Merge branch 'MaiM-with-u:dev' into dev
This commit is contained in:
31
README.md
31
README.md
@@ -61,7 +61,7 @@
|
||||
|
||||
### 📢 版本信息
|
||||
|
||||
**最新版本: v0.6.2** ([查看更新日志](changelogs/changelog.md))
|
||||
**最新版本: v0.6.3** ([查看更新日志](changelogs/changelog.md))
|
||||
> [!WARNING]
|
||||
> 请阅读教程后更新!!!!!!!
|
||||
> 请阅读教程后更新!!!!!!!
|
||||
@@ -110,19 +110,20 @@
|
||||
- [🚀 最新版本部署教程](https://docs.mai-mai.org/manual/deployment/mmc_deploy_windows.html) - 基于MaiCore的新版本部署方式(与旧版本不兼容)
|
||||
|
||||
|
||||
## 🎯 功能介绍
|
||||
## 🎯 0.6.3 功能介绍
|
||||
|
||||
| 模块 | 主要功能 | 特点 |
|
||||
|----------|------------------------------------------------------------------|-------|
|
||||
| 💬 聊天系统 | • 心流/推理聊天<br>• 关键词主动发言<br>• 多模型支持<br>• 动态prompt构建<br>• 私聊功能(PFC) | 拟人化交互 |
|
||||
| 🧠 心流系统 | • 实时思考生成<br>• 自动启停机制<br>• 日程系统联动<br>• 工具调用能力 | 智能化决策 |
|
||||
| 🧠 记忆系统 | • 优化记忆抽取<br>• 海马体记忆机制<br>• 聊天记录概括 | 持久化记忆 |
|
||||
| 😊 表情系统 | • 情绪匹配发送<br>• GIF支持<br>• 自动收集与审查 | 丰富表达 |
|
||||
| 💬 聊天系统 | • **统一调控不同回复逻辑**<br>• 智能交互模式 (普通聊天/专注聊天)<br>• 关键词主动发言<br>• 多模型支持<br>• 动态prompt构建<br>• 私聊功能(PFC)增强 | 拟人化交互 |
|
||||
| 🧠 心流系统 | • 实时思考生成<br>• **智能状态管理**<br>• **概率回复机制**<br>• 自动启停机制<br>• 日程系统联动<br>• **上下文感知工具调用** | 智能化决策 |
|
||||
| 🧠 记忆系统 | • **记忆整合与提取**<br>• 海马体记忆机制<br>• 聊天记录概括 | 持久化记忆 |
|
||||
| 😊 表情系统 | • **全新表情包系统**<br>• **优化选择逻辑**<br>• 情绪匹配发送<br>• GIF支持<br>• 自动收集与审查 | 丰富表达 |
|
||||
| 📅 日程系统 | • 动态日程生成<br>• 自定义想象力<br>• 思维流联动 | 智能规划 |
|
||||
| 👥 关系系统 | • 关系管理优化<br>• 丰富接口支持<br>• 个性化交互 | 深度社交 |
|
||||
| 👥 关系系统 | • **工具调用动态更新**<br>• 关系管理优化<br>• 丰富接口支持<br>• 个性化交互 | 深度社交 |
|
||||
| 📊 统计系统 | • 使用数据统计<br>• LLM调用记录<br>• 实时控制台显示 | 数据可视 |
|
||||
| 🔧 系统功能 | • 优雅关闭机制<br>• 自动数据保存<br>• 异常处理完善 | 稳定可靠 |
|
||||
| 🛠️ 工具系统 | • 知识获取工具<br>• 自动注册机制<br>• 多工具支持 | 扩展功能 |
|
||||
| 🛠️ 工具系统 | • **LPMM知识库集成**<br>• **上下文感知调用**<br>• 知识获取工具<br>• 自动注册机制<br>• 多工具支持 | 扩展功能 |
|
||||
| 📚 **知识库(LPMM)** | • **全新LPMM系统**<br>• **强大的信息检索能力** | 知识增强 |
|
||||
| ✨ **昵称系统** | • **自动为群友取昵称**<br>• **降低认错人概率** (早期阶段) | 身份识别 |
|
||||
|
||||
## 📐 项目架构
|
||||
|
||||
@@ -142,18 +143,6 @@ graph TD
|
||||
E --> M[情绪识别]
|
||||
```
|
||||
|
||||
|
||||
## 开发计划TODO:LIST
|
||||
|
||||
- 人格功能:WIP
|
||||
- 对特定对象的侧写功能
|
||||
- 图片发送,转发功能:WIP
|
||||
- 幽默和meme功能:WIP
|
||||
- 兼容gif的解析和保存
|
||||
- 小程序转发链接解析
|
||||
- 修复已知bug
|
||||
- 自动生成的回复逻辑,例如自生成的回复方向,回复风格
|
||||
|
||||
## ✍️如何给本项目报告BUG/提交建议/做贡献
|
||||
|
||||
MaiCore是一个开源项目,我们非常欢迎你的参与。你的贡献,无论是提交bug报告、功能需求还是代码pr,都对项目非常宝贵。我们非常感谢你的支持!🎉 但无序的讨论会降低沟通效率,进而影响问题的解决速度,因此在提交任何贡献前,请务必先阅读本项目的[贡献指南](depends-data/CONTRIBUTE.md)(待补完)
|
||||
|
||||
@@ -33,7 +33,7 @@
|
||||
- 调整了部分配置项的默认值
|
||||
- 调整了配置项的顺序,将 `groups` 配置项移到了更靠前的位置
|
||||
- 在 `message` 配置项中:
|
||||
- 新增了 `max_response_length` 参数
|
||||
- 新增了 `model_max_output_length` 参数
|
||||
- 在 `willing` 配置项中新增了 `emoji_response_penalty` 参数
|
||||
- 将 `personality` 配置项中的 `prompt_schedule` 重命名为 `prompt_schedule_gen`
|
||||
|
||||
|
||||
@@ -344,9 +344,6 @@ class InterestMonitorApp:
|
||||
self.stream_last_active[stream_id] = subflow_entry.get(
|
||||
"chat_state_changed_time"
|
||||
) # 存储原始时间戳
|
||||
self.stream_last_interaction[stream_id] = subflow_entry.get(
|
||||
"last_interaction_time"
|
||||
) # 存储原始时间戳
|
||||
|
||||
# 添加数据点 (使用顶层时间戳)
|
||||
new_stream_history[stream_id].append((entry_timestamp, interest_level_float))
|
||||
|
||||
@@ -47,7 +47,7 @@ class BotConfig:
|
||||
MAX_CONTEXT_SIZE: int # 上下文最大消息数
|
||||
emoji_chance: float # 发送表情包的基础概率
|
||||
thinking_timeout: int # 思考时间
|
||||
max_response_length: int # 最大回复长度
|
||||
model_max_output_length: int # 最大回复长度
|
||||
message_buffer: bool # 消息缓冲器
|
||||
|
||||
ban_words: set
|
||||
@@ -132,7 +132,7 @@ class BotConfig:
|
||||
# llm_reasoning_minor: Dict[str, str]
|
||||
llm_normal: Dict[str, str] # LLM普通
|
||||
llm_topic_judge: Dict[str, str] # LLM话题判断
|
||||
llm_summary_by_topic: Dict[str, str] # LLM话题总结
|
||||
llm_summary: Dict[str, str] # LLM话题总结
|
||||
llm_emotion_judge: Dict[str, str] # LLM情感判断
|
||||
embedding: Dict[str, str] # 嵌入
|
||||
vlm: Dict[str, str] # VLM
|
||||
|
||||
@@ -621,22 +621,22 @@ CHAT_IMAGE_STYLE_CONFIG = {
|
||||
},
|
||||
}
|
||||
|
||||
# 兴趣log
|
||||
INTEREST_STYLE_CONFIG = {
|
||||
# HFC log
|
||||
HFC_STYLE_CONFIG = {
|
||||
"advanced": {
|
||||
"console_format": (
|
||||
"<white>{time:YYYY-MM-DD HH:mm:ss}</white> | "
|
||||
"<level>{level: <8}</level> | "
|
||||
"<light-yellow>兴趣</light-yellow> | "
|
||||
"<light-green>专注聊天</light-green> | "
|
||||
"<level>{message}</level>"
|
||||
),
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 兴趣 | {message}",
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 专注聊天 | {message}",
|
||||
},
|
||||
"simple": {
|
||||
"console_format": (
|
||||
"<level>{time:MM-DD HH:mm}</level> | <light-green>兴趣</light-green> | <light-green>{message}</light-green>"
|
||||
"<level>{time:MM-DD HH:mm}</level> | <light-green>专注聊天</light-green> | <light-green>{message}</light-green>"
|
||||
),
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 兴趣 | {message}",
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 专注聊天 | {message}",
|
||||
},
|
||||
}
|
||||
|
||||
@@ -847,7 +847,7 @@ CONFIG_STYLE_CONFIG = CONFIG_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else CONFIG
|
||||
TOOL_USE_STYLE_CONFIG = TOOL_USE_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TOOL_USE_STYLE_CONFIG["advanced"]
|
||||
PFC_STYLE_CONFIG = PFC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else PFC_STYLE_CONFIG["advanced"]
|
||||
LPMM_STYLE_CONFIG = LPMM_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else LPMM_STYLE_CONFIG["advanced"]
|
||||
INTEREST_STYLE_CONFIG = INTEREST_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else INTEREST_STYLE_CONFIG["advanced"]
|
||||
HFC_STYLE_CONFIG = HFC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else HFC_STYLE_CONFIG["advanced"]
|
||||
TIANYI_STYLE_CONFIG = TIANYI_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TIANYI_STYLE_CONFIG["advanced"]
|
||||
MODEL_UTILS_STYLE_CONFIG = MODEL_UTILS_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else MODEL_UTILS_STYLE_CONFIG["advanced"]
|
||||
PROMPT_STYLE_CONFIG = PROMPT_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else PROMPT_STYLE_CONFIG["advanced"]
|
||||
|
||||
@@ -23,7 +23,7 @@ from src.common.logger import (
|
||||
PFC_ACTION_PLANNER_STYLE_CONFIG,
|
||||
MAI_STATE_CONFIG,
|
||||
LPMM_STYLE_CONFIG,
|
||||
INTEREST_STYLE_CONFIG,
|
||||
HFC_STYLE_CONFIG,
|
||||
TIANYI_STYLE_CONFIG,
|
||||
REMOTE_STYLE_CONFIG,
|
||||
TOPIC_STYLE_CONFIG,
|
||||
@@ -68,7 +68,7 @@ MODULE_LOGGER_CONFIGS = {
|
||||
"pfc_action_planner": PFC_ACTION_PLANNER_STYLE_CONFIG, # PFC私聊规划
|
||||
"mai_state": MAI_STATE_CONFIG, # 麦麦状态
|
||||
"lpmm": LPMM_STYLE_CONFIG, # LPMM
|
||||
"interest": INTEREST_STYLE_CONFIG, # 兴趣
|
||||
"hfc": HFC_STYLE_CONFIG, # HFC
|
||||
"tianyi": TIANYI_STYLE_CONFIG, # 天依
|
||||
"remote": REMOTE_STYLE_CONFIG, # 远程
|
||||
"topic": TOPIC_STYLE_CONFIG, # 话题
|
||||
|
||||
@@ -20,9 +20,9 @@ from src.common.logger_manager import get_logger
|
||||
logger = get_logger("config")
|
||||
|
||||
# 考虑到,实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
|
||||
is_test = True
|
||||
is_test = False
|
||||
mai_version_main = "0.6.3"
|
||||
mai_version_fix = "snapshot-5"
|
||||
mai_version_fix = ""
|
||||
|
||||
if mai_version_fix:
|
||||
if is_test:
|
||||
@@ -170,32 +170,34 @@ class BotConfig:
|
||||
SCHEDULE_TEMPERATURE: float = 0.5 # 日程表温度,建议0.5-1.0
|
||||
TIME_ZONE: str = "Asia/Shanghai" # 时区
|
||||
|
||||
# message
|
||||
MAX_CONTEXT_SIZE: int = 15 # 上下文最大消息数
|
||||
emoji_chance: float = 0.2 # 发送表情包的基础概率
|
||||
thinking_timeout: int = 120 # 思考时间
|
||||
max_response_length: int = 1024 # 最大回复长度
|
||||
# chat
|
||||
allow_focus_mode: bool = True # 是否允许专注聊天状态
|
||||
|
||||
base_normal_chat_num: int = 3 # 最多允许多少个群进行普通聊天
|
||||
base_focused_chat_num: int = 2 # 最多允许多少个群进行专注聊天
|
||||
|
||||
observation_context_size: int = 12 # 心流观察到的最长上下文大小,超过这个值的上下文会被压缩
|
||||
|
||||
message_buffer: bool = True # 消息缓冲器
|
||||
|
||||
ban_words = set()
|
||||
ban_msgs_regex = set()
|
||||
|
||||
# [heartflow] # 启用启用heart_flowC(心流聊天)模式时生效, 需要填写token消耗量巨大的相关模型
|
||||
# 启用后麦麦会自主选择进入heart_flowC模式(持续一段时间), 进行长时间高质量的聊天
|
||||
# focus_chat
|
||||
reply_trigger_threshold: float = 3.0 # 心流聊天触发阈值,越低越容易触发
|
||||
probability_decay_factor_per_second: float = 0.2 # 概率衰减因子,越大衰减越快
|
||||
default_decay_rate_per_second: float = 0.98 # 默认衰减率,越大衰减越慢
|
||||
allow_focus_mode: bool = True # 是否允许子心流进入 FOCUSED 状态
|
||||
consecutive_no_reply_threshold = 3
|
||||
|
||||
# sub_heart_flow_update_interval: int = 60 # 子心流更新频率,间隔 单位秒
|
||||
# sub_heart_flow_freeze_time: int = 120 # 子心流冻结时间,超过这个时间没有回复,子心流会冻结,间隔 单位秒
|
||||
sub_heart_flow_stop_time: int = 600 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
|
||||
# heart_flow_update_interval: int = 300 # 心流更新频率,间隔 单位秒
|
||||
observation_context_size: int = 20 # 心流观察到的最长上下文大小,超过这个值的上下文会被压缩
|
||||
compressed_length: int = 5 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度,超过心流观察到的上下文长度,会压缩,最短压缩长度为5
|
||||
compress_length_limit: int = 5 # 最多压缩份数,超过该数值的压缩上下文会被删除
|
||||
|
||||
# willing
|
||||
# normal_chat
|
||||
model_reasoning_probability: float = 0.7 # 麦麦回答时选择推理模型(主要)模型概率
|
||||
model_normal_probability: float = 0.3 # 麦麦回答时选择一般模型(次要)模型概率
|
||||
|
||||
emoji_chance: float = 0.2 # 发送表情包的基础概率
|
||||
thinking_timeout: int = 120 # 思考时间
|
||||
|
||||
willing_mode: str = "classical" # 意愿模式
|
||||
response_willing_amplifier: float = 1.0 # 回复意愿放大系数
|
||||
response_interested_rate_amplifier: float = 1.0 # 回复兴趣度放大系数
|
||||
@@ -204,12 +206,6 @@ class BotConfig:
|
||||
mentioned_bot_inevitable_reply: bool = False # 提及 bot 必然回复
|
||||
at_bot_inevitable_reply: bool = False # @bot 必然回复
|
||||
|
||||
# response
|
||||
response_mode: str = "heart_flow" # 回复策略
|
||||
model_reasoning_probability: float = 0.7 # 麦麦回答时选择推理模型(主要)模型概率
|
||||
model_normal_probability: float = 0.3 # 麦麦回答时选择一般模型(次要)模型概率
|
||||
# MODEL_R1_DISTILL_PROBABILITY: float = 0.1 # R1蒸馏模型概率
|
||||
|
||||
# emoji
|
||||
max_emoji_num: int = 200 # 表情包最大数量
|
||||
max_reach_deletion: bool = True # 开启则在达到最大数量时删除表情包,关闭则不会继续收集表情包
|
||||
@@ -264,6 +260,8 @@ class BotConfig:
|
||||
response_max_length = 100 # 回复允许的最大长度
|
||||
response_max_sentence_num = 3 # 回复允许的最大句子数
|
||||
|
||||
model_max_output_length: int = 800 # 最大回复长度
|
||||
|
||||
# remote
|
||||
remote_enable: bool = True # 是否启用远程控制
|
||||
|
||||
@@ -277,8 +275,7 @@ class BotConfig:
|
||||
# llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_normal: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_topic_judge: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_summary_by_topic: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_emotion_judge: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_summary: Dict[str, str] = field(default_factory=lambda: {})
|
||||
embedding: Dict[str, str] = field(default_factory=lambda: {})
|
||||
vlm: Dict[str, str] = field(default_factory=lambda: {})
|
||||
moderation: Dict[str, str] = field(default_factory=lambda: {})
|
||||
@@ -409,63 +406,62 @@ class BotConfig:
|
||||
