时间未达到
logger.debug(
f"{self.log_prefix} 连续不回复次数达到阈值 ({self._lian_xu_bu_hui_fu_ci_shu}次) "
@@ -979,6 +979,21 @@ class HeartFChatting:
f"{self.log_prefix}[Planner] 恢复了原始动作集, 当前可用: {list(self.action_manager.get_available_actions().keys())}"
)
# --- 结束:确保动作恢复 ---
# --- 新增:概率性忽略文本回复附带的表情(正确的位置)---
if action == "text_reply" and emoji_query:
logger.debug(f"{self.log_prefix}[Planner] 大模型想让麦麦发文字时带表情: '{emoji_query}'")
# 掷骰子看看要不要听它的
if random.random() > EMOJI_SEND_PRO:
logger.info(
f"{self.log_prefix}[Planner] 但是麦麦这次不想加表情 ({1 - EMOJI_SEND_PRO:.0%}),忽略表情 '{emoji_query}'"
)
emoji_query = "" # 把表情请求清空,就不发了
else:
logger.info(f"{self.log_prefix}[Planner] 好吧,加上表情 '{emoji_query}'")
# --- 结束:概率性忽略 ---
# --- 结束 LLM 决策 --- #
return {

View File

@@ -69,7 +69,7 @@ def init_prompt():
2. 文字回复(text_reply)适用:
- 有实质性内容需要表达
- 有人提到你,但你还没有回应他
- 可以追加emoji_query表达情绪(格式:情绪描述,如"俏皮的调侃")
- 可以追加emoji_query表达情绪(emoji_query填写表情包的适用场合也就是当前场合)
- 不要追加太多表情
3. 纯表情回复(emoji_reply)适用:
@@ -174,7 +174,7 @@ class PromptBuilder:
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.MAX_CONTEXT_SIZE,
limit=global_config.observation_context_size,
)
chat_talking_prompt = await build_readable_messages(
@@ -242,6 +242,8 @@ class PromptBuilder:
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
)
logger.debug(f"focus_chat_prompt: \n{prompt}")
return prompt
async def _build_prompt_normal(self, chat_stream, message_txt: str, sender_name: str = "某人") -> tuple[str, str]:
@@ -255,15 +257,15 @@ class PromptBuilder:
who_chat_in_group += get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
limit=global_config.MAX_CONTEXT_SIZE,
limit=global_config.observation_context_size,
)
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += await relationship_manager.build_relationship_info(person)
print(f"relation_prompt: {relation_prompt}")
# print(f"relation_prompt: {relation_prompt}")
print(f"relat11111111ion_prompt: {relation_prompt}")
# print(f"relat11111111ion_prompt: {relation_prompt}")
# 心情
mood_manager = MoodManager.get_instance()
@@ -314,7 +316,7 @@ class PromptBuilder:
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.MAX_CONTEXT_SIZE,
limit=global_config.observation_context_size,
)
chat_talking_prompt = await build_readable_messages(

View File

@@ -44,6 +44,8 @@ class NormalChat:
# 存储此实例的兴趣监控任务
self.start_time = time.time()
self.last_speak_time = 0
self._chat_task: Optional[asyncio.Task] = None
logger.info(f"[{self.stream_name}] NormalChat 实例初始化完成。")
@@ -119,6 +121,8 @@ class NormalChat:
await message_manager.add_message(message_set)
self.last_speak_time = time.time()
return first_bot_msg
# 改为实例方法

View File

@@ -29,7 +29,7 @@ class NormalChatGenerator:
)
self.model_sum = LLMRequest(
model=global_config.llm_summary_by_topic, temperature=0.7, max_tokens=3000, request_type="relation"
model=global_config.llm_summary, temperature=0.7, max_tokens=3000, request_type="relation"
)
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"

View File

@@ -11,6 +11,9 @@ from .lpmmconfig import global_config
from .utils.dyn_topk import dyn_select_top_k
MAX_KNOWLEDGE_LENGTH = 10000 # 最大知识长度
class QAManager:
def __init__(
self,
@@ -112,8 +115,10 @@ class QAManager:
for res in query_res
]
found_knowledge = "\n".join(
[f"{i + 1}条知识:{k[1]}\n 该条知识对于问题的相关性:{k[0]}" for i, k in enumerate(knowledge)]
[f"{i + 1}条知识:{k[0]}\n 该条知识对于问题的相关性:{k[1]}" for i, k in enumerate(knowledge)]
)
if len(found_knowledge) > MAX_KNOWLEDGE_LENGTH:
found_knowledge = found_knowledge[:MAX_KNOWLEDGE_LENGTH] + "\n"
return found_knowledge
else:
logger.info("LPMM知识库并未初始化使用旧版数据库进行检索")

View File

@@ -189,7 +189,7 @@ class Hippocampus:
def __init__(self):
self.memory_graph = MemoryGraph()
self.llm_topic_judge = None
self.llm_summary_by_topic = None
self.llm_summary = None
self.entorhinal_cortex = None
self.parahippocampal_gyrus = None
self.config = None
@@ -203,7 +203,7 @@ class Hippocampus:
# 从数据库加载记忆图
self.entorhinal_cortex.sync_memory_from_db()
self.llm_topic_judge = LLMRequest(self.config.llm_topic_judge, request_type="memory")
self.llm_summary_by_topic = LLMRequest(self.config.llm_summary_by_topic, request_type="memory")
self.llm_summary = LLMRequest(self.config.llm_summary, request_type="memory")
def get_all_node_names(self) -> list:
"""获取记忆图中所有节点的名字列表"""
@@ -1169,7 +1169,7 @@ class ParahippocampalGyrus:
# 调用修改后的 topic_what不再需要 time_info
topic_what_prompt = self.hippocampus.topic_what(input_text, topic)
try:
task = self.hippocampus.llm_summary_by_topic.generate_response_async(topic_what_prompt)
task = self.hippocampus.llm_summary.generate_response_async(topic_what_prompt)
tasks.append((topic.strip(), task))
except Exception as e:
logger.error(f"生成话题 '{topic}' 的摘要时发生错误: {e}")

View File

@@ -24,7 +24,7 @@ class MemoryConfig:
consolidate_memory_interval: int # 记忆整合间隔
llm_topic_judge: str # 话题判断模型
llm_summary_by_topic: str # 话题总结模型
llm_summary: str # 话题总结模型
@classmethod
def from_global_config(cls, global_config):
@@ -44,7 +44,5 @@ class MemoryConfig:
consolidate_memory_percentage=getattr(global_config, "consolidate_memory_percentage", 0.01),
consolidate_memory_interval=getattr(global_config, "consolidate_memory_interval", 1000),
llm_topic_judge=getattr(global_config, "llm_topic_judge", "default_judge_model"), # 添加默认模型名
llm_summary_by_topic=getattr(
global_config, "llm_summary_by_topic", "default_summary_model"
), # 添加默认模型名
llm_summary=getattr(global_config, "llm_summary", "default_summary_model"), # 添加默认模型名
)

View File

@@ -632,7 +632,7 @@ class LLMRequest:
**params_copy,
}
if "max_tokens" not in payload and "max_completion_tokens" not in payload:
payload["max_tokens"] = global_config.max_response_length
payload["max_tokens"] = global_config.model_max_output_length
# 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload:
payload["max_completion_tokens"] = payload.pop("max_tokens")

View File

@@ -282,10 +282,10 @@ class RelationshipManager:
if is_id:
person_id = person
else:
print(f"person: {person}")
# print(f"person: {person}")
person_id = person_info_manager.get_person_id(person[0], person[1])
person_name = await person_info_manager.get_value(person_id, "person_name")
print(f"person_name: {person_name}")
# print(f"person_name: {person_name}")
relationship_value = await person_info_manager.get_value(person_id, "relationship_value")
level_num = self.calculate_level_num(relationship_value)