config.BOT_NICKNAME = bot_config.get("nickname", config.BOT_NICKNAME)
|
||||
config.BOT_ALIAS_NAMES = bot_config.get("alias_names", config.BOT_ALIAS_NAMES)
|
||||
|
||||
def response(parent: dict):
|
||||
response_config = parent["response"]
|
||||
config.model_reasoning_probability = response_config.get(
|
||||
def chat(parent: dict):
|
||||
chat_config = parent["chat"]
|
||||
config.allow_focus_mode = chat_config.get("allow_focus_mode", config.allow_focus_mode)
|
||||
config.base_normal_chat_num = chat_config.get("base_normal_chat_num", config.base_normal_chat_num)
|
||||
config.base_focused_chat_num = chat_config.get("base_focused_chat_num", config.base_focused_chat_num)
|
||||
config.observation_context_size = chat_config.get(
|
||||
"observation_context_size", config.observation_context_size
|
||||
)
|
||||
config.message_buffer = chat_config.get("message_buffer", config.message_buffer)
|
||||
config.ban_words = chat_config.get("ban_words", config.ban_words)
|
||||
for r in chat_config.get("ban_msgs_regex", config.ban_msgs_regex):
|
||||
config.ban_msgs_regex.add(re.compile(r))
|
||||
|
||||
def normal_chat(parent: dict):
|
||||
normal_chat_config = parent["normal_chat"]
|
||||
config.model_reasoning_probability = normal_chat_config.get(
|
||||
"model_reasoning_probability", config.model_reasoning_probability
|
||||
)
|
||||
config.model_normal_probability = response_config.get(
|
||||
config.model_normal_probability = normal_chat_config.get(
|
||||
"model_normal_probability", config.model_normal_probability
|
||||
)
|
||||
config.emoji_chance = normal_chat_config.get("emoji_chance", config.emoji_chance)
|
||||
config.thinking_timeout = normal_chat_config.get("thinking_timeout", config.thinking_timeout)
|
||||
|
||||
def heartflow(parent: dict):
|
||||
heartflow_config = parent["heartflow"]
|
||||
config.sub_heart_flow_stop_time = heartflow_config.get(
|
||||
"sub_heart_flow_stop_time", config.sub_heart_flow_stop_time
|
||||
config.willing_mode = normal_chat_config.get("willing_mode", config.willing_mode)
|
||||
config.response_willing_amplifier = normal_chat_config.get(
|
||||
"response_willing_amplifier", config.response_willing_amplifier
|
||||
)
|
||||
config.response_interested_rate_amplifier = normal_chat_config.get(
|
||||
"response_interested_rate_amplifier", config.response_interested_rate_amplifier
|
||||
)
|
||||
config.down_frequency_rate = normal_chat_config.get("down_frequency_rate", config.down_frequency_rate)
|
||||
config.emoji_response_penalty = normal_chat_config.get(
|
||||
"emoji_response_penalty", config.emoji_response_penalty
|
||||
)
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.3.0"):
|
||||
config.observation_context_size = heartflow_config.get(
|
||||
"observation_context_size", config.observation_context_size
|
||||
)
|
||||
config.compressed_length = heartflow_config.get("compressed_length", config.compressed_length)
|
||||
config.compress_length_limit = heartflow_config.get(
|
||||
"compress_length_limit", config.compress_length_limit
|
||||
)
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.4.0"):
|
||||
config.reply_trigger_threshold = heartflow_config.get(
|
||||
"reply_trigger_threshold", config.reply_trigger_threshold
|
||||
)
|
||||
config.probability_decay_factor_per_second = heartflow_config.get(
|
||||
"probability_decay_factor_per_second", config.probability_decay_factor_per_second
|
||||
)
|
||||
config.default_decay_rate_per_second = heartflow_config.get(
|
||||
"default_decay_rate_per_second", config.default_decay_rate_per_second
|
||||
)
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.5.1"):
|
||||
config.allow_focus_mode = heartflow_config.get("allow_focus_mode", config.allow_focus_mode)
|
||||
|
||||
def willing(parent: dict):
|
||||
willing_config = parent["willing"]
|
||||
config.willing_mode = willing_config.get("willing_mode", config.willing_mode)
|
||||
config.mentioned_bot_inevitable_reply = normal_chat_config.get(
|
||||
"mentioned_bot_inevitable_reply", config.mentioned_bot_inevitable_reply
|
||||
)
|
||||
config.at_bot_inevitable_reply = normal_chat_config.get(
|
||||
"at_bot_inevitable_reply", config.at_bot_inevitable_reply
|
||||
)
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.11"):
|
||||
config.response_willing_amplifier = willing_config.get(
|
||||
"response_willing_amplifier", config.response_willing_amplifier
|
||||
)
|
||||
config.response_interested_rate_amplifier = willing_config.get(
|
||||
"response_interested_rate_amplifier", config.response_interested_rate_amplifier
|
||||
)
|
||||
config.down_frequency_rate = willing_config.get("down_frequency_rate", config.down_frequency_rate)
|
||||
config.emoji_response_penalty = willing_config.get(
|
||||
"emoji_response_penalty", config.emoji_response_penalty
|
||||
)
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.2.5"):
|
||||
config.mentioned_bot_inevitable_reply = willing_config.get(
|
||||
"mentioned_bot_inevitable_reply", config.mentioned_bot_inevitable_reply
|
||||
)
|
||||
config.at_bot_inevitable_reply = willing_config.get(
|
||||
"at_bot_inevitable_reply", config.at_bot_inevitable_reply
|
||||
)
|
||||
def focus_chat(parent: dict):
|
||||
focus_chat_config = parent["focus_chat"]
|
||||
config.compressed_length = focus_chat_config.get("compressed_length", config.compressed_length)
|
||||
config.compress_length_limit = focus_chat_config.get("compress_length_limit", config.compress_length_limit)
|
||||
config.reply_trigger_threshold = focus_chat_config.get(
|
||||
"reply_trigger_threshold", config.reply_trigger_threshold
|
||||
)
|
||||
config.default_decay_rate_per_second = focus_chat_config.get(
|
||||
"default_decay_rate_per_second", config.default_decay_rate_per_second
|
||||
)
|
||||
config.consecutive_no_reply_threshold = focus_chat_config.get(
|
||||
"consecutive_no_reply_threshold", config.consecutive_no_reply_threshold
|
||||
)
|
||||
|
||||
def model(parent: dict):
|
||||
# 加载模型配置
|
||||
@@ -476,8 +472,7 @@ class BotConfig:
|
||||
# "llm_reasoning_minor",
|
||||
"llm_normal",
|
||||
"llm_topic_judge",
|
||||
"llm_summary_by_topic",
|
||||
"llm_emotion_judge",
|
||||
"llm_summary",
|
||||
"vlm",
|
||||
"embedding",
|
||||
"llm_tool_use",
|
||||
@@ -556,26 +551,6 @@ class BotConfig:
|
||||
logger.error(f"模型 {item} 在config中不存在,请检查,或尝试更新配置文件")
|
||||
raise KeyError(f"模型 {item} 在config中不存在,请检查,或尝试更新配置文件")
|
||||
|
||||
def message(parent: dict):
|
||||
msg_config = parent["message"]
|
||||
config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
|
||||
config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
|
||||
config.ban_words = msg_config.get("ban_words", config.ban_words)
|
||||
config.thinking_timeout = msg_config.get("thinking_timeout", config.thinking_timeout)
|
||||
config.response_willing_amplifier = msg_config.get(
|
||||
"response_willing_amplifier", config.response_willing_amplifier
|
||||
)
|
||||
config.response_interested_rate_amplifier = msg_config.get(
|
||||
"response_interested_rate_amplifier", config.response_interested_rate_amplifier
|
||||
)
|
||||
config.down_frequency_rate = msg_config.get("down_frequency_rate", config.down_frequency_rate)
|
||||
for r in msg_config.get("ban_msgs_regex", config.ban_msgs_regex):
|
||||
config.ban_msgs_regex.add(re.compile(r))
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.11"):
|
||||
config.max_response_length = msg_config.get("max_response_length", config.max_response_length)
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.1.4"):
|
||||
config.message_buffer = msg_config.get("message_buffer", config.message_buffer)
|
||||
|
||||
def memory(parent: dict):
|
||||
memory_config = parent["memory"]
|
||||
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
|
||||
@@ -650,6 +625,10 @@ class BotConfig:
|
||||
config.enable_kaomoji_protection = response_splitter_config.get(
|
||||
"enable_kaomoji_protection", config.enable_kaomoji_protection
|
||||
)
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.6.0"):
|
||||
config.model_max_output_length = response_splitter_config.get(
|
||||
"model_max_output_length", config.model_max_output_length
|
||||
)
|
||||
|
||||
def groups(parent: dict):
|
||||
groups_config = parent["groups"]
|
||||
@@ -695,10 +674,7 @@ class BotConfig:
|
||||
"personality": {"func": personality, "support": ">=0.0.0"},
|
||||
"identity": {"func": identity, "support": ">=1.2.4"},
|
||||
"schedule": {"func": schedule, "support": ">=0.0.11", "necessary": False},
|
||||
"message": {"func": message, "support": ">=0.0.0"},
|
||||
"willing": {"func": willing, "support": ">=0.0.9", "necessary": False},
|
||||
"emoji": {"func": emoji, "support": ">=0.0.0"},
|
||||
"response": {"func": response, "support": ">=0.0.0"},
|
||||
"model": {"func": model, "support": ">=0.0.0"},
|
||||
"memory": {"func": memory, "support": ">=0.0.0", "necessary": False},
|
||||
"mood": {"func": mood, "support": ">=0.0.0"},
|
||||
@@ -708,7 +684,9 @@ class BotConfig:
|
||||
"platforms": {"func": platforms, "support": ">=1.0.0"},
|
||||
"response_splitter": {"func": response_splitter, "support": ">=0.0.11", "necessary": False},
|
||||
"experimental": {"func": experimental, "support": ">=0.0.11", "necessary": False},
|
||||
"heartflow": {"func": heartflow, "support": ">=1.0.2", "necessary": False},
|
||||
"chat": {"func": chat, "support": ">=1.6.0", "necessary": False},
|
||||
"normal_chat": {"func": normal_chat, "support": ">=1.6.0", "necessary": False},
|
||||
"focus_chat": {"func": focus_chat, "support": ">=1.6.0", "necessary": False},
|
||||
}
|
||||
|
||||
# 原地修改,将 字符串版本表达式 转换成 版本对象
|
||||
|
||||
@@ -62,7 +62,7 @@ def register_tool(tool_class: Type[BaseTool]):
|
||||
raise ValueError(f"工具类 {tool_class.__name__} 没有定义 name 属性")
|
||||
|
||||
TOOL_REGISTRY[tool_name] = tool_class
|
||||
logger.info(f"已注册工具: {tool_name}")
|
||||
logger.info(f"已注册: {tool_name}")
|
||||
|
||||
|
||||
def discover_tools():
|
||||
|
||||
@@ -14,7 +14,7 @@ class SearchKnowledgeFromLPMMTool(BaseTool):
|
||||
"""从LPMM知识库中搜索相关信息的工具"""
|
||||
|
||||
name = "lpmm_search_knowledge"
|
||||
description = "从知识库中搜索相关信息"
|
||||
description = "从知识库中搜索相关信息,如果你需要知识,就使用这个工具"
|
||||
parameters = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
||||
@@ -129,7 +129,6 @@ class ToolUser:
|
||||
payload = {
|
||||
"model": self.llm_model_tool.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"max_tokens": global_config.max_response_length,
|
||||
"tools": tools,
|
||||
"temperature": 0.2,
|
||||
}
|
||||
|
||||
@@ -1,48 +0,0 @@
|
||||
# 0.6.3 版本发布前待办事项
|
||||
|
||||
- [0.6.3]**统一化人格配置:**
|
||||
- 检查代码中是否存在硬编码的人格相关配置。
|
||||
- 将所有硬编码的人格配置替换为使用 `individual` 模块进行管理。
|
||||
|
||||
- [0.6.3]**在 Planner 中添加回复计数信息:**
|
||||
- 修改 `HeartFlowChatInstance` 的 `Plan` 阶段逻辑。
|
||||
- 将当前周期的回复计数(或其他相关统计信息)作为输入提供给 Planner。
|
||||
- 目的是为 Planner 提供负反馈,减少连续回复或不当回复的可能性。
|
||||
|
||||
- [0.6.3]**恢复/检查被停止的功能:**
|
||||
- 全面审查代码,特别是对比之前的版本或设计文档。
|
||||
- 识别并重新启用那些暂时被禁用但应该恢复的功能。
|
||||
- 确认没有核心功能意外丢失。
|
||||
|
||||
- [0.6.3]**参数提取与配置化:**
|
||||
- 识别代码中散落的各种可调参数(例如:概率阈值、时间间隔、次数限制、LLM 模型名称等)。
|
||||