View File

@@ -8,13 +8,12 @@ from typing import List
class InfoCatcher:
def __init__(self):
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文
self.context_length = global_config.MAX_CONTEXT_SIZE
self.chat_history_in_thinking = [] # 思考期间的聊天内容
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文喵~
self.context_length = global_config.observation_context_size
self.chat_history_in_thinking = [] # 思考期间的聊天内容喵~
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文喵~
self.chat_id = ""
self.response_mode = global_config.response_mode
self.trigger_response_text = ""
self.response_text = ""
@@ -36,10 +35,10 @@ class InfoCatcher:
"model": "",
}
# 使用字典来存储 reasoning 模式的数据
# 使用字典来存储 reasoning 模式的数据喵~
self.reasoning_data = {"thinking_log": "", "prompt": "", "response": "", "model": ""}
# 耗时
# 耗时喵~
self.timing_results = {
"interested_rate_time": 0,
"sub_heartflow_observe_time": 0,
@@ -73,15 +72,25 @@ class InfoCatcher:
self.heartflow_data["sub_heartflow_now"] = current_mind
def catch_after_llm_generated(self, prompt: str, response: str, reasoning_content: str = "", model_name: str = ""):
if self.response_mode == "heart_flow":
self.heartflow_data["prompt"] = prompt
self.heartflow_data["response"] = response
self.heartflow_data["model"] = model_name
elif self.response_mode == "reasoning":
self.reasoning_data["thinking_log"] = reasoning_content
self.reasoning_data["prompt"] = prompt
self.reasoning_data["response"] = response
self.reasoning_data["model"] = model_name
# if self.response_mode == "heart_flow": # 条件判断不需要了喵~
# self.heartflow_data["prompt"] = prompt
# self.heartflow_data["response"] = response
# self.heartflow_data["model"] = model_name
# elif self.response_mode == "reasoning": # 条件判断不需要了喵~
# self.reasoning_data["thinking_log"] = reasoning_content
# self.reasoning_data["prompt"] = prompt
# self.reasoning_data["response"] = response
# self.reasoning_data["model"] = model_name
# 直接记录信息喵~
self.reasoning_data["thinking_log"] = reasoning_content
self.reasoning_data["prompt"] = prompt
self.reasoning_data["response"] = response
self.reasoning_data["model"] = model_name
# 如果 heartflow 数据也需要通用字段,可以取消下面的注释喵~
# self.heartflow_data["prompt"] = prompt
# self.heartflow_data["response"] = response
# self.heartflow_data["model"] = model_name
self.response_text = response
@@ -172,13 +181,13 @@ class InfoCatcher:
}
def done_catch(self):
"""将收集到的信息存储到数据库的 thinking_log 集合中"""
"""将收集到的信息存储到数据库的 thinking_log 集合中喵~"""
try:
# 将消息对象转换为可序列化的字典
# 将消息对象转换为可序列化的字典喵~
thinking_log_data = {
"chat_id": self.chat_id,
"response_mode": self.response_mode,
# "response_mode": self.response_mode, # 这个也删掉喵~
"trigger_text": self.trigger_response_text,
"response_text": self.response_text,
"trigger_info": {
@@ -195,18 +204,20 @@ class InfoCatcher:
"chat_history_after_response": self.message_list_to_dict(self.chat_history_after_response),
}
# 根据不同的响应模式添加相应的数据
if self.response_mode == "heart_flow":
thinking_log_data["mode_specific_data"] = self.heartflow_data
elif self.response_mode == "reasoning":
thinking_log_data["mode_specific_data"] = self.reasoning_data
# 根据不同的响应模式添加相应的数据喵~ # 现在直接都加上去好了喵~
# if self.response_mode == "heart_flow":
# thinking_log_data["mode_specific_data"] = self.heartflow_data
# elif self.response_mode == "reasoning":
# thinking_log_data["mode_specific_data"] = self.reasoning_data
thinking_log_data["heartflow_data"] = self.heartflow_data
thinking_log_data["reasoning_data"] = self.reasoning_data
# 将数据插入到 thinking_log 集合中
# 将数据插入到 thinking_log 集合中喵~
db.thinking_log.insert_one(thinking_log_data)
return True
except Exception as e:
print(f"存储思考日志时出错: {str(e)}")
print(f"存储思考日志时出错: {str(e)} 喵~")
print(traceback.format_exc())
return False

View File

@@ -1,6 +1,7 @@
import json
import logging
from typing import Any, Dict, TypeVar, List, Union, Tuple
import ast
# 定义类型变量用于泛型类型提示
T = TypeVar("T")
@@ -12,6 +13,7 @@ logger = logging.getLogger("json_utils")
def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
"""
安全地解析JSON字符串出错时返回默认值
现在尝试处理单引号和标准JSON
参数:
json_str: 要解析的JSON字符串
@@ -20,16 +22,34 @@ def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
返回:
解析后的Python对象或在解析失败时返回default_value
"""
if not json_str:
if not json_str or not isinstance(json_str, str):
logger.warning(f"safe_json_loads 接收到非字符串输入: {type(json_str)}, 值: {json_str}")
return default_value
try:
# 尝试标准的 JSON 解析
return json.loads(json_str)
except json.JSONDecodeError as e:
logger.error(f"JSON解析失败: {e}, JSON字符串: {json_str[:100]}...")
return default_value
except json.JSONDecodeError:
# 如果标准解析失败,尝试将单引号替换为双引号再解析
# (注意:这种替换可能不安全,如果字符串内容本身包含引号)
# 更安全的方式是用 ast.literal_eval
try:
# logger.debug(f"标准JSON解析失败尝试用 ast.literal_eval 解析: {json_str[:100]}...")
result = ast.literal_eval(json_str)
# 确保结果是字典(因为我们通常期望参数是字典)
if isinstance(result, dict):
return result
else:
logger.warning(f"ast.literal_eval 解析成功但结果不是字典: {type(result)}, 内容: {result}")
return default_value
except (ValueError, SyntaxError, MemoryError, RecursionError) as ast_e:
logger.error(f"使用 ast.literal_eval 解析失败: {ast_e}, 字符串: {json_str[:100]}...")
return default_value
except Exception as e:
logger.error(f"使用 ast.literal_eval 解析时发生意外错误: {e}, 字符串: {json_str[:100]}...")
return default_value
except Exception as e:
logger.error(f"JSON解析过程中发生意外错误: {e}")
logger.error(f"JSON解析过程中发生意外错误: {e}, 字符串: {json_str[:100]}...")
return default_value
@@ -177,25 +197,27 @@ def process_llm_tool_calls(
if "name" not in func_details or not isinstance(func_details.get("name"), str):
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'name'或类型不正确: {func_details}")
continue
if "arguments" not in func_details or not isinstance(
func_details.get("arguments"), str
): # 参数是字符串形式的JSON
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'arguments'或类型不正确: {func_details}")
# 验证参数 'arguments'
args_value = func_details.get("arguments")
# 1. 检查 arguments 是否存在且是字符串
if args_value is None or not isinstance(args_value, str):
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'arguments'字符串: {func_details}")
continue
# 可选尝试解析参数JSON确保其有效
args_str = func_details["arguments"]
try:
json.loads(args_str) # 尝试解析,但不存储结果
except json.JSONDecodeError as e:
# 2. 尝试安全地解析 arguments 字符串
parsed_args = safe_json_loads(args_value, None)
# 3. 检查解析结果是否为字典
if parsed_args is None or not isinstance(parsed_args, dict):
logger.warning(
f"{log_prefix}工具调用[{i}]的'arguments'不是有效的JSON字符串: {e}, 内容: {args_str[:100]}..."
f"{log_prefix}工具调用[{i}]的'arguments'无法解析为有效的JSON字典, "
f"原始字符串: {args_value[:100]}..., 解析结果类型: {type(parsed_args).__name__}"
)
continue
except Exception as e:
logger.warning(f"{log_prefix}解析工具调用[{i}]的'arguments'时发生意外错误: {e}, 内容: {args_str[:100]}...")
continue
# 如果检查通过,将原始的 tool_call 加入有效列表
valid_tool_calls.append(tool_call)
if not valid_tool_calls and tool_calls: # 如果原始列表不为空,但验证后为空