- 将这些参数统一提取到模块或类的顶部。
|
||||
- 最终将这些参数移至外部配置文件(如 YAML 或 JSON 文件),方便用户自定义。
|
||||
|
||||
- **[0.6.3]提供 HFC (HeartFlowChatInstance) 开启/关闭选项:**
|
||||
- 增加一个全局或针对特定子心流的配置选项。
|
||||
- 允许用户控制是否启用 `FOCUSED` 状态以及关联的 `HeartFlowChatInstance`。
|
||||
- 如果禁用 HFC,子心流可能只会在 `ABSENT` 和 `CHAT` 状态间切换。
|
||||
|
||||
- [0.6.3]**添加防破线机制 (针对接收消息):**
|
||||
- 在消息处理流程的早期阶段 (例如 `HeartHC_processor` 或类似模块),增加对接收到的消息文本长度的检查。
|
||||
- 对超过预设长度阈值的*接收*消息进行截断处理。
|
||||
- 目的是防止过长的输入(可能包含"破限"提示词)影响后续的兴趣计算、LLM 回复生成等环节。
|
||||
|
||||
- [0.6.3]**NormalChat 模式下的记忆与 Prompt 优化:**
|
||||
- 重点审视 `NormalChatInstance` (闲聊/推理模式) 中记忆调用 (例如 `HippocampusManager` 的使用) 的方式。
|
||||
- 评估在该模式下引入工具调用 (Tool Calling) 机制以更结构化访问记忆的必要性。
|
||||
- 优化 `NormalChatInstance` 中与记忆检索、应用相关的 Prompt。
|
||||
|
||||
- [0.6.3]**完善简易兴趣监控 GUI:**
|
||||
- 改进现有的、用于监控聊天兴趣度 (`InterestChatting`?) 的简单 GUI 界面。
|
||||
- 使其能更清晰地展示关键参数和状态,作为查看日志之外的更直观的监控方式。
|
||||
- 作为完整外部 UI 开发完成前的临时替代方案。
|
||||
|
||||
- [0.6.3]**修复/完善中期记忆 (Midterm Memory):**
|
||||
- 检查当前中期记忆模块的状态。
|
||||
- 修复已知问题,使其能够稳定运行。
|
||||
- (优先级视开发时间而定)
|
||||
|
||||
|
||||
对于有些群频繁激活HFC,却不回复,需要处理一下
|
||||
@@ -81,4 +81,14 @@
|
||||
- **基于人格生成预设知识:**
|
||||
- 开发利用 LLM 和人格配置生成背景知识的功能。
|
||||
- 这些知识应符合角色的行为风格和可能的经历。
|
||||
- 作为一种"冷启动"或丰富角色深度的方式。
|
||||
- 作为一种"冷启动"或丰富角色深度的方式。
|
||||
|
||||
|
||||
## 开发计划TODO:LIST
|
||||
|
||||
- 人格功能:WIP
|
||||
- 对特定对象的侧写功能
|
||||
- 图片发送,转发功能:WIP
|
||||
- 幽默和meme功能:WIP
|
||||
- 小程序转发链接解析
|
||||
- 自动生成的回复逻辑,例如自生成的回复方向,回复风格
|
||||
@@ -106,8 +106,8 @@ c HeartFChatting工作方式
|
||||
- 负责所有 `SubHeartflow` 实例的生命周期管理,包括:
|
||||
- 创建和获取 (`get_or_create_subheartflow`)。
|
||||
- 停止和清理 (`sleep_subheartflow`, `cleanup_inactive_subheartflows`)。
|
||||
- 根据 `Heartflow` 的状态 (`self.mai_state_info`) 和限制条件,激活、停用或调整子心流的状态(例如 `enforce_subheartflow_limits`, `randomly_deactivate_subflows`, `evaluate_interest_and_promote`)。
|
||||
- **新增**: 通过调用 `evaluate_and_transition_subflows_by_llm` 方法,使用 LLM (配置与 `Heartflow` 主 LLM 相同) 评估处于 `ABSENT` 或 `CHAT` 状态的子心流,根据观察到的活动摘要和 `Heartflow` 的当前状态,判断是否应在 `ABSENT` 和 `CHAT` 之间进行转换 (同样受限于 `CHAT` 状态的数量上限)。
|
||||
- 根据 `Heartflow` 的状态 (`self.mai_state_info`) 和限制条件,激活、停用或调整子心流的状态(例如 `enforce_subheartflow_limits`, `randomly_deactivate_subflows`, `sbhf_absent_into_focus`)。
|
||||
- **新增**: 通过调用 `sbhf_absent_into_chat` 方法,使用 LLM (配置与 `Heartflow` 主 LLM 相同) 评估处于 `ABSENT` 或 `CHAT` 状态的子心流,根据观察到的活动摘要和 `Heartflow` 的当前状态,判断是否应在 `ABSENT` 和 `CHAT` 之间进行转换 (同样受限于 `CHAT` 状态的数量上限)。
|
||||
- **清理机制**: 通过后台任务 (`BackgroundTaskManager`) 定期调用 `cleanup_inactive_subheartflows` 方法,此方法会识别并**删除**那些处于 `ABSENT` 状态超过一小时 (`INACTIVE_THRESHOLD_SECONDS`) 的子心流实例。
|
||||
|
||||
### 1.5. 消息处理与回复流程 (Message Processing vs. Replying Flow)
|
||||
@@ -155,20 +155,20 @@ c HeartFChatting工作方式
|
||||
- **初始状态**: 新创建的 `SubHeartflow` 默认为 `ABSENT` 状态。
|
||||
- **`ABSENT` -> `CHAT` (激活闲聊)**:
|
||||
- **触发条件**: `Heartflow` 的主状态 (`MaiState`) 允许 `CHAT` 模式,且当前 `CHAT` 状态的子心流数量未达上限。
|
||||
- **判定机制**: `SubHeartflowManager` 中的 `evaluate_and_transition_subflows_by_llm` 方法调用大模型(LLM)。LLM 读取该群聊的近期内容和结合自身个性信息,判断是否"想"在该群开始聊天。
|
||||
- **判定机制**: `SubHeartflowManager` 中的 `sbhf_absent_into_chat` 方法调用大模型(LLM)。LLM 读取该群聊的近期内容和结合自身个性信息,判断是否"想"在该群开始聊天。
|
||||
- **执行**: 若 LLM 判断为是,且名额未满,`SubHeartflowManager` 调用 `change_chat_state(ChatState.CHAT)`。
|
||||
- **`CHAT` -> `FOCUSED` (激活专注)**:
|
||||
- **触发条件**: 子心流处于 `CHAT` 状态,其内部维护的"开屎热聊"概率 (`InterestChatting.start_hfc_probability`) 达到预设阈值(表示对当前聊天兴趣浓厚),同时 `Heartflow` 的主状态允许 `FOCUSED` 模式,且 `FOCUSED` 名额未满。
|
||||
- **判定机制**: `SubHeartflowManager` 中的 `evaluate_interest_and_promote` 方法定期检查满足条件的 `CHAT` 子心流。
|
||||
- **判定机制**: `SubHeartflowManager` 中的 `sbhf_absent_into_focus` 方法定期检查满足条件的 `CHAT` 子心流。
|
||||
- **执行**: 若满足所有条件,`SubHeartflowManager` 调用 `change_chat_state(ChatState.FOCUSED)`。
|
||||
- **注意**: 无法从 `ABSENT` 直接跳到 `FOCUSED`,必须先经过 `CHAT`。
|
||||
- **`FOCUSED` -> `ABSENT` (退出专注)**:
|
||||
- **主要途径 (内部驱动)**: 在 `FOCUSED` 状态下运行的 `HeartFlowChatInstance` 连续多次决策为 `no_reply` (例如达到 5 次,次数可配),它会通过回调函数 (`request_absent_transition`) 请求 `SubHeartflowManager` 将其状态**直接**设置为 `ABSENT`。
|
||||
- **主要途径 (内部驱动)**: 在 `FOCUSED` 状态下运行的 `HeartFlowChatInstance` 连续多次决策为 `no_reply` (例如达到 5 次,次数可配),它会通过回调函数 (`sbhf_focus_into_absent`) 请求 `SubHeartflowManager` 将其状态**直接**设置为 `ABSENT`。
|
||||
- **其他途径 (外部驱动)**:
|
||||
- `Heartflow` 主状态变为 `OFFLINE`,`SubHeartflowManager` 强制所有子心流变为 `ABSENT`。
|
||||
- `SubHeartflowManager` 因 `FOCUSED` 名额超限 (`enforce_subheartflow_limits`) 或随机停用 (`randomly_deactivate_subflows`) 而将其设置为 `ABSENT`。
|
||||
- **`CHAT` -> `ABSENT` (退出闲聊)**:
|
||||
- **主要途径 (内部驱动)**: `SubHeartflowManager` 中的 `evaluate_and_transition_subflows_by_llm` 方法调用 LLM。LLM 读取群聊内容和结合自身状态,判断是否"不想"继续在此群闲聊。
|
||||
- **主要途径 (内部驱动)**: `SubHeartflowManager` 中的 `sbhf_absent_into_chat` 方法调用 LLM。LLM 读取群聊内容和结合自身状态,判断是否"不想"继续在此群闲聊。
|
||||
- **执行**: 若 LLM 判断为是,`SubHeartflowManager` 调用 `change_chat_state(ChatState.ABSENT)`。
|
||||
- **其他途径 (外部驱动)**:
|
||||
- `Heartflow` 主状态变为 `OFFLINE`。
|
||||
|
||||
@@ -12,10 +12,17 @@ from src.heart_flow.interest_logger import InterestLogger
|
||||
|
||||
logger = get_logger("background_tasks")
|
||||
|
||||
# 新增随机停用间隔 (5 分钟)
|
||||
RANDOM_DEACTIVATION_INTERVAL_SECONDS = 300
|
||||
|
||||
# 新增兴趣评估间隔
|
||||
INTEREST_EVAL_INTERVAL_SECONDS = 5
|
||||
# 新增聊天超时检查间隔
|
||||
NORMAL_CHAT_TIMEOUT_CHECK_INTERVAL_SECONDS = 60
|
||||
# 新增状态评估间隔
|
||||
HF_JUDGE_STATE_UPDATE_INTERVAL_SECONDS = 60
|
||||
|
||||
CLEANUP_INTERVAL_SECONDS = 1200
|
||||
STATE_UPDATE_INTERVAL_SECONDS = 60
|
||||
LOG_INTERVAL_SECONDS = 3
|
||||
|
||||
|
||||
class BackgroundTaskManager:
|
||||
@@ -27,33 +34,19 @@ class BackgroundTaskManager:
|
||||
mai_state_manager: MaiStateManager,
|
||||
subheartflow_manager: SubHeartflowManager,
|
||||
interest_logger: InterestLogger,
|
||||
update_interval: int,
|
||||
cleanup_interval: int,
|
||||
log_interval: int,
|
||||
# 新增兴趣评估间隔参数
|
||||
interest_eval_interval: int = INTEREST_EVAL_INTERVAL_SECONDS,
|
||||
# 新增随机停用间隔参数
|
||||
random_deactivation_interval: int = RANDOM_DEACTIVATION_INTERVAL_SECONDS,
|
||||
):
|
||||
self.mai_state_info = mai_state_info
|
||||
self.mai_state_manager = mai_state_manager
|
||||
self.subheartflow_manager = subheartflow_manager
|
||||
self.interest_logger = interest_logger
|
||||
|
||||
# Intervals
|
||||
self.update_interval = update_interval
|
||||
self.cleanup_interval = cleanup_interval
|
||||
self.log_interval = log_interval
|
||||
self.interest_eval_interval = interest_eval_interval # 存储兴趣评估间隔
|
||||
self.random_deactivation_interval = random_deactivation_interval # 存储随机停用间隔
|
||||
|
||||
# Task references
|
||||
self._state_update_task: Optional[asyncio.Task] = None
|
||||
self._cleanup_task: Optional[asyncio.Task] = None
|
||||
self._logging_task: Optional[asyncio.Task] = None
|
||||
self._interest_eval_task: Optional[asyncio.Task] = None # 新增兴趣评估任务引用
|
||||
self._random_deactivation_task: Optional[asyncio.Task] = None # 新增随机停用任务引用
|
||||
self._hf_judge_state_update_task: Optional[asyncio.Task] = None # 新增状态评估任务引用
|
||||
self._normal_chat_timeout_check_task: Optional[asyncio.Task] = None # Nyaa~ 添加聊天超时检查任务的引用
|
||||
self._hf_judge_state_update_task: Optional[asyncio.Task] = None # Nyaa~ 添加状态评估任务的引用
|
||||
self._into_focus_task: Optional[asyncio.Task] = None # Nyaa~ 添加兴趣评估任务的引用
|
||||
self._tasks: List[Optional[asyncio.Task]] = [] # Keep track of all tasks
|
||||
|
||||
async def start_tasks(self):
|
||||
@@ -65,57 +58,53 @@ class BackgroundTaskManager:
|
||||
- 将任务引用保存到任务列表
|
||||
"""
|
||||
|
||||
# 任务配置列表: (任务变量名, 任务函数, 任务名称, 日志级别, 额外日志信息, 任务对象引用属性名)
|
||||
# 任务配置列表: (任务函数, 任务名称, 日志级别, 额外日志信息, 任务对象引用属性名)
|
||||
task_configs = [
|
||||
(
|
||||
self._state_update_task,
|
||||
lambda: self._run_state_update_cycle(self.update_interval),
|
||||
"hf_state_update",
|
||||
lambda: self._run_state_update_cycle(STATE_UPDATE_INTERVAL_SECONDS),
|
||||
"debug",
|
||||
f"聊天状态更新任务已启动 间隔:{self.update_interval}s",
|
||||
f"聊天状态更新任务已启动 间隔:{STATE_UPDATE_INTERVAL_SECONDS}s",
|
||||
"_state_update_task",
|
||||
),
|
||||
(
|
||||
self._hf_judge_state_update_task,
|
||||
lambda: self._run_hf_judge_state_update_cycle(60),
|
||||
"hf_judge_state_update",
|
||||
lambda: self._run_normal_chat_timeout_check_cycle(NORMAL_CHAT_TIMEOUT_CHECK_INTERVAL_SECONDS),
|
||||
"debug",
|
||||
f"状态评估任务已启动 间隔:{60}s",
|
||||
f"聊天超时检查任务已启动 间隔:{NORMAL_CHAT_TIMEOUT_CHECK_INTERVAL_SECONDS}s",
|
||||
"_normal_chat_timeout_check_task",
|
||||
),
|
||||
(
|
||||
lambda: self._run_absent_into_chat(HF_JUDGE_STATE_UPDATE_INTERVAL_SECONDS),
|
||||
"debug",
|
||||
f"状态评估任务已启动 间隔:{HF_JUDGE_STATE_UPDATE_INTERVAL_SECONDS}s",
|
||||
"_hf_judge_state_update_task",
|
||||
),
|
||||
(
|
||||
self._cleanup_task,
|
||||
self._run_cleanup_cycle,
|
||||
"hf_cleanup",
|
||||
"info",
|
||||
f"清理任务已启动 间隔:{self.cleanup_interval}s",
|
||||
f"清理任务已启动 间隔:{CLEANUP_INTERVAL_SECONDS}s",
|
||||
"_cleanup_task",
|
||||
),
|
||||
(
|
||||
self._logging_task,
|
||||
self._run_logging_cycle,
|
||||
"hf_logging",
|
||||
"info",
|
||||
f"日志任务已启动 间隔:{self.log_interval}s",
|
||||
f"日志任务已启动 间隔:{LOG_INTERVAL_SECONDS}s",
|
||||
"_logging_task",
|
||||
),
|
||||
# 新增兴趣评估任务配置
|
||||
(
|
||||
self._interest_eval_task,
|
||||
self._run_interest_eval_cycle,
|
||||
"hf_interest_eval",
|
||||
self._run_into_focus_cycle,
|
||||
"debug", # 设为debug,避免过多日志
|
||||
f"兴趣评估任务已启动 间隔:{self.interest_eval_interval}s",
|
||||
"_interest_eval_task",
|
||||
f"专注评估任务已启动 间隔:{INTEREST_EVAL_INTERVAL_SECONDS}s",
|
||||
"_into_focus_task",
|
||||
),
|
||||
]
|
||||
|
||||
# 统一启动所有任务
|
||||
for _task_var, task_func, task_name, log_level, log_msg, task_attr_name in task_configs:
|
||||
for task_func, log_level, log_msg, task_attr_name in task_configs:
|
||||
# 检查任务变量是否存在且未完成
|
||||
current_task_var = getattr(self, task_attr_name)
|
||||
if current_task_var is None or current_task_var.done():
|
||||
new_task = asyncio.create_task(task_func(), name=task_name)
|
||||
new_task = asyncio.create_task(task_func())
|
||||
setattr(self, task_attr_name, new_task) # 更新任务变量
|
||||
if new_task not in self._tasks: # 避免重复添加
|
||||
self._tasks.append(new_task)
|
||||
@@ -123,7 +112,7 @@ class BackgroundTaskManager:
|
||||
# 根据配置记录不同级别的日志
|
||||
getattr(logger, log_level)(log_msg)
|
||||
else:
|
||||
logger.warning(f"{task_name}任务已在运行")
|
||||
logger.warning(f"{task_attr_name}任务已在运行")
|
||||
|
||||
async def stop_tasks(self):
|
||||
"""停止所有后台任务。
|
||||
@@ -209,10 +198,15 @@ class BackgroundTaskManager:
|
||||
logger.info("检测到离线,停用所有子心流")
|
||||
await self.subheartflow_manager.deactivate_all_subflows()
|
||||
|
||||
async def _perform_hf_judge_state_update_work(self):
|
||||
async def _perform_absent_into_chat(self):
|
||||
"""调用llm检测是否转换ABSENT-CHAT状态"""
|
||||
logger.info("[状态评估任务] 开始基于LLM评估子心流状态...")
|
||||
await self.subheartflow_manager.evaluate_and_transition_subflows_by_llm()
|
||||
logger.debug("[状态评估任务] 开始基于LLM评估子心流状态...")
|
||||
await self.subheartflow_manager.sbhf_absent_into_chat()
|
||||
|
||||
async def _normal_chat_timeout_check_work(self):
|
||||
"""检查处于CHAT状态的子心流是否因长时间未发言而超时,并将其转为ABSENT"""
|
||||
logger.debug("[聊天超时检查] 开始检查处于CHAT状态的子心流...")