View File

@@ -64,6 +64,9 @@ class ClassicalWillingManager(BaseWillingManager):
self.chat_reply_willing[chat_id] = max(0, current_willing - 1.8)
async def after_generate_reply_handle(self, message_id):
if message_id not in self.ongoing_messages:
return
chat_id = self.ongoing_messages[message_id].chat_id
current_willing = self.chat_reply_willing.get(chat_id, 0)
if current_willing < 1:

View File

@@ -77,7 +77,7 @@ class BaseWillingManager(ABC):
if not issubclass(manager_class, cls):
raise TypeError(f"Manager class {manager_class.__name__} is not a subclass of {cls.__name__}")
else:
logger.info(f"成功载入willing模式:{manager_type}")
logger.info(f"普通回复模式:{manager_type}")
return manager_class()
except (ImportError, AttributeError, TypeError) as e:
module = importlib.import_module(".mode_classical", __package__)
@@ -110,7 +110,7 @@ class BaseWillingManager(ABC):
def delete(self, message_id: str):
del_message = self.ongoing_messages.pop(message_id, None)
if not del_message:
logger.debug(f"删除异常,当前消息{message_id}不存在")
logger.debug(f"尝试删除不存在的消息 ID: {message_id},可能已被其他流程处理,喵~")
@abstractmethod
async def async_task_starter(self) -> None:

View File

@@ -1,5 +1,5 @@
[inner]
version = "1.5.1"
version = "1.6.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更
@@ -65,33 +65,14 @@ time_zone = "Asia/Shanghai" # 给你的机器人设置时区,可以解决运
[platforms] # 必填项目,填写每个平台适配器提供的链接
nonebot-qq="http://127.0.0.1:18002/api/message"
[response] #群聊的回复策略
#一般回复参数
model_reasoning_probability = 0.7 # 麦麦回答时选择推理模型 模型的概率
model_normal_probability = 0.3 # 麦麦回答时选择一般模型 模型的概率
[heartflow]
allow_focus_mode = true # 是否允许进入FOCUSED状态
# 是否启用heart_flowC(心流聊天,HFC)模式
[chat] #麦麦的聊天通用设置
allow_focus_mode = true # 是否允许专注聊天状态
# 是否启用heart_flowC(HFC)模式
# 启用后麦麦会自主选择进入heart_flowC模式(持续一段时间进行主动的观察和回复并给出回复比较消耗token
reply_trigger_threshold = 3.0 # 心流聊天触发阈值,越低越容易进入心流聊天
probability_decay_factor_per_second = 0.2 # 概率衰减因子,越大衰减越快,越高越容易退出心流聊天
default_decay_rate_per_second = 0.98 # 默认衰减率,越大衰减越快,越高越难进入心流聊天
base_normal_chat_num = 3 # 最多允许多少个群进行普通聊天
base_focused_chat_num = 2 # 最多允许多少个群进行专注聊天
sub_heart_flow_stop_time = 500 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
observation_context_size = 20 # 心流观察到的最长上下文大小,超过这个值的上下文会被压缩
compressed_length = 5 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5
compress_length_limit = 5 #最多压缩份数,超过该数值的压缩上下文会被删除
[message]
max_context_size = 12 # 麦麦回复时获得的上文数量建议12太短太长都会导致脑袋尖尖
emoji_chance = 0.2 # 麦麦一般回复时使用表情包的概率设置为1让麦麦自己决定发不发
thinking_timeout = 100 # 麦麦最长思考时间超过这个时间的思考会放弃往往是api反应太慢
max_response_length = 256 # 麦麦单次回答的最大token数
observation_context_size = 15 # 观察到的最长上下文大小,建议15太短太长都会导致脑袋尖尖
message_buffer = true # 启用消息缓冲器?启用此项以解决消息的拆分问题,但会使麦麦的回复延迟
# 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息
@@ -106,7 +87,14 @@ ban_msgs_regex = [
# "\\[CQ:at,qq=\\d+\\]" # 匹配@
]
[willing] # 一般回复模式的回复意愿设置
[normal_chat] #普通聊天
#一般回复参数
model_reasoning_probability = 0.7 # 麦麦回答时选择推理模型 模型的概率
model_normal_probability = 0.3 # 麦麦回答时选择一般模型 模型的概率
emoji_chance = 0.2 # 麦麦一般回复时使用表情包的概率设置为1让麦麦自己决定发不发
thinking_timeout = 100 # 麦麦最长思考时间超过这个时间的思考会放弃往往是api反应太慢
willing_mode = "classical" # 回复意愿模式 —— 经典模式classical动态模式dynamicmxp模式mxp自定义模式custom需要你自己实现
response_willing_amplifier = 1 # 麦麦回复意愿放大系数一般为1
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
@@ -115,6 +103,16 @@ emoji_response_penalty = 0 # 表情包回复惩罚系数设为0为不回复
mentioned_bot_inevitable_reply = false # 提及 bot 必然回复
at_bot_inevitable_reply = false # @bot 必然回复
[focus_chat] #专注聊天
reply_trigger_threshold = 3.5 # 专注聊天触发阈值,越低越容易进入专注聊天
default_decay_rate_per_second = 0.98 # 默认衰减率,越大衰减越快,越高越难进入专注聊天
consecutive_no_reply_threshold = 3 # 连续不回复的阈值,越低越容易结束专注聊天
# 以下选项暂时无效
compressed_length = 5 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5
compress_length_limit = 5 #最多压缩份数,超过该数值的压缩上下文会被删除
[emoji]
max_emoji_num = 40 # 表情包最大数量
max_reach_deletion = true # 开启则在达到最大数量时删除表情包,关闭则达到最大数量时不删除,只是不会继续收集表情包
@@ -181,6 +179,8 @@ response_max_length = 256 # 回复允许的最大长度
response_max_sentence_num = 4 # 回复允许的最大句子数
enable_kaomoji_protection = false # 是否启用颜文字保护
model_max_output_length = 256 # 模型单次返回的最大token数
[remote] #发送统计信息,主要是看全球有多少只麦麦
enable = true