|
||||
await self.subheartflow_manager.sbhf_chat_into_absent()
|
||||
|
||||
async def _perform_cleanup_work(self):
|
||||
"""执行子心流清理任务
|
||||
@@ -244,10 +238,10 @@ class BackgroundTaskManager:
|
||||
await self.interest_logger.log_all_states()
|
||||
|
||||
# --- 新增兴趣评估工作函数 ---
|
||||
async def _perform_interest_eval_work(self):
|
||||
async def _perform_into_focus_work(self):
|
||||
"""执行一轮子心流兴趣评估与提升检查。"""
|
||||
# 直接调用 subheartflow_manager 的方法,并传递当前状态信息
|
||||
await self.subheartflow_manager.evaluate_interest_and_promote()
|
||||
await self.subheartflow_manager.sbhf_absent_into_focus()
|
||||
|
||||
# --- 结束新增 ---
|
||||
|
||||
@@ -259,25 +253,30 @@ class BackgroundTaskManager:
|
||||
task_name="State Update", interval=interval, task_func=self._perform_state_update_work
|
||||
)
|
||||
|
||||
async def _run_hf_judge_state_update_cycle(self, interval: int):
|
||||
async def _run_absent_into_chat(self, interval: int):
|
||||
await self._run_periodic_loop(
|
||||
task_name="State Update", interval=interval, task_func=self._perform_hf_judge_state_update_work
|
||||
task_name="Into Chat", interval=interval, task_func=self._perform_absent_into_chat
|
||||
)
|
||||
|
||||
async def _run_normal_chat_timeout_check_cycle(self, interval: int):
|
||||
await self._run_periodic_loop(
|
||||
task_name="Normal Chat Timeout Check", interval=interval, task_func=self._normal_chat_timeout_check_work
|
||||
)
|
||||
|
||||
async def _run_cleanup_cycle(self):
|
||||
await self._run_periodic_loop(
|
||||
task_name="Subflow Cleanup", interval=self.cleanup_interval, task_func=self._perform_cleanup_work
|
||||
task_name="Subflow Cleanup", interval=CLEANUP_INTERVAL_SECONDS, task_func=self._perform_cleanup_work
|
||||
)
|
||||
|
||||
async def _run_logging_cycle(self):
|
||||
await self._run_periodic_loop(
|
||||
task_name="State Logging", interval=self.log_interval, task_func=self._perform_logging_work
|
||||
task_name="State Logging", interval=LOG_INTERVAL_SECONDS, task_func=self._perform_logging_work
|
||||
)
|
||||
|
||||
# --- 新增兴趣评估任务运行器 ---
|
||||
async def _run_interest_eval_cycle(self):
|
||||
async def _run_into_focus_cycle(self):
|
||||
await self._run_periodic_loop(
|
||||
task_name="Interest Evaluation",
|
||||
interval=self.interest_eval_interval,
|
||||
task_func=self._perform_interest_eval_work,
|
||||
task_name="Into Focus",
|
||||
interval=INTEREST_EVAL_INTERVAL_SECONDS,
|
||||
task_func=self._perform_into_focus_work,
|
||||
)
|
||||
|
||||
@@ -11,20 +11,10 @@ from src.heart_flow.subheartflow_manager import SubHeartflowManager
|
||||
from src.heart_flow.mind import Mind
|
||||
from src.heart_flow.interest_logger import InterestLogger # Import InterestLogger
|
||||
from src.heart_flow.background_tasks import BackgroundTaskManager # Import BackgroundTaskManager
|
||||
# --- End import ---
|
||||
|
||||
logger = get_logger("heartflow")
|
||||
|
||||
|
||||
# Task Intervals (should be in BackgroundTaskManager or config)
|
||||
CLEANUP_INTERVAL_SECONDS = 1200
|
||||
STATE_UPDATE_INTERVAL_SECONDS = 60
|
||||
|
||||
# Thresholds (should be in SubHeartflowManager or config)
|
||||
INACTIVE_THRESHOLD_SECONDS = 1200
|
||||
# --- End Constants --- #
|
||||
|
||||
|
||||
class Heartflow:
|
||||
"""主心流协调器,负责初始化并协调各个子系统:
|
||||
- 状态管理 (MaiState)
|
||||
@@ -65,9 +55,6 @@ class Heartflow:
|
||||
mai_state_manager=self.mai_state_manager,
|
||||
subheartflow_manager=self.subheartflow_manager,
|
||||
interest_logger=self.interest_logger,
|
||||
update_interval=STATE_UPDATE_INTERVAL_SECONDS,
|
||||
cleanup_interval=CLEANUP_INTERVAL_SECONDS,
|
||||
log_interval=3, # Example: Using value directly, ideally get from config
|
||||
)
|
||||
|
||||
async def get_or_create_subheartflow(self, subheartflow_id: Any) -> Optional["SubHeartflow"]:
|
||||
|
||||
@@ -4,24 +4,30 @@ import random
|
||||
from typing import List, Tuple, Optional
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.plugins.moods.moods import MoodManager
|
||||
from src.config.config import global_config
|
||||
|
||||
logger = get_logger("mai_state")
|
||||
|
||||
|
||||
# -- 状态相关的可配置参数 (可以从 glocal_config 加载) --
|
||||
enable_unlimited_hfc_chat = True # 调试用:无限专注聊天
|
||||
# enable_unlimited_hfc_chat = False
|
||||
prevent_offline_state = True # 调试用:防止进入离线状态
|
||||
# enable_unlimited_hfc_chat = True # 调试用:无限专注聊天
|
||||
enable_unlimited_hfc_chat = False
|
||||
prevent_offline_state = True
|
||||
# 目前默认不启用OFFLINE状态
|
||||
|
||||
# 不同状态下普通聊天的最大消息数
|
||||
MAX_NORMAL_CHAT_NUM_PEEKING = 30
|
||||
MAX_NORMAL_CHAT_NUM_NORMAL = 40
|
||||
MAX_NORMAL_CHAT_NUM_FOCUSED = 30
|
||||
base_normal_chat_num = global_config.base_normal_chat_num
|
||||
base_focused_chat_num = global_config.base_focused_chat_num
|
||||
|
||||
|
||||
MAX_NORMAL_CHAT_NUM_PEEKING = int(base_normal_chat_num / 2)
|
||||
MAX_NORMAL_CHAT_NUM_NORMAL = base_normal_chat_num
|
||||
MAX_NORMAL_CHAT_NUM_FOCUSED = base_normal_chat_num + 1
|
||||
|
||||
# 不同状态下专注聊天的最大消息数
|
||||
MAX_FOCUSED_CHAT_NUM_PEEKING = 20
|
||||
MAX_FOCUSED_CHAT_NUM_NORMAL = 30
|
||||
MAX_FOCUSED_CHAT_NUM_FOCUSED = 40
|
||||
MAX_FOCUSED_CHAT_NUM_PEEKING = int(base_focused_chat_num / 2)
|
||||
MAX_FOCUSED_CHAT_NUM_NORMAL = base_focused_chat_num
|
||||
MAX_FOCUSED_CHAT_NUM_FOCUSED = base_focused_chat_num + 2
|
||||
|
||||
# -- 状态定义 --
|
||||
|
||||
@@ -164,7 +170,7 @@ class MaiStateManager:
|
||||
if random.random() < 0.03: # 3% 概率切换到 OFFLINE
|
||||
potential_next = MaiState.OFFLINE
|
||||
resolved_next = _resolve_offline(potential_next)
|
||||
logger.debug(f"规则1:概率触发下线,resolve 为 {resolved_next.value}")
|
||||
logger.debug(f"概率触发下线,resolve 为 {resolved_next.value}")
|
||||
# 只有当解析后的状态与当前状态不同时才设置 next_state
|
||||
if resolved_next != current_status:
|
||||
next_state = resolved_next
|
||||
|
||||
@@ -146,7 +146,7 @@ class ChattingObservation(Observation):
|
||||
|
||||
self.talking_message_str = await build_readable_messages(
|
||||
messages=self.talking_message,
|
||||
timestamp_mode="normal",
|
||||
timestamp_mode="lite",
|
||||
read_mark=last_obs_time_mark,
|
||||
)
|
||||
self.talking_message_str_truncate = await build_readable_messages(
|
||||
|
||||
@@ -5,7 +5,6 @@ import time
|
||||
from typing import Optional, List, Dict, Tuple, Callable, Coroutine
|
||||
import traceback
|
||||
from src.common.logger_manager import get_logger
|
||||
import random
|
||||
from src.plugins.chat.message import MessageRecv
|
||||
from src.plugins.chat.chat_stream import chat_manager
|
||||
import math
|
||||
@@ -15,20 +14,15 @@ from src.heart_flow.mai_state_manager import MaiStateInfo
|
||||
from src.heart_flow.chat_state_info import ChatState, ChatStateInfo
|
||||
from src.heart_flow.sub_mind import SubMind
|
||||
|
||||
# # --- REMOVE: Conditional import --- #
|
||||
# if TYPE_CHECKING:
|
||||
# from src.heart_flow.subheartflow_manager import SubHeartflowManager
|
||||
# # --- END REMOVE --- #
|
||||
|
||||
|
||||
# 定义常量 (从 interest.py 移动过来)
|
||||
MAX_INTEREST = 15.0
|
||||
|
||||
logger = get_logger("subheartflow")
|
||||
|
||||
base_reply_probability = 0.05
|
||||
probability_increase_rate_per_second = 0.08
|
||||
max_reply_probability = 1
|
||||
PROBABILITY_INCREASE_RATE_PER_SECOND = 0.1
|
||||
PROBABILITY_DECREASE_RATE_PER_SECOND = 0.1
|
||||
MAX_REPLY_PROBABILITY = 1
|
||||
|
||||
|
||||
class InterestChatting:
|
||||
@@ -37,24 +31,15 @@ class InterestChatting:
|
||||
decay_rate=global_config.default_decay_rate_per_second,
|
||||
max_interest=MAX_INTEREST,
|
||||
trigger_threshold=global_config.reply_trigger_threshold,
|
||||
base_reply_probability=base_reply_probability,
|
||||
increase_rate=probability_increase_rate_per_second,
|
||||
decay_factor=global_config.probability_decay_factor_per_second,
|
||||
max_probability=max_reply_probability,
|
||||
max_probability=MAX_REPLY_PROBABILITY,
|
||||
):
|
||||
# 基础属性初始化
|
||||
self.interest_level: float = 0.0
|
||||
self.last_update_time: float = time.time()
|
||||
self.decay_rate_per_second: float = decay_rate
|
||||
self.max_interest: float = max_interest
|
||||
self.last_interaction_time: float = self.last_update_time
|
||||
|
||||
self.trigger_threshold: float = trigger_threshold
|
||||
self.base_reply_probability: float = base_reply_probability
|
||||
self.probability_increase_rate: float = increase_rate
|
||||
self.probability_decay_factor: float = decay_factor
|
||||
self.max_reply_probability: float = max_probability
|
||||
self.current_reply_probability: float = 0.0
|
||||
self.is_above_threshold: bool = False
|
||||
|
||||
# 任务相关属性初始化
|
||||
@@ -100,7 +85,6 @@ class InterestChatting:
|
||||
"""
|
||||
# 添加新消息
|
||||
self.interest_dict[message.message_info.message_id] = (message, interest_value, is_mentioned)
|
||||
self.last_interaction_time = time.time()
|
||||
|
||||
# 如果字典长度超过10,删除最旧的消息
|
||||
if len(self.interest_dict) > 10:
|
||||
@@ -144,10 +128,10 @@ class InterestChatting:
|
||||
async def _update_reply_probability(self):
|
||||
self.above_threshold = self.interest_level >= self.trigger_threshold
|
||||
if self.above_threshold:
|
||||
self.start_hfc_probability += 0.1
|
||||
self.start_hfc_probability += PROBABILITY_INCREASE_RATE_PER_SECOND
|
||||
else:
|
||||
if self.start_hfc_probability > 0:
|
||||
self.start_hfc_probability = max(0, self.start_hfc_probability - 0.1)
|
||||
self.start_hfc_probability = max(0, self.start_hfc_probability - PROBABILITY_DECREASE_RATE_PER_SECOND)
|
||||
|
||||
async def increase_interest(self, value: float):
|
||||
self.interest_level += value
|
||||
@@ -168,13 +152,6 @@ class InterestChatting:
|
||||
"above_threshold": self.above_threshold,
|
||||
}
|
||||
|
||||
async def should_evaluate_reply(self) -> bool:
|
||||
if self.current_reply_probability > 0:
|
||||
trigger = random.random() < self.current_reply_probability
|
||||
return trigger
|
||||
else:
|
||||
return False
|
||||
|
||||
# --- 新增后台更新任务相关方法 ---
|
||||
async def _run_update_loop(self, update_interval: float = 1.0):
|
||||
"""后台循环,定期更新兴趣和回复概率。"""
|
||||
@@ -322,7 +299,7 @@ class SubHeartflow:
|
||||
chat_stream = chat_manager.get_stream(self.chat_id)
|
||||
self.normal_chat_instance = NormalChat(chat_stream=chat_stream, interest_dict=self.get_interest_dict())
|
||||
|
||||
logger.info(f"{log_prefix} 启动 NormalChat 随便水群...")
|
||||
logger.info(f"{log_prefix} 开始普通聊天,随便水群...")
|
||||
await self.normal_chat_instance.start_chat() # <--- 修正:调用 start_chat
|
||||
return True
|
||||
except Exception as e:
|
||||
@@ -334,7 +311,7 @@ class SubHeartflow:
|
||||
async def _stop_heart_fc_chat(self):
|
||||
"""停止并清理 HeartFChatting 实例"""
|
||||
if self.heart_fc_instance:
|
||||
logger.info(f"{self.log_prefix} 关闭 HeartFChatting 实例...")
|
||||
logger.debug(f"{self.log_prefix} 结束专注聊天...")
|
||||
try:
|
||||
await self.heart_fc_instance.shutdown()
|
||||
except Exception as e:
|
||||
@@ -409,7 +386,7 @@ class SubHeartflow:
|
||||
# 移除限额检查逻辑
|
||||
logger.debug(f"{log_prefix} 准备进入或保持 聊天 状态")
|
||||
if await self._start_normal_chat():
|
||||
logger.info(f"{log_prefix} 成功进入或保持 NormalChat 状态。")
|
||||
# logger.info(f"{log_prefix} 成功进入或保持 NormalChat 状态。")
|
||||
state_changed = True
|
||||
else:
|
||||
logger.error(f"{log_prefix} 启动 NormalChat 失败,无法进入 CHAT 状态。")
|
||||
@@ -439,7 +416,7 @@ class SubHeartflow:
|
||||
self.history_chat_state.append((current_state, self.chat_state_last_time))
|
||||
|
||||
logger.info(
|
||||
f"{log_prefix} 麦麦的聊天状态从 {current_state.value} (持续了 {self.chat_state_last_time} 秒) 变更为 {new_state.value}"
|
||||
f"{log_prefix} 麦麦的聊天状态从 {current_state.value} (持续了 {int(self.chat_state_last_time)} 秒) 变更为 {new_state.value}"
|
||||
)
|
||||
|
||||
self.chat_state.chat_status = new_state
|
||||
@@ -493,11 +470,10 @@ class SubHeartflow:
|
||||
async def get_interest_state(self) -> dict:
|
||||
return await self.interest_chatting.get_state()
|
||||
|
||||
async def get_interest_level(self) -> float:
|
||||
return await self.interest_chatting.get_interest()
|
||||
|
||||
async def should_evaluate_reply(self) -> bool:
|
||||
return await self.interest_chatting.should_evaluate_reply()
|
||||
def get_normal_chat_last_speak_time(self) -> float:
|
||||
if self.normal_chat_instance:
|
||||
return self.normal_chat_instance.last_speak_time
|
||||
return 0
|
||||
|
||||
def get_interest_dict(self) -> Dict[str, tuple[MessageRecv, float, bool]]:
|
||||
return self.interest_chatting.interest_dict
|
||||
|
||||
@@ -140,11 +140,11 @@ class SubMind:
|
||||
individuality = Individuality.get_instance()
|
||||
|
||||
relation_prompt = ""
|
||||
print(f"person_list: {person_list}")
|
||||
# print(f"person_list: {person_list}")
|
||||
for person in person_list:
|
||||
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
|
||||
|
||||
print(f"relat22222ion_prompt: {relation_prompt}")
|
||||
# print(f"relat22222ion_prompt: {relation_prompt}")
|
||||
|
||||
# 构建个性部分
|
||||
prompt_personality = individuality.get_prompt(x_person=2, level=2)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
import time
|
||||
import random
|
||||
from typing import Dict, Any, Optional, List
|
||||
from typing import Dict, Any, Optional, List, Tuple
|
||||
import json # 导入 json 模块
|
||||
import functools # <-- 新增导入
|
||||
|
||||
@@ -29,6 +29,7 @@ logger = get_logger("subheartflow_manager")
|
||||
|
||||
# 子心流管理相关常量
|
||||
INACTIVE_THRESHOLD_SECONDS = 3600 # 子心流不活跃超时时间(秒)
|
||||
NORMAL_CHAT_TIMEOUT_SECONDS = 30 * 60 # 30分钟
|
||||
|
||||
|
||||
class SubHeartflowManager:
|
||||
@@ -256,7 +257,7 @@ class SubHeartflowManager:
|
||||
f"{log_prefix} 完成,共处理 {processed_count} 个子心流,成功将 {changed_count} 个非 ABSENT 子心流的状态更改为 ABSENT。"
|
||||
)
|
||||
|
||||
async def evaluate_interest_and_promote(self):
|
||||
async def sbhf_absent_into_focus(self):
|
||||
"""评估子心流兴趣度,满足条件且未达上限则提升到FOCUSED状态(基于start_hfc_probability)"""
|
||||
try:
|
||||
log_prefix = "[兴趣评估]"
|
||||
@@ -271,10 +272,7 @@ class SubHeartflowManager:
|
||||
return # 如果不允许,直接返回
|
||||
# --- 结束新增 ---
|
||||
|
||||
logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 开始尝试提升到FOCUSED状态")
|
||||
|
||||
if int(time.time()) % 20 == 0: # 每20秒输出一次
|
||||
logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 可以在{focused_limit}个群激情聊天")
|
||||
logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 可以在{focused_limit}个群激情聊天")
|
||||
|
||||
if focused_limit <= 0:
|
||||
# logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 不允许 FOCUSED 子心流")
|
||||
@@ -333,139 +331,207 @@ class SubHeartflowManager:
|
||||
except Exception as e:
|
||||
logger.error(f"启动HFC 兴趣评估失败: {e}", exc_info=True)
|
||||
|
||||
async def evaluate_and_transition_subflows_by_llm(self):
|
||||
async def sbhf_absent_into_chat(self):
|
||||
"""
|
||||
使用LLM评估每个子心流的状态,并根据LLM的判断执行状态转换(ABSENT <-> CHAT)。
|
||||
注意:此函数包含对假设的LLM函数的调用。
|
||||
随机选一个 ABSENT 状态的子心流,评估是否应转换为 CHAT 状态。
|
||||
每次调用最多转换一个。
|
||||
"""
|
||||
# 获取当前状态和限制,用于CHAT激活检查
|
||||
current_mai_state = self.mai_state_info.get_current_state()
|
||||
chat_limit = current_mai_state.get_normal_chat_max_num()
|
||||
|
||||
transitioned_to_chat = 0
|
||||
transitioned_to_absent = 0
|
||||
async with self._lock:
|
||||
# 1. 筛选出所有 ABSENT 状态的子心流
|
||||
absent_subflows = [
|
||||
hf for hf in self.subheartflows.values() if hf.chat_state.chat_status == ChatState.ABSENT
|
||||
]
|
||||
|
||||
async with self._lock: # 在锁内获取快照并迭代
|
||||
subflows_snapshot = list(self.subheartflows.values())
|
||||
# 使用不上锁的版本,因为我们已经在锁内
|
||||
if not absent_subflows:
|
||||
logger.debug("没有摸鱼的子心流可以评估。") # 日志太频繁,注释掉
|
||||
return # 没有目标,直接返回
|
||||
|
||||
# 2. 随机选一个幸运儿
|
||||
sub_hf_to_evaluate = random.choice(absent_subflows)
|
||||
flow_id = sub_hf_to_evaluate.subheartflow_id
|
||||
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
|
||||
log_prefix = f"[{stream_name}]"
|
||||
|
||||
# 3. 检查 CHAT 上限
|
||||
current_chat_count = self.count_subflows_by_state_nolock(ChatState.CHAT)
|
||||
if current_chat_count >= chat_limit:
|
||||
logger.info(f"{log_prefix} 想看看能不能聊,但是聊天太多了, ({current_chat_count}/{chat_limit}) 满了。")
|
||||
return # 满了,这次就算了
|
||||
|
||||
# --- 获取 FOCUSED 计数 ---
|
||||
current_focused_count = self.count_subflows_by_state_nolock(ChatState.FOCUSED)
|
||||
focused_limit = current_mai_state.get_focused_chat_max_num()
|
||||
|
||||
# --- 新增:获取聊天和专注群名 ---
|
||||
chatting_group_names = []
|
||||
focused_group_names = []
|
||||
for flow_id, hf in self.subheartflows.items():
|
||||
stream_name = chat_manager.get_stream_name(flow_id) or str(flow_id) # 保证有名字
|
||||
if hf.chat_state.chat_status == ChatState.CHAT:
|
||||
chatting_group_names.append(stream_name)
|
||||
elif hf.chat_state.chat_status == ChatState.FOCUSED:
|
||||
focused_group_names.append(stream_name)
|
||||
# --- 结束新增 ---
|
||||
|
||||
# --- 获取观察信息和构建 Prompt ---
|
||||
first_observation = sub_hf_to_evaluate.observations[0] # 喵~第一个观察者肯定存在的说
|
||||
await first_observation.observe()
|
||||
current_chat_log = first_observation.talking_message_str or "当前没啥聊天内容。"
|
||||
_observation_summary = f"最近聊了这些:\n{current_chat_log}"
|
||||
|
||||
mai_state_description = f"你当前状态: {current_mai_state.value}。"
|
||||
individuality = Individuality.get_instance()
|
||||
personality_prompt = individuality.get_prompt(x_person=2, level=2)
|
||||
prompt_personality = f"你正在扮演名为{individuality.name}的人类,{personality_prompt}"
|
||||
|
||||
# --- 修改:在 prompt 中加入当前聊天计数和群名信息 (条件显示) ---
|
||||
chat_status_lines = []
|
||||
if chatting_group_names:
|
||||
chat_status_lines.append(
|
||||
f"正在闲聊 ({current_chat_count}/{chat_limit}): {', '.join(chatting_group_names)}"
|
||||
)
|
||||
if focused_group_names:
|
||||
chat_status_lines.append(
|
||||
f"正在专注 ({current_focused_count}/{focused_limit}): {', '.join(focused_group_names)}"
|
||||
)
|
||||
|
||||
chat_status_prompt = "当前没有在任何群聊中。" # 默认消息喵~
|
||||
if chat_status_lines:
|
||||
chat_status_prompt = "当前聊天情况:\n" + "\n".join(chat_status_lines) # 拼接状态信息
|
||||
|
||||
prompt = (
|
||||
f"{prompt_personality}\\n"
|
||||
f"你当前没在 [{stream_name}] 群聊天。\\n"
|
||||
f"{mai_state_description}\\n"
|
||||
f"{chat_status_prompt}\\n" # <-- 喵!用了新的状态信息~
|
||||
f"{_observation_summary}\\n---\\n"
|
||||
f"基于以上信息,你想不想开始在这个群闲聊?\\n"
|
||||
f"请说明理由,并以 JSON 格式回答,包含 'decision' (布尔值) 和 'reason' (字符串)。\\n"
|
||||
f'例如:{{"decision": true, "reason": "看起来挺热闹的,插个话"}}\\n'
|
||||
f'例如:{{"decision": false, "reason": "已经聊了好多,休息一下"}}\\n'
|
||||
f"请只输出有效的 JSON 对象。"
|
||||
)
|
||||
# --- 结束修改 ---
|
||||
|
||||
# --- 4. LLM 评估是否想聊 ---
|
||||
yao_kai_shi_liao_ma, reason = await self._llm_evaluate_state_transition(prompt)
|
||||
|
||||
if reason:
|
||||
if yao_kai_shi_liao_ma:
|
||||
logger.info(f"{log_prefix} 打算开始聊,原因是: {reason}")
|
||||
else:
|
||||
logger.info(f"{log_prefix} 不打算聊,原因是: {reason}")
|
||||
else:
|
||||
logger.info(f"{log_prefix} 结果: {yao_kai_shi_liao_ma}")
|
||||
|
||||
if yao_kai_shi_liao_ma is None:
|
||||
logger.debug(f"{log_prefix} 问AI想不想聊失败了,这次算了。")
|
||||
return # 评估失败,结束
|
||||
|
||||
if not yao_kai_shi_liao_ma:
|
||||
# logger.info(f"{log_prefix} 现在不想聊这个群。")
|
||||
return # 不想聊,结束
|
||||
|
||||
# --- 5. AI想聊,再次检查额度并尝试转换 ---
|
||||
# 再次检查以防万一
|
||||
current_chat_count_before_change = self.count_subflows_by_state_nolock(ChatState.CHAT)
|
||||
if current_chat_count_before_change < chat_limit:
|
||||
logger.info(
|
||||
f"{log_prefix} 想聊,而且还有精力 ({current_chat_count_before_change}/{chat_limit}),这就去聊!"
|
||||
)
|
||||
await sub_hf_to_evaluate.change_chat_state(ChatState.CHAT)
|
||||
# 确认转换成功
|
||||
if sub_hf_to_evaluate.chat_state.chat_status == ChatState.CHAT:
|
||||
logger.debug(f"{log_prefix} 成功进入聊天状态!本次评估圆满结束。")
|
||||
else:
|
||||
logger.warning(
|
||||
f"{log_prefix} 奇怪,尝试进入聊天状态失败了。当前状态: {sub_hf_to_evaluate.chat_state.chat_status.value}"
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
f"{log_prefix} AI说想聊,但是刚问完就没空位了 ({current_chat_count_before_change}/{chat_limit})。真不巧,下次再说吧。"
|
||||
)
|
||||
# 无论转换成功与否,本次评估都结束了
|
||||
|
||||
# 锁在这里自动释放
|
||||
|
||||
# --- 新增:单独检查 CHAT 状态超时的任务 ---
|
||||
async def sbhf_chat_into_absent(self):
|
||||
"""定期检查处于 CHAT 状态的子心流是否因长时间未发言而超时,并将其转为 ABSENT。"""
|
||||
log_prefix_task = "[聊天超时检查]"
|
||||
transitioned_to_absent = 0
|
||||
checked_count = 0
|
||||
|
||||
async with self._lock:
|
||||
subflows_snapshot = list(self.subheartflows.values())
|
||||
checked_count = len(subflows_snapshot)
|
||||
|
||||
if not subflows_snapshot:
|
||||
logger.info("当前没有子心流需要评估。")
|
||||
# logger.debug(f"{log_prefix_task} 没有子心流需要检查超时。")
|
||||
return
|
||||
|
||||
for sub_hf in subflows_snapshot:
|
||||
# 只检查 CHAT 状态的子心流
|
||||
if sub_hf.chat_state.chat_status != ChatState.CHAT:
|
||||
continue
|
||||
|
||||
flow_id = sub_hf.subheartflow_id
|
||||
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
|
||||
log_prefix = f"[{stream_name}]"
|
||||
current_subflow_state = sub_hf.chat_state.chat_status
|
||||
log_prefix = f"[{stream_name}]({log_prefix_task})"
|
||||
|
||||
_observation_summary = "没有可用的观察信息。" # 默认值
|
||||
should_deactivate = False
|
||||
reason = ""
|
||||
|
||||
first_observation = sub_hf.observations[0]
|
||||
if isinstance(first_observation, ChattingObservation):
|
||||
# 组合中期记忆和当前聊天内容
|
||||
await first_observation.observe()
|
||||
current_chat = first_observation.talking_message_str or "当前无聊天内容。"
|
||||
combined_summary = f"当前聊天内容:\n{current_chat}"
|
||||
else:
|
||||
logger.warning(f"{log_prefix} [{stream_name}] 第一个观察者不是 ChattingObservation 类型。")
|
||||
try:
|
||||
# 使用变量名 last_bot_dong_zuo_time 替代 last_bot_activity_time
|
||||
last_bot_dong_zuo_time = sub_hf.get_normal_chat_last_speak_time()
|
||||
|
||||
# --- 获取麦麦状态 ---
|
||||
mai_state_description = f"你当前状态: {current_mai_state.value}。"
|
||||
if last_bot_dong_zuo_time > 0:
|
||||
current_time = time.time()
|
||||
# 使用变量名 time_since_last_bb 替代 time_since_last_reply
|
||||
time_since_last_bb = current_time - last_bot_dong_zuo_time
|
||||
|
||||
# 获取个性化信息
|
||||
individuality = Individuality.get_instance()
|
||||
|
||||
# 构建个性部分
|
||||
prompt_personality = f"你正在扮演名为{individuality.personality.bot_nickname}的人类,你"
|
||||
prompt_personality += individuality.personality.personality_core
|
||||
|
||||
# 随机添加个性侧面
|
||||
if individuality.personality.personality_sides:
|
||||
random_side = random.choice(individuality.personality.personality_sides)
|
||||
prompt_personality += f",{random_side}"
|
||||
|
||||
# 随机添加身份细节
|
||||
if individuality.identity.identity_detail:
|
||||
random_detail = random.choice(individuality.identity.identity_detail)
|
||||
prompt_personality += f",{random_detail}"
|
||||
|
||||
# --- 针对 ABSENT 状态 ---
|
||||
if current_subflow_state == ChatState.ABSENT:
|
||||
# 构建Prompt
|
||||
prompt = (
|
||||
f"{prompt_personality}\n"
|
||||
f"你当前没有在: [{stream_name}] 群中聊天。\n"
|
||||
f"{mai_state_description}\n"
|
||||
f"这个群里最近的聊天内容是:\n---\n{combined_summary}\n---\n"
|
||||
f"基于以上信息,请判断你是否愿意在这个群开始闲聊,"
|
||||
f"进入常规聊天(CHAT)状态?\n"
|
||||
f"给出你的判断,和理由,然后以 JSON 格式回答"
|
||||
f"包含键 'decision',如果要开始聊天,值为 true ,否则为 false.\n"
|
||||
f"包含键 'reason',其值为你的理由。\n"
|
||||
f'例如:{{"decision": true, "reason": "因为我想聊天"}}\n'
|
||||
f"请只输出有效的 JSON 对象。"
|
||||
)
|
||||
|
||||
# 调用LLM评估
|
||||
should_activate = await self._llm_evaluate_state_transition(prompt)
|
||||
if should_activate is None: # 处理解析失败或意外情况
|
||||
logger.warning(f"{log_prefix}LLM评估返回无效结果,跳过。")
|
||||
continue
|
||||
|
||||
if should_activate:
|
||||
# 检查CHAT限额
|
||||
# 使用不上锁的版本,因为我们已经在锁内
|
||||
current_chat_count = self.count_subflows_by_state_nolock(ChatState.CHAT)
|
||||
if current_chat_count < chat_limit:
|
||||
if time_since_last_bb > NORMAL_CHAT_TIMEOUT_SECONDS:
|
||||
should_deactivate = True
|
||||
reason = f"超过 {NORMAL_CHAT_TIMEOUT_SECONDS / 60:.0f} 分钟没 BB"
|
||||
logger.info(
|
||||
f"{log_prefix}LLM建议激活到CHAT状态,且未达上限({current_chat_count}/{chat_limit})。正在尝试转换..."
|
||||
f"{log_prefix} 太久没有发言 ({reason}),不看了。上次活动时间: {last_bot_dong_zuo_time:.0f}"
|
||||
)
|
||||
await sub_hf.change_chat_state(ChatState.CHAT)
|
||||
if sub_hf.chat_state.chat_status == ChatState.CHAT:
|
||||
transitioned_to_chat += 1
|
||||
else:
|
||||
logger.warning(f"{log_prefix}尝试激活到CHAT失败。")
|
||||
else:
|
||||
logger.info(
|
||||
f"{log_prefix}LLM建议激活到CHAT状态,但已达到上限({current_chat_count}/{chat_limit})。跳过转换。"
|
||||
)
|
||||
else:
|
||||
logger.info(f"{log_prefix}LLM建议不激活到CHAT状态。")
|
||||
# else:
|
||||
# logger.debug(f"{log_prefix} Bot活动时间未超时 ({time_since_last_bb:.0f}s < {NORMAL_CHAT_TIMEOUT_SECONDS}s),保持 CHAT 状态。")
|
||||
# else:
|
||||
# 如果没有记录到Bot的活动时间,暂时不因为超时而转换状态
|
||||
# logger.debug(f"{log_prefix} 未找到有效的 Bot 最后活动时间记录,不执行超时检查。")
|
||||
|
||||
# --- 针对 CHAT 状态 ---
|
||||
elif current_subflow_state == ChatState.CHAT:
|
||||
# 构建Prompt
|
||||
prompt = (
|
||||
f"{prompt_personality}\n"
|
||||
f"你正在在: [{stream_name}] 群中聊天。\n"
|
||||
f"{mai_state_description}\n"
|
||||
f"这个群里最近的聊天内容是:\n---\n{combined_summary}\n---\n"
|
||||
f"基于以上信息,请判断你是否愿意在这个群继续闲聊,"
|
||||
f"还是暂时离开聊天,进入休眠状态?\n"
|
||||
f"给出你的判断,和理由,然后以 JSON 格式回答"
|
||||
f"包含键 'decision',如果要离开聊天,值为 true ,否则为 false.\n"
|
||||
f"包含键 'reason',其值为你的理由。\n"
|
||||
f'例如:{{"decision": true, "reason": "因为我想休息"}}\n'
|
||||
f"请只输出有效的 JSON 对象。"
|
||||
except AttributeError:
|
||||
logger.error(
|
||||
f"{log_prefix} 无法获取 Bot 最后 BB 时间,请确保 SubHeartflow 相关实现正确。跳过超时检查。"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"{log_prefix} 检查 Bot 超时状态时出错: {e}", exc_info=True)
|
||||
|
||||
# 调用LLM评估
|
||||
should_deactivate = await self._llm_evaluate_state_transition(prompt)
|
||||
if should_deactivate is None: # 处理解析失败或意外情况
|
||||
logger.warning(f"{log_prefix}LLM评估返回无效结果,跳过。")
|
||||
continue
|
||||
|
||||
if should_deactivate:
|
||||
logger.info(f"{log_prefix}LLM建议进入ABSENT状态。正在尝试转换...")