@@ -197,55 +197,44 @@ pfc_chatting = false # 是否启用PFC聊天该功能仅作用于私聊
# stream = <true|false> : 用于指定模型是否是使用流式输出
# 如果不指定,则该项是 False
[model.llm_reasoning] #只在回复模式为reasoning时启用
#这个模型必须是推理模型
[model.llm_reasoning] # 一般聊天模式的推理回复模型
name = "Pro/deepseek-ai/DeepSeek-R1"
# name = "Qwen/QwQ-32B"
provider = "SILICONFLOW"
pri_in = 4 #模型的输入价格(非必填,可以记录消耗)
pri_out = 16 #模型的输出价格(非必填,可以记录消耗)
pri_in = 1.0 #模型的输入价格(非必填,可以记录消耗)
pri_out = 4.0 #模型的输出价格(非必填,可以记录消耗)
#非推理模型
[model.llm_normal] #V3 回复模型1 主要回复模型默认temp 0.2 如果你使用的是老V3或者其他模型请自己修改temp参数
[model.llm_normal] #V3 回复模型 专注和一般聊天模式共用的回复模型
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2 #模型的输入价格(非必填,可以记录消耗)
pri_out = 8 #模型的输出价格(非必填,可以记录消耗)
#默认temp 0.2 如果你使用的是老V3或者其他模型请自己修改temp参数
temp = 0.2 #模型的温度新V3建议0.1-0.3
[model.llm_emotion_judge] #表情包判断
name = "Qwen/Qwen2.5-14B-Instruct"
provider = "SILICONFLOW"
pri_in = 0.7
pri_out = 0.7
[model.llm_topic_judge] #记忆主题判断建议使用qwen2.5 7b
[model.llm_topic_judge] #主题判断模型建议使用qwen2.5 7b
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
pri_in = 0.35
pri_out = 0.35
[model.llm_summary_by_topic] #概括模型建议使用qwen2.5 32b 及以上
[model.llm_summary] #概括模型建议使用qwen2.5 32b 及以上
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
[model.llm_tool_use] #工具调用模型需要使用支持工具调用的模型建议使用qwen2.5 32b
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
# 识图模型
[model.vlm] #图像识别
[model.vlm] # 图像识别模型
name = "Pro/Qwen/Qwen2.5-VL-7B-Instruct"
provider = "SILICONFLOW"
pri_in = 0.35
pri_out = 0.35
[model.llm_heartflow] # 用于控制麦麦是否参与聊天的模型
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
[model.llm_observation] #观察模型,压缩聊天内容,建议用免费的
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
@@ -254,19 +243,18 @@ provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
[model.llm_sub_heartflow] #心流:认真水群时,生成麦麦的内心想法
name = "Qwen/Qwen2.5-72B-Instruct"
[model.llm_sub_heartflow] #心流:认真水群时,生成麦麦的内心想法,必须使用具有工具调用能力的模型
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 4.13
pri_out = 4.13
temp = 0.7 #模型的温度新V3建议0.1-0.3
pri_in = 2
pri_out = 8
temp = 0.3 #模型的温度新V3建议0.1-0.3
[model.llm_plan] #决策模型:认真水群时,负责决定麦麦该做什么
name = "Qwen/Qwen2.5-32B-Instruct"
[model.llm_plan] #决策:认真水群时,负责决定麦麦该做什么
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 1.26
pri_out = 1.26
pri_in = 2
pri_out = 8
#嵌入模型
@@ -303,11 +291,13 @@ pri_in = 2
pri_out = 8
#模型暂时没有使用!!
#模型暂时没有使用!!
#模型暂时没有使用!!
[model.llm_heartflow] #心流
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
#以下模型暂时没有使用!!
#以下模型暂时没有使用!!
#以下模型暂时没有使用!!
#以下模型暂时没有使用!!
#以下模型暂时没有使用!!
[model.llm_tool_use] #工具调用模型需要使用支持工具调用的模型建议使用qwen2.5 32b
name = "Qwen/Qwen2.5-32B-Instruct"
provider = "SILICONFLOW"
pri_in = 1.26

View File

@@ -0,0 +1,26 @@
@echo off
CHCP 65001 > nul
setlocal enabledelayedexpansion
REM 查找venv虚拟环境
set "venv_path=%~dp0venv\Scripts\activate.bat"
if not exist "%venv_path%" (
echo 错误: 未找到虚拟环境请确保venv目录存在
pause
exit /b 1
)
REM 激活虚拟环境
call "%venv_path%"
if %ERRORLEVEL% neq 0 (
echo 错误: 虚拟环境激活失败
pause
exit /b 1
)
echo 虚拟环境已激活,正在启动 GUI...
REM 运行 Python 脚本
python scripts/interest_monitor_gui.py
pause