|
||||
await sub_hf.change_chat_state(ChatState.ABSENT)
|
||||
if sub_hf.chat_state.chat_status == ChatState.ABSENT:
|
||||
transitioned_to_absent += 1
|
||||
# --- 执行状态转换(如果超时) ---
|
||||
if should_deactivate:
|
||||
logger.debug(f"{log_prefix} 因超时 ({reason}),尝试转换为 ABSENT 状态。")
|
||||
await sub_hf.change_chat_state(ChatState.ABSENT)
|
||||
# 再次检查确保状态已改变
|
||||
if sub_hf.chat_state.chat_status == ChatState.ABSENT:
|
||||
transitioned_to_absent += 1
|
||||
logger.info(f"{log_prefix} 不看了。")
|
||||
else:
|
||||
logger.info(f"{log_prefix}LLM建议不进入ABSENT状态。")
|
||||
logger.warning(f"{log_prefix} 尝试因超时转换为 ABSENT 失败。")
|
||||
|
||||
async def _llm_evaluate_state_transition(self, prompt: str) -> Optional[bool]:
|
||||
if transitioned_to_absent > 0:
|
||||
logger.debug(
|
||||
f"{log_prefix_task} 完成,共检查 {checked_count} 个子心流,{transitioned_to_absent} 个因超时转为 ABSENT。"
|
||||
)
|
||||
|
||||
# --- 结束新增 ---
|
||||
|
||||
async def _llm_evaluate_state_transition(self, prompt: str) -> Tuple[Optional[bool], Optional[str]]:
|
||||
"""
|
||||
使用 LLM 评估是否应进行状态转换,期望 LLM 返回 JSON 格式。
|
||||
|
||||
@@ -482,7 +548,7 @@ class SubHeartflowManager:
|
||||
response_text, _ = await self.llm_state_evaluator.generate_response_async(prompt)
|
||||
# logger.debug(f"{log_prefix} 使用模型 {self.llm_state_evaluator.model_name} 评估")
|
||||
logger.debug(f"{log_prefix} 原始输入: {prompt}")
|
||||
logger.debug(f"{log_prefix} 原始响应: {response_text}")
|
||||
logger.debug(f"{log_prefix} 原始评估结果: {response_text}")
|
||||
|
||||
# --- 解析 JSON 响应 ---
|
||||
try:
|
||||
@@ -493,34 +559,36 @@ class SubHeartflowManager:
|
||||
|
||||
data = json.loads(cleaned_response)
|
||||
decision = data.get("decision") # 使用 .get() 避免 KeyError
|
||||
reason = data.get("reason")
|
||||
|
||||
if isinstance(decision, bool):
|
||||
logger.debug(f"{log_prefix} LLM评估结果 (来自JSON): {'建议转换' if decision else '建议不转换'}")
|
||||
return decision
|
||||
|
||||
return decision, reason
|
||||
else:
|
||||
logger.warning(
|
||||
f"{log_prefix} LLM 返回的 JSON 中 'decision' 键的值不是布尔型: {decision}。响应: {response_text}"
|
||||
)
|
||||
return None # 值类型不正确
|
||||
return None, None # 值类型不正确
|
||||
|
||||
except json.JSONDecodeError as json_err:
|
||||
logger.warning(f"{log_prefix} LLM 返回的响应不是有效的 JSON: {json_err}。响应: {response_text}")
|
||||
# 尝试在非JSON响应中查找关键词作为后备方案 (可选)
|
||||
if "true" in response_text.lower():
|
||||
logger.debug(f"{log_prefix} 在非JSON响应中找到 'true',解释为建议转换")
|
||||
return True
|
||||
return True, None
|
||||
if "false" in response_text.lower():
|
||||
logger.debug(f"{log_prefix} 在非JSON响应中找到 'false',解释为建议不转换")
|
||||
return False
|
||||
return None # JSON 解析失败,也未找到关键词
|
||||
return False, None
|
||||
return None, None # JSON 解析失败,也未找到关键词
|
||||
except Exception as parse_err: # 捕获其他可能的解析错误
|
||||
logger.warning(f"{log_prefix} 解析 LLM JSON 响应时发生意外错误: {parse_err}。响应: {response_text}")
|
||||
return None
|
||||
return None, None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{log_prefix} 调用 LLM 或处理其响应时出错: {e}", exc_info=True)
|
||||
traceback.print_exc()
|
||||
return None # LLM 调用或处理失败
|
||||
return None, None # LLM 调用或处理失败
|
||||
|
||||
def count_subflows_by_state(self, state: ChatState) -> int:
|
||||
"""统计指定状态的子心流数量"""
|
||||
@@ -579,14 +647,14 @@ class SubHeartflowManager:
|
||||
# --- 新增:处理 HFC 无回复回调的专用方法 --- #
|
||||
async def _handle_hfc_no_reply(self, subheartflow_id: Any):
|
||||
"""处理来自 HeartFChatting 的连续无回复信号 (通过 partial 绑定 ID)"""
|
||||
# 注意:这里不需要再获取锁,因为 request_absent_transition 内部会处理锁
|
||||
# 注意:这里不需要再获取锁,因为 sbhf_focus_into_absent 内部会处理锁
|
||||
logger.debug(f"[管理器 HFC 处理器] 接收到来自 {subheartflow_id} 的 HFC 无回复信号")
|
||||
await self.request_absent_transition(subheartflow_id)
|
||||
await self.sbhf_focus_into_absent(subheartflow_id)
|
||||
|
||||
# --- 结束新增 --- #
|
||||
|
||||
# --- 新增:处理来自 HeartFChatting 的状态转换请求 --- #
|
||||
async def request_absent_transition(self, subflow_id: Any):
|
||||
async def sbhf_focus_into_absent(self, subflow_id: Any):
|
||||
"""
|
||||
接收来自 HeartFChatting 的请求,将特定子心流的状态转换为 ABSENT。
|
||||
通常在连续多次 "no_reply" 后被调用。
|
||||
@@ -606,12 +674,52 @@ class SubHeartflowManager:
|
||||
# 仅当子心流处于 FOCUSED 状态时才进行转换
|
||||
# 因为 HeartFChatting 只在 FOCUSED 状态下运行
|
||||
if current_state == ChatState.FOCUSED:
|
||||
logger.info(f"[状态转换请求] 接收到请求,将 {stream_name} (当前: {current_state.value}) 转换为 ABSENT")
|
||||
target_state = ChatState.ABSENT # 默认目标状态
|
||||
log_reason = "默认转换"
|
||||
|
||||
# 决定是去 ABSENT 还是 CHAT
|
||||
if random.random() < 0.5:
|
||||
target_state = ChatState.ABSENT
|
||||
log_reason = "随机选择 ABSENT"
|
||||
logger.debug(f"[状态转换请求] {stream_name} ({current_state.value}) 随机决定进入 ABSENT")
|
||||
else:
|
||||
# 尝试进入 CHAT,先检查限制
|
||||
current_mai_state = self.mai_state_info.get_current_state()
|
||||
chat_limit = current_mai_state.get_normal_chat_max_num()
|
||||
# 使用不上锁的版本,因为我们已经在锁内
|
||||
current_chat_count = self.count_subflows_by_state_nolock(ChatState.CHAT)
|
||||
|
||||
if current_chat_count < chat_limit:
|
||||
target_state = ChatState.CHAT
|
||||
log_reason = f"随机选择 CHAT (当前 {current_chat_count}/{chat_limit})"
|
||||
logger.debug(
|
||||
f"[状态转换请求] {stream_name} ({current_state.value}) 随机决定进入 CHAT,未达上限 ({current_chat_count}/{chat_limit})"
|
||||
)
|
||||
else:
|
||||
target_state = ChatState.ABSENT
|
||||
log_reason = f"随机选择 CHAT 但已达上限 ({current_chat_count}/{chat_limit}),转为 ABSENT"
|
||||
logger.debug(
|
||||
f"[状态转换请求] {stream_name} ({current_state.value}) 随机决定进入 CHAT,但已达上限 ({current_chat_count}/{chat_limit}),改为进入 ABSENT"
|
||||
)
|
||||
|
||||
# 开始转换
|
||||
logger.info(
|
||||
f"[状态转换请求] 接收到请求,将 {stream_name} (当前: {current_state.value}) 尝试转换为 {target_state.value} ({log_reason})"
|
||||
)
|
||||
try:
|
||||
await subflow.change_chat_state(ChatState.ABSENT)
|
||||
logger.info(f"[状态转换请求] {stream_name} 状态已成功转换为 ABSENT")
|
||||
await subflow.change_chat_state(target_state)
|
||||
# 检查最终状态
|
||||
final_state = subflow.chat_state.chat_status
|
||||
if final_state == target_state:
|
||||
logger.debug(f"[状态转换请求] {stream_name} 状态已成功转换为 {final_state.value}")
|
||||
else:
|
||||
logger.warning(
|
||||
f"[状态转换请求] 尝试将 {stream_name} 转换为 {target_state.value} 后,状态实际为 {final_state.value}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"[状态转换请求] 转换 {stream_name} 到 ABSENT 时出错: {e}", exc_info=True)
|
||||
logger.error(
|
||||
f"[状态转换请求] 转换 {stream_name} 到 {target_state.value} 时出错: {e}", exc_info=True
|
||||
)
|
||||
elif current_state == ChatState.ABSENT:
|
||||
logger.debug(f"[状态转换请求] {stream_name} 已处于 ABSENT 状态,无需转换")
|
||||
else:
|
||||
|
||||
@@ -191,7 +191,7 @@ class Individuality:
|
||||
获取合并的个体特征prompt
|
||||
|
||||
Args:
|
||||
level (int): 详细程度 (1: 核心/随机细节, 2: 核心+侧面/细节+其他, 3: 全部)
|
||||
level (int): 详细程度 (1: 核心/随机细节, 2: 核心+随机侧面/全部细节, 3: 全部)
|
||||
x_person (int, optional): 人称代词 (0: 无人称, 1: 我, 2: 你). 默认为 2.
|
||||
|
||||
Returns:
|
||||
|
||||
@@ -21,6 +21,7 @@ PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊,
|
||||
|
||||
【当前对话目标】
|
||||
{goals_str}
|
||||
{knowledge_info_str}
|
||||
|
||||
【最近行动历史概要】
|
||||
{action_history_summary}
|
||||
@@ -33,7 +34,7 @@ PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊,
|
||||
|
||||
------
|
||||
可选行动类型以及解释:
|
||||
fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择
|
||||
fetch_knowledge: 需要调取知识或记忆,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择
|
||||
listening: 倾听对方发言,当你认为对方话才说到一半,发言明显未结束时选择
|
||||
direct_reply: 直接回复对方
|
||||
rethink_goal: 思考一个对话目标,当你觉得目前对话需要目标,或当前目标不再适用,或话题卡住时选择。注意私聊的环境是灵活的,有可能需要经常选择
|
||||
@@ -53,6 +54,7 @@ PROMPT_FOLLOW_UP = """{persona_text}。现在你在参与一场QQ私聊,刚刚
|
||||
|
||||
【当前对话目标】
|
||||
{goals_str}
|
||||
{knowledge_info_str}
|
||||
|
||||
【最近行动历史概要】
|
||||
{action_history_summary}
|
||||
@@ -224,6 +226,41 @@ class ActionPlanner:
|
||||
logger.error(f"[私聊][{self.private_name}]构建对话目标字符串时出错: {e}")
|
||||
goals_str = "- 构建对话目标时出错。\n"
|
||||
|
||||
# --- 知识信息字符串构建开始 ---
|
||||
knowledge_info_str = "【已获取的相关知识和记忆】\n"
|
||||
try:
|
||||
# 检查 conversation_info 是否有 knowledge_list 并且不为空
|
||||
if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list:
|
||||
# 最多只显示最近的 5 条知识,防止 Prompt 过长
|
||||
recent_knowledge = conversation_info.knowledge_list[-5:]
|
||||
for i, knowledge_item in enumerate(recent_knowledge):
|
||||
if isinstance(knowledge_item, dict):
|
||||
query = knowledge_item.get("query", "未知查询")
|
||||
knowledge = knowledge_item.get("knowledge", "无知识内容")
|
||||
source = knowledge_item.get("source", "未知来源")
|
||||
# 只取知识内容的前 2000 个字,避免太长
|
||||
knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge
|
||||
knowledge_info_str += (
|
||||
f"{i + 1}. 关于 '{query}' 的知识 (来源: {source}):\n {knowledge_snippet}\n"
|
||||
)
|
||||
else:
|
||||
# 处理列表里不是字典的异常情况
|
||||
knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n"
|
||||
|
||||
if not recent_knowledge: # 如果 knowledge_list 存在但为空
|
||||
knowledge_info_str += "- 暂无相关知识和记忆。\n"
|
||||
|
||||
else:
|
||||
# 如果 conversation_info 没有 knowledge_list 属性,或者列表为空
|
||||
knowledge_info_str += "- 暂无相关知识记忆。\n"
|
||||
except AttributeError:
|
||||
logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。")
|
||||
knowledge_info_str += "- 获取知识列表时出错。\n"
|
||||
except Exception as e:
|
||||
logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}")
|
||||
knowledge_info_str += "- 处理知识列表时出错。\n"
|
||||
# --- 知识信息字符串构建结束 ---
|
||||
|
||||
# 获取聊天历史记录 (chat_history_text)
|
||||
chat_history_text = ""
|
||||
try:
|
||||
@@ -349,6 +386,7 @@ class ActionPlanner:
|
||||
time_since_last_bot_message_info=time_since_last_bot_message_info,
|
||||
timeout_context=timeout_context,
|
||||
chat_history_text=chat_history_text if chat_history_text.strip() else "还没有聊天记录。",
|
||||
knowledge_info_str=knowledge_info_str,
|
||||
)
|
||||
|
||||
logger.debug(f"[私聊][{self.private_name}]发送到LLM的最终提示词:\n------\n{prompt}\n------")
|
||||
|
||||
@@ -525,9 +525,9 @@ class Conversation:
|
||||
)
|
||||
action_successful = True
|
||||
except Exception as fetch_err:
|
||||
logger.error(f"[私聊][{self.private_name}]获取知识时出错: {fetch_err}")
|
||||
logger.error(f"[私聊][{self.private_name}]获取知识时出错: {str(fetch_err)}")
|
||||
conversation_info.done_action[action_index].update(
|
||||
{"status": "recall", "final_reason": f"获取知识失败: {fetch_err}"}
|
||||
{"status": "recall", "final_reason": f"获取知识失败: {str(fetch_err)}"}
|
||||
)
|
||||
self.conversation_info.last_successful_reply_action = None # 重置状态
|
||||
|
||||
|
||||
@@ -50,21 +50,18 @@ class MessageStorage(ABC):
|
||||
class MongoDBMessageStorage(MessageStorage):
|
||||
"""MongoDB消息存储实现"""
|
||||
|
||||
def __init__(self):
|
||||
self.db = db
|
||||
|
||||
async def get_messages_after(self, chat_id: str, message_time: float) -> List[Dict[str, Any]]:
|
||||
query = {"chat_id": chat_id}
|
||||
# print(f"storage_check_message: {message_time}")
|
||||
|
||||
query["time"] = {"$gt": message_time}
|
||||
|
||||
return list(self.db.messages.find(query).sort("time", 1))
|
||||
return list(db.messages.find(query).sort("time", 1))
|
||||
|
||||
async def get_messages_before(self, chat_id: str, time_point: float, limit: int = 5) -> List[Dict[str, Any]]:
|
||||
query = {"chat_id": chat_id, "time": {"$lt": time_point}}
|
||||
|
||||
messages = list(self.db.messages.find(query).sort("time", -1).limit(limit))
|
||||
messages = list(db.messages.find(query).sort("time", -1).limit(limit))
|
||||
|
||||
# 将消息按时间正序排列
|
||||
messages.reverse()
|
||||
@@ -73,7 +70,7 @@ class MongoDBMessageStorage(MessageStorage):
|
||||
async def has_new_messages(self, chat_id: str, after_time: float) -> bool:
|
||||
query = {"chat_id": chat_id, "time": {"$gt": after_time}}
|
||||
|
||||
return self.db.messages.find_one(query) is not None
|
||||
return db.messages.find_one(query) is not None
|
||||
|
||||
|
||||
# # 创建一个内存消息存储实现,用于测试
|
||||
|
||||
@@ -68,16 +68,18 @@ class KnowledgeFetcher:
|
||||
max_depth=3,
|
||||
fast_retrieval=False,
|
||||
)
|
||||
knowledge = ""
|
||||
knowledge_text = ""
|
||||
sources_text = "无记忆匹配" # 默认值
|
||||
if related_memory:
|
||||
sources = []
|
||||
for memory in related_memory:
|
||||
knowledge += memory[1] + "\n"
|
||||
knowledge_text += memory[1] + "\n"
|
||||
sources.append(f"记忆片段{memory[0]}")
|
||||
knowledge = knowledge.strip(), ",".join(sources)
|
||||
knowledge_text = knowledge_text.strip()
|
||||
sources_text = ",".join(sources)
|
||||
|
||||
knowledge += "现在有以下**知识**可供参考:\n "
|
||||
knowledge += self._lpmm_get_knowledge(query)
|
||||
knowledge += "请记住这些**知识**,并根据**知识**回答问题。\n"
|
||||
knowledge_text += "\n现在有以下**知识**可供参考:\n "
|
||||
knowledge_text += self._lpmm_get_knowledge(query)
|
||||
knowledge_text += "\n请记住这些**知识**,并根据**知识**回答问题。\n"
|
||||
|
||||
return "未找到相关知识", "无记忆匹配"
|
||||
return knowledge_text or "未找到相关知识", sources_text or "无记忆匹配"
|
||||
|
||||
@@ -17,6 +17,9 @@ logger = get_module_logger("reply_generator")
|
||||
PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊,请根据以下信息生成一条回复:
|
||||
|
||||
当前对话目标:{goals_str}
|
||||
|
||||
{knowledge_info_str}
|
||||
|
||||
最近的聊天记录:
|
||||
{chat_history_text}
|
||||
|
||||
@@ -25,7 +28,7 @@ PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊,请
|
||||
1. 符合对话目标,以"你"的角度发言(不要自己与自己对话!)
|
||||
2. 符合你的性格特征和身份细节
|
||||
3. 通俗易懂,自然流畅,像正常聊天一样,简短(通常20字以内,除非特殊情况)
|
||||
4. 适当利用相关知识,但不要生硬引用
|
||||
4. 可以适当利用相关知识,但不要生硬引用
|
||||
5. 自然、得体,结合聊天记录逻辑合理,且没有重复表达同质内容
|
||||
|
||||
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。
|
||||
@@ -39,6 +42,9 @@ PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊,请
|
||||
PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊,**刚刚你已经发送了一条或多条消息**,现在请根据以下信息再发一条新消息:
|
||||
|
||||
当前对话目标:{goals_str}
|
||||
|
||||
{knowledge_info_str}
|
||||
|
||||
最近的聊天记录:
|
||||
{chat_history_text}
|
||||
|
||||
@@ -47,7 +53,7 @@ PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊
|
||||
1. 符合对话目标,以"你"的角度发言(不要自己与自己对话!)
|
||||
2. 符合你的性格特征和身份细节
|
||||
3. 通俗易懂,自然流畅,像正常聊天一样,简短(通常20字以内,除非特殊情况)
|
||||
4. 适当利用相关知识,但不要生硬引用
|
||||
4. 可以适当利用相关知识,但不要生硬引用
|
||||
5. 跟之前你发的消息自然的衔接,逻辑合理,且没有重复表达同质内容或部分重叠内容
|
||||
|
||||
请注意把握聊天内容,不用太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。
|
||||
@@ -131,6 +137,38 @@ class ReplyGenerator:
|
||||
else:
|
||||
goals_str = "- 目前没有明确对话目标\n" # 简化无目标情况
|
||||
|
||||
# --- 新增:构建知识信息字符串 ---
|
||||
knowledge_info_str = "【供参考的相关知识和记忆】\n" # 稍微改下标题,表明是供参考
|
||||
try:
|
||||
# 检查 conversation_info 是否有 knowledge_list 并且不为空
|
||||
if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list:
|
||||
# 最多只显示最近的 5 条知识
|
||||
recent_knowledge = conversation_info.knowledge_list[-5:]
|
||||
for i, knowledge_item in enumerate(recent_knowledge):
|
||||
if isinstance(knowledge_item, dict):
|
||||
query = knowledge_item.get("query", "未知查询")
|
||||
knowledge = knowledge_item.get("knowledge", "无知识内容")
|
||||
source = knowledge_item.get("source", "未知来源")
|
||||
# 只取知识内容的前 2000 个字
|
||||
knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge
|
||||
knowledge_info_str += (
|
||||
f"{i + 1}. 关于 '{query}' (来源: {source}): {knowledge_snippet}\n" # 格式微调,更简洁
|
||||
)
|
||||
else:
|
||||
knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n"
|
||||
|
||||
if not recent_knowledge:
|
||||
knowledge_info_str += "- 暂无。\n" # 更简洁的提示
|
||||
|
||||
else:
|
||||
knowledge_info_str += "- 暂无。\n"
|
||||
except AttributeError:
|
||||
logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。")
|
||||
knowledge_info_str += "- 获取知识列表时出错。\n"
|
||||
except Exception as e:
|
||||
logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}")
|
||||
knowledge_info_str += "- 处理知识列表时出错。\n"
|
||||
|
||||
# 获取聊天历史记录 (chat_history_text)
|
||||
chat_history_text = observation_info.chat_history_str
|
||||
if observation_info.new_messages_count > 0 and observation_info.unprocessed_messages:
|
||||
@@ -162,7 +200,10 @@ class ReplyGenerator:
|
||||
|
||||
# --- 格式化最终的 Prompt ---
|
||||
prompt = prompt_template.format(
|
||||
persona_text=persona_text, goals_str=goals_str, chat_history_text=chat_history_text
|
||||
persona_text=persona_text,
|
||||
goals_str=goals_str,
|
||||
chat_history_text=chat_history_text,
|
||||
knowledge_info_str=knowledge_info_str,
|
||||
)
|
||||
|
||||
# --- 调用 LLM 生成 ---
|
||||
|
||||
@@ -99,15 +99,20 @@ class ChatBot:
|
||||
template_group_name = None
|
||||
|
||||
async def preprocess():
|
||||
logger.trace("开始预处理消息...")
|
||||
# 如果在私聊中
|
||||
if groupinfo is None:
|
||||
logger.trace("检测到私聊消息")
|
||||
# 是否在配置信息中开启私聊模式
|
||||
if global_config.enable_friend_chat:
|
||||
logger.trace("私聊模式已启用")
|
||||
# 是否进入PFC
|
||||
if global_config.enable_pfc_chatting:
|
||||
logger.trace("进入PFC私聊处理流程")
|
||||
userinfo = message.message_info.user_info
|
||||
messageinfo = message.message_info
|
||||
# 创建聊天流
|
||||
logger.trace(f"为{userinfo.user_id}创建/获取聊天流")
|
||||
chat = await chat_manager.get_or_create_stream(
|
||||
platform=messageinfo.platform,
|
||||
user_info=userinfo,
|
||||
@@ -118,9 +123,11 @@ class ChatBot:
|
||||
await self._create_pfc_chat(message)
|
||||
# 禁止PFC,进入普通的心流消息处理逻辑
|
||||
else:
|
||||
logger.trace("进入普通心流私聊处理")
|
||||
await self.heartflow_processor.process_message(message_data)
|
||||
# 群聊默认进入心流消息处理逻辑
|
||||
else:
|
||||
logger.trace(f"检测到群聊消息,群ID: {groupinfo.group_id}")
|
||||
await self.heartflow_processor.process_message(message_data)
|
||||
|
||||
if template_group_name:
|
||||
|
||||
@@ -159,16 +159,16 @@ class MessageManager:
|
||||
logger.warning("Processor task already running.")
|
||||
return
|
||||
self._processor_task = asyncio.create_task(self._start_processor_loop())
|
||||
logger.info("MessageManager processor task started.")
|
||||
logger.debug("MessageManager processor task started.")
|
||||
|
||||
def stop(self):
|
||||
"""停止后台处理器任务。"""
|
||||
self._running = False
|
||||
if hasattr(self, "_processor_task") and not self._processor_task.done():
|
||||
self._processor_task.cancel()
|
||||
logger.info("MessageManager processor task stopping.")
|
||||
logger.debug("MessageManager processor task stopping.")
|
||||
else:
|
||||
logger.info("MessageManager processor task not running or already stopped.")
|
||||
logger.debug("MessageManager processor task not running or already stopped.")
|
||||
|
||||
async def get_container(self, chat_id: str) -> MessageContainer:
|
||||
"""获取或创建聊天流的消息容器 (异步,使用锁)"""
|
||||
|
||||
@@ -732,6 +732,9 @@ def translate_timestamp_to_human_readable(timestamp: float, mode: str = "normal"
|
||||
return f"{int(diff / 86400)}天前:\n"
|
||||
else:
|
||||
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp)) + ":\n"
|
||||
elif mode == "lite":
|
||||
# 只返回时分秒格式,喵~
|
||||
return time.strftime("%H:%M:%S", time.localtime(timestamp))
|
||||
return None
|
||||
|
||||
|
||||
|
||||
@@ -5,6 +5,7 @@ import hashlib
|
||||
from typing import Optional
|
||||
from PIL import Image
|
||||
import io
|
||||
import numpy as np
|
||||
|
||||
|
||||
from ...common.database import db
|
||||
@@ -231,14 +232,16 @@ class ImageManager:
|
||||
return "[图片]"
|
||||
|
||||
@staticmethod
|
||||
def transform_gif(gif_base64: str) -> str:
|
||||
"""将GIF转换为水平拼接的静态图像
|
||||
def transform_gif(gif_base64: str, similarity_threshold: float = 1000.0, max_frames: int = 15) -> Optional[str]:
|
||||
"""将GIF转换为水平拼接的静态图像, 跳过相似的帧
|
||||
|
||||
Args:
|
||||
gif_base64: GIF的base64编码字符串
|
||||
similarity_threshold: 判定帧相似的阈值 (MSE),越小表示要求差异越大才算不同帧,默认1000.0
|
||||
max_frames: 最大抽取的帧数,默认15
|
||||
|
||||
Returns:
|
||||
str: 拼接后的JPG图像的base64编码字符串
|
||||
Optional[str]: 拼接后的JPG图像的base64编码字符串, 或者在失败时返回None
|
||||
"""
|
||||
try:
|
||||
# 解码base64
|
||||
@@ -246,41 +249,88 @@ class ImageManager:
|
||||
gif = Image.open(io.BytesIO(gif_data))
|
||||
|
||||
# 收集所有帧
|
||||
frames = []
|
||||
all_frames = []
|
||||
try:
|
||||
while True:
|
||||
gif.seek(len(frames))
|
||||
gif.seek(len(all_frames))
|
||||
# 确保是RGB格式方便比较
|
||||
frame = gif.convert("RGB")
|
||||
frames.append(frame.copy())
|
||||
all_frames.append(frame.copy())
|
||||
except EOFError:
|
||||
pass
|
||||
pass # 读完啦
|
||||
|
||||
if not frames:
|
||||
raise ValueError("No frames found in GIF")
|
||||
if not all_frames:
|
||||
logger.warning("GIF中没有找到任何帧")
|
||||
return None # 空的GIF直接返回None
|
||||
|
||||
# 计算需要抽取的帧的索引
|
||||
total_frames = len(frames)
|
||||
if total_frames <= 15:
|
||||
selected_frames = frames
|
||||
else:
|
||||
# 均匀抽取10帧
|
||||
indices = [int(i * (total_frames - 1) / 14) for i in range(15)]
|
||||
selected_frames = [frames[i] for i in indices]
|
||||
# --- 新的帧选择逻辑 ---
|
||||
selected_frames = []
|
||||
last_selected_frame_np = None
|
||||
|
||||
# 获取单帧的尺寸
|
||||
for i, current_frame in enumerate(all_frames):
|
||||
current_frame_np = np.array(current_frame)
|
||||
|
||||
# 第一帧总是要选的
|
||||
if i == 0:
|
||||
selected_frames.append(current_frame)
|
||||
last_selected_frame_np = current_frame_np
|
||||
continue
|
||||
|
||||
# 计算和上一张选中帧的差异(均方误差 MSE)
|
||||
if last_selected_frame_np is not None:
|
||||
mse = np.mean((current_frame_np - last_selected_frame_np) ** 2)
|
||||
# logger.trace(f"帧 {i} 与上一选中帧的 MSE: {mse}") # 可以取消注释来看差异值
|
||||
|
||||
# 如果差异够大,就选它!
|
||||
if mse > similarity_threshold:
|
||||
selected_frames.append(current_frame)
|
||||
last_selected_frame_np = current_frame_np
|
||||
# 检查是不是选够了
|
||||
if len(selected_frames) >= max_frames:
|
||||
# logger.debug(f"已选够 {max_frames} 帧,停止选择。")
|
||||
break
|
||||
# 如果差异不大就跳过这一帧啦
|
||||
|
||||
# --- 帧选择逻辑结束 ---
|
||||
|
||||
# 如果选择后连一帧都没有(比如GIF只有一帧且后续处理失败?)或者原始GIF就没帧,也返回None
|
||||
if not selected_frames:
|
||||
logger.warning("处理后没有选中任何帧")
|
||||
return None
|
||||
|
||||
# logger.debug(f"总帧数: {len(all_frames)}, 选中帧数: {len(selected_frames)}")
|
||||
|
||||
# 获取选中的第一帧的尺寸(假设所有帧尺寸一致)
|
||||
frame_width, frame_height = selected_frames[0].size
|
||||
|
||||
# 计算目标尺寸,保持宽高比
|
||||
target_height = 200 # 固定高度
|
||||
# 防止除以零
|
||||
if frame_height == 0:
|
||||
logger.error("帧高度为0,无法计算缩放尺寸")
|
||||
return None
|
||||
target_width = int((target_height / frame_height) * frame_width)
|
||||
# 宽度也不能是0
|
||||
if target_width == 0:
|
||||
logger.warning(f"计算出的目标宽度为0 (原始尺寸 {frame_width}x{frame_height}),调整为1")
|
||||
target_width = 1
|
||||
|
||||
# 调整所有帧的大小
|
||||
# 调整所有选中帧的大小
|
||||
resized_frames = [
|
||||
frame.resize((target_width, target_height), Image.Resampling.LANCZOS) for frame in selected_frames
|
||||
]
|
||||
|
||||
# 创建拼接图像
|
||||
total_width = target_width * len(resized_frames)
|
||||
# 防止总宽度为0
|
||||
if total_width == 0 and len(resized_frames) > 0:
|
||||
logger.warning("计算出的总宽度为0,但有选中帧,可能目标宽度太小")
|
||||
# 至少给点宽度吧
|
||||
total_width = len(resized_frames)
|
||||
elif total_width == 0:
|
||||
logger.error("计算出的总宽度为0且无选中帧")
|
||||
return None
|
||||
|
||||
combined_image = Image.new("RGB", (total_width, target_height))
|
||||
|
||||
# 水平拼接图像
|
||||
@@ -289,14 +339,17 @@ class ImageManager:
|
||||
|
||||
# 转换为base64
|
||||
buffer = io.BytesIO()
|
||||
combined_image.save(buffer, format="JPEG", quality=85)
|
||||
combined_image.save(buffer, format="JPEG", quality=85) # 保存为JPEG
|
||||
result_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||||
|
||||
return result_base64
|
||||
|
||||
except MemoryError:
|
||||
logger.error("GIF转换失败: 内存不足,可能是GIF太大或帧数太多")
|
||||
return None # 内存不够啦
|
||||
except Exception as e:
|
||||
logger.error(f"GIF转换失败: {str(e)}")
|
||||
return None
|
||||
logger.error(f"GIF转换失败: {str(e)}", exc_info=True) # 记录详细错误信息
|
||||
return None # 其他错误也返回None
|
||||
|
||||
|
||||
# 创建全局单例
|
||||
|
||||
@@ -106,7 +106,7 @@ class MaiEmoji:
|
||||
os.remove(destination_path)
|
||||
|
||||
os.rename(source_path, destination_path)
|
||||
logger.info(f"[移动] 文件从 {source_path} 移动到 {destination_path}")
|
||||
logger.debug(f"[移动] 文件从 {source_path} 移动到 {destination_path}")
|
||||
# 更新实例的路径属性为新目录
|
||||
self.path = EMOJI_REGISTED_DIR
|
||||
except Exception as move_error:
|
||||
@@ -131,7 +131,8 @@ class MaiEmoji:
|
||||
|
||||
# 使用upsert确保记录存在或被更新
|
||||
db["emoji"].update_one({"hash": self.hash}, {"$set": emoji_record}, upsert=True)
|
||||
logger.success(f"[注册] 表情包信息保存到数据库: {self.description}")
|
||||
|
||||
logger.success(f"[注册] 表情包信息保存到数据库: {self.emotion}")
|
||||
|
||||
return True
|
||||
|
||||
@@ -158,7 +159,7 @@ class MaiEmoji:
|
||||
if os.path.exists(os.path.join(self.path, self.filename)):
|
||||
try:
|
||||
os.remove(os.path.join(self.path, self.filename))
|
||||
logger.info(f"[删除] 文件: {os.path.join(self.path, self.filename)}")
|
||||
logger.debug(f"[删除] 文件: {os.path.join(self.path, self.filename)}")
|
||||
except Exception as e:
|
||||
logger.error(f"[错误] 删除文件失败 {os.path.join(self.path, self.filename)}: {str(e)}")
|
||||
# 继续执行,即使文件删除失败也尝试删除数据库记录
|
||||
@@ -168,7 +169,7 @@ class MaiEmoji:
|
||||
deleted_in_db = result.deleted_count > 0
|
||||
|
||||
if deleted_in_db:
|
||||
logger.success(f"[删除] 成功删除表情包记录: {self.description}")
|
||||
logger.info(f"[删除] 表情包 {self.filename} 无对应文件,已删除")
|
||||
|
||||
# 3. 标记对象已被删除
|
||||
self.is_deleted = True
|
||||
@@ -195,7 +196,7 @@ class EmojiManager:
|
||||
self._scan_task = None
|
||||
self.vlm = LLMRequest(model=global_config.vlm, temperature=0.3, max_tokens=1000, request_type="emoji")
|
||||
self.llm_emotion_judge = LLMRequest(
|
||||
model=global_config.llm_emotion_judge, max_tokens=600, temperature=0.8, request_type="emoji"
|
||||
model=global_config.llm_normal, max_tokens=600, request_type="emoji"
|
||||
) # 更高的温度,更少的token(后续可以根据情绪来调整温度)
|
||||
|
||||
self.emoji_num = 0
|
||||
@@ -268,7 +269,7 @@ class EmojiManager:
|
||||
"""
|
||||
try:
|
||||
self._ensure_db()
|
||||
time_start = time.time()
|
||||
_time_start = time.time()
|
||||
|
||||
# 获取所有表情包
|
||||
all_emojis = self.emoji_objects
|
||||
@@ -286,35 +287,41 @@ class EmojiManager:
|
||||
|
||||
# 计算与每个emotion标签的相似度,取最大值
|
||||
max_similarity = 0
|
||||
best_matching_emotion = "" # 记录最匹配的 emotion 喵~
|
||||
for emotion in emotions:
|
||||
# 使用编辑距离计算相似度
|
||||
distance = self._levenshtein_distance(text_emotion, emotion)
|
||||
max_len = max(len(text_emotion), len(emotion))
|
||||
similarity = 1 - (distance / max_len if max_len > 0 else 0)
|
||||
max_similarity = max(max_similarity, similarity)
|
||||
if similarity > max_similarity: # 如果找到更相似的喵~
|
||||
max_similarity = similarity
|
||||
best_matching_emotion = emotion # 就记下这个 emotion 喵~
|
||||
|
||||
emoji_similarities.append((emoji, max_similarity))
|
||||
if best_matching_emotion: # 确保有匹配的情感才添加喵~
|
||||
emoji_similarities.append((emoji, max_similarity, best_matching_emotion)) # 把 emotion 也存起来喵~
|
||||
|
||||
# 按相似度降序排序
|
||||
emoji_similarities.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 获取前5个最相似的表情包
|
||||
top_5_emojis = emoji_similarities[:10] if len(emoji_similarities) > 10 else emoji_similarities
|
||||
# 获取前10个最相似的表情包
|
||||
top_emojis = (
|
||||
emoji_similarities[:10] if len(emoji_similarities) > 10 else emoji_similarities
|
||||
) # 改个名字,更清晰喵~
|
||||
|
||||
if not top_5_emojis:
|
||||
if not top_emojis:
|
||||
logger.warning("未找到匹配的表情包")
|
||||
return None
|
||||
|
||||
# 从前5个中随机选择一个
|
||||
selected_emoji, similarity = random.choice(top_5_emojis)
|
||||
# 从前几个中随机选择一个
|
||||
selected_emoji, similarity, matched_emotion = random.choice(top_emojis) # 把匹配的 emotion 也拿出来喵~
|
||||
|
||||
# 更新使用次数
|
||||
self.record_usage(selected_emoji.hash)
|
||||
|
||||
time_end = time.time()
|
||||
_time_end = time.time()
|
||||
|
||||
logger.info(
|
||||
f"找到[{text_emotion}]表情包,用时:{time_end - time_start:.2f}秒: {selected_emoji.description} (相似度: {similarity:.4f})"
|
||||
logger.info( # 使用匹配到的 emotion 记录日志喵~
|
||||
f"为[{text_emotion}]找到表情包: {matched_emotion},({similarity:.4f})"
|
||||
)
|
||||
return selected_emoji.path, f"[ {selected_emoji.description} ]"
|
||||
|
||||
@@ -656,11 +663,11 @@ class EmojiManager:
|
||||
|
||||
# 调用大模型进行决策
|
||||
decision, _ = await self.llm_emotion_judge.generate_response_async(prompt, temperature=0.8)
|
||||
logger.info(f"[决策] 大模型决策结果: {decision}")
|
||||
logger.info(f"[决策] 结果: {decision}")
|
||||
|
||||
# 解析决策结果
|
||||
if "不删除" in decision:
|
||||
logger.info("[决策] 决定不删除任何表情包")
|
||||
logger.info("[决策] 不删除任何表情包")
|
||||
return False
|
||||
|
||||
# 尝试从决策中提取表情包编号
|
||||
@@ -673,7 +680,7 @@ class EmojiManager:
|
||||
emoji_to_delete = selected_emojis[emoji_index]
|
||||
|
||||
# 删除选定的表情包
|
||||
logger.info(f"[决策] 决定删除表情包: {emoji_to_delete.description}")
|
||||
logger.info(f"[决策] 删除表情包: {emoji_to_delete.description}")
|
||||
delete_success = await self.delete_emoji(emoji_to_delete.hash)
|
||||
|
||||
if delete_success:
|
||||
@@ -682,7 +689,7 @@ class EmojiManager:
|
||||
if register_success:
|
||||
self.emoji_objects.append(new_emoji)
|
||||
self.emoji_num += 1
|
||||
logger.success(f"[成功] 注册表情包: {new_emoji.description}")
|
||||
logger.success(f"[成功] 注册: {new_emoji.filename}")
|
||||
return True
|
||||
else:
|
||||
logger.error(f"[错误] 注册表情包到数据库失败: {new_emoji.filename}")
|
||||
@@ -719,10 +726,10 @@ class EmojiManager:
|
||||
# 调用AI获取描述
|
||||
if image_format == "gif" or image_format == "GIF":
|
||||
image_base64 = image_manager.transform_gif(image_base64)
|
||||
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,详细描述一下表情包表达的情感和内容,请关注其幽默和讽刺意味"
|
||||
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
|
||||
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, "jpg")
|
||||
else:
|
||||
prompt = "这是一个表情包,请详细描述一下表情包所表达的情感和内容,请关注其幽默和讽刺意味"
|
||||
prompt = "这是一个表情包,请详细描述一下表情包所表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
|
||||
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
# 审核表情包
|
||||
@@ -741,17 +748,22 @@ class EmojiManager:
|
||||
|
||||
# 分析情感含义
|
||||
emotion_prompt = f"""
|
||||
基于这个表情包的描述:'{description}',请列出1-2个可能的情感标签,每个标签用一个词组表示,格式如下:
|
||||
幽默的讽刺
|
||||
悲伤的无奈
|
||||
愤怒的抗议
|
||||
愤怒的讽刺
|
||||
直接输出词组,词组检用逗号分隔。"""
|
||||
请你识别这个表情包的含义和适用场景,给我简短的描述,每个描述不要超过15个字
|
||||
这是一个基于这个表情包的描述:'{description}'
|
||||
你可以关注其幽默和讽刺意味,动用贴吧,微博,小红书的知识,必须从互联网梗,meme的角度去分析
|
||||
请直接输出描述,不要出现任何其他内容,如果有多个描述,可以用逗号分隔
|
||||
"""
|
||||
emotions_text, _ = await self.llm_emotion_judge.generate_response_async(emotion_prompt, temperature=0.7)
|
||||
|
||||
# 处理情感列表
|
||||
emotions = [e.strip() for e in emotions_text.split(",") if e.strip()]
|
||||
|
||||
# 根据情感标签数量随机选择喵~超过5个选3个,超过2个选2个
|
||||
if len(emotions) > 5:
|
||||
emotions = random.sample(emotions, 3)
|
||||
elif len(emotions) > 2:
|
||||
emotions = random.sample(emotions, 2)
|
||||
|
||||
return f"[表情包:{description}]", emotions
|
||||
|
||||
except Exception as e:
|
||||
@@ -797,7 +809,7 @@ class EmojiManager:
|
||||
if register_success:
|
||||
self.emoji_objects.append(new_emoji)
|
||||
self.emoji_num += 1
|
||||
logger.success(f"[成功] 注册表情包: {filename}")
|
||||
logger.success(f"[成功] 注册: {filename}")
|
||||
return True
|
||||
else:
|
||||
logger.error(f"[错误] 注册表情包到数据库失败: {filename}")
|
||||
@@ -814,7 +826,7 @@ class EmojiManager:
|
||||
当目录中文件数超过50时,会全部删除
|
||||
"""
|
||||
|
||||
logger.info("[清理] 开始清理临时表情包...")
|
||||
logger.info("[清理] 开始清理缓存...")
|
||||
|
||||
# 清理emoji目录
|
||||
emoji_dir = os.path.join(BASE_DIR, "emoji")
|
||||
@@ -826,7 +838,7 @@ class EmojiManager:
|
||||
file_path = os.path.join(emoji_dir, filename)
|
||||
if os.path.isfile(file_path):
|
||||
os.remove(file_path)
|
||||
logger.debug(f"[清理] 删除表情包文件: {filename}")
|
||||
logger.debug(f"[清理] 删除: {filename}")
|
||||
|
||||
# 清理image目录
|
||||
image_dir = os.path.join(BASE_DIR, "image")
|
||||
@@ -838,14 +850,19 @@ class EmojiManager:
|
||||
file_path = os.path.join(image_dir, filename)
|
||||
if os.path.isfile(file_path):
|
||||
os.remove(file_path)
|
||||
logger.debug(f"[清理] 删除图片文件: {filename}")
|
||||
logger.debug(f"[清理] 删除图片: {filename}")
|
||||
|
||||
logger.success("[清理] 临时文件清理完成")
|
||||
logger.success("[清理] 完成")
|
||||
|
||||
async def clean_unused_emojis(self, emoji_dir, emoji_objects):
|
||||
"""清理未使用的表情包文件
|
||||
遍历指定文件夹中的所有文件,删除未在emoji_objects列表中的文件
|
||||
"""
|
||||
# 首先检查目录是否存在喵~
|
||||
if not os.path.exists(emoji_dir):
|
||||
logger.warning(f"[清理] 表情包目录不存在,跳过清理: {emoji_dir}")
|
||||
return
|
||||
|
||||
# 获取所有表情包路径
|
||||
emoji_paths = {emoji.path for emoji in emoji_objects}
|
||||
|
||||
|
||||
@@ -30,12 +30,14 @@ from src.plugins.moods.moods import MoodManager
|
||||
from src.individuality.individuality import Individuality
|
||||
|
||||
|
||||
INITIAL_DURATION = 60.0
|
||||
|
||||
WAITING_TIME_THRESHOLD = 300 # 等待新消息时间阈值,单位秒
|
||||
|
||||
EMOJI_SEND_PRO = 0.3 # 设置一个概率,比如 30% 才真的发
|
||||
|
||||
logger = get_logger("interest") # Logger Name Changed
|
||||
CONSECUTIVE_NO_REPLY_THRESHOLD = 3 # 连续不回复的阈值
|
||||
|
||||
|
||||
logger = get_logger("HFC") # Logger Name Changed
|
||||
|
||||
|
||||
# 默认动作定义
|
||||
@@ -179,8 +181,6 @@ class HeartFChatting:
|
||||
其生命周期现在由其关联的 SubHeartflow 的 FOCUSED 状态控制。
|
||||
"""
|
||||
|
||||
CONSECUTIVE_NO_REPLY_THRESHOLD = 3 # 连续不回复的阈值
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
chat_id: str,
|
||||
@@ -644,14 +644,14 @@ class HeartFChatting:
|
||||
self._lian_xu_bu_hui_fu_ci_shu += 1
|
||||
self._lian_xu_deng_dai_shi_jian += dang_qian_deng_dai # 累加等待时间
|
||||
logger.debug(
|
||||
f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{self.CONSECUTIVE_NO_REPLY_THRESHOLD}, "
|
||||
f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{CONSECUTIVE_NO_REPLY_THRESHOLD}, "
|
||||
f"本次等待: {dang_qian_deng_dai:.2f}秒, 累计等待: {self._lian_xu_deng_dai_shi_jian:.2f}秒"
|
||||
)
|
||||
|
||||
# 检查是否同时达到次数和时间阈值
|
||||
time_threshold = 0.66 * WAITING_TIME_THRESHOLD * self.CONSECUTIVE_NO_REPLY_THRESHOLD
|
||||
time_threshold = 0.66 * WAITING_TIME_THRESHOLD * CONSECUTIVE_NO_REPLY_THRESHOLD
|
||||
if (
|
||||
self._lian_xu_bu_hui_fu_ci_shu >= self.CONSECUTIVE_NO_REPLY_THRESHOLD
|
||||
self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD
|
||||
and self._lian_xu_deng_dai_shi_jian >= time_threshold
|
||||
):
|
||||
logger.info(
|
||||
@@ -661,7 +661,7 @@ class HeartFChatting:
|
||||
)
|
||||
# 调用回调。注意:这里不重置计数器和时间,依赖回调函数成功改变状态来隐式重置上下文。
|
||||
await self.on_consecutive_no_reply_callback()
|
||||
elif self._lian_xu_bu_hui_fu_ci_shu >= self.CONSECUTIVE_NO_REPLY_THRESHOLD:
|
||||
elif self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD:
|
||||
# 仅次数达到阈值,但时间未达到
|
||||
logger.debug(
|
||||
f"{self.log_prefix} 连续不回复次数达到阈值 ({self._lian_xu_bu_hui_fu_ci_shu}次) "
|
||||
@@ -979,6 +979,21 @@ class HeartFChatting:
|
||||
f"{self.log_prefix}[Planner] 恢复了原始动作集, 当前可用: {list(self.action_manager.get_available_actions().keys())}"
|
||||
)
|
||||
# --- 结束:确保动作恢复 ---
|
||||
|
||||
# --- 新增:概率性忽略文本回复附带的表情(正确的位置)---
|
||||
|
||||
if action == "text_reply" and emoji_query:
|
||||
logger.debug(f"{self.log_prefix}[Planner] 大模型想让麦麦发文字时带表情: '{emoji_query}'")
|
||||
# 掷骰子看看要不要听它的
|
||||
if random.random() > EMOJI_SEND_PRO:
|
||||
logger.info(
|
||||
f"{self.log_prefix}[Planner] 但是麦麦这次不想加表情 ({1 - EMOJI_SEND_PRO:.0%}),忽略表情 '{emoji_query}'"
|
||||
)
|
||||
emoji_query = "" # 把表情请求清空,就不发了
|
||||
else:
|
||||
logger.info(f"{self.log_prefix}[Planner] 好吧,加上表情 '{emoji_query}'")
|
||||
# --- 结束:概率性忽略 ---
|
||||
|
||||
# --- 结束 LLM 决策 --- #
|
||||
|
||||
return {
|
||||
|
||||
@@ -69,7 +69,7 @@ def init_prompt():
|
||||
2. 文字回复(text_reply)适用:
|
||||
- 有实质性内容需要表达
|
||||
- 有人提到你,但你还没有回应他
|
||||
- 可以追加emoji_query表达情绪(格式:情绪描述,如"俏皮的调侃")
|
||||
- 可以追加emoji_query表达情绪(emoji_query填写表情包的适用场合,也就是当前场合)
|
||||
- 不要追加太多表情
|
||||
|
||||
3. 纯表情回复(emoji_reply)适用:
|
||||
@@ -174,7 +174,7 @@ class PromptBuilder:
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.MAX_CONTEXT_SIZE,
|
||||
limit=global_config.observation_context_size,
|
||||
)
|
||||
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
@@ -242,6 +242,8 @@ class PromptBuilder:
|
||||
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
|
||||
)
|
||||
|
||||
logger.debug(f"focus_chat_prompt: \n{prompt}")
|
||||
|
||||
return prompt
|
||||
|
||||
async def _build_prompt_normal(self, chat_stream, message_txt: str, sender_name: str = "某人") -> tuple[str, str]:
|
||||
@@ -255,15 +257,15 @@ class PromptBuilder:
|
||||
who_chat_in_group += get_recent_group_speaker(
|
||||
chat_stream.stream_id,
|
||||
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
|
||||
limit=global_config.MAX_CONTEXT_SIZE,
|
||||
limit=global_config.observation_context_size,
|
||||
)
|
||||
|
||||
relation_prompt = ""
|
||||
for person in who_chat_in_group:
|
||||
relation_prompt += await relationship_manager.build_relationship_info(person)
|
||||
print(f"relation_prompt: {relation_prompt}")
|
||||
# print(f"relation_prompt: {relation_prompt}")
|
||||
|
||||
print(f"relat11111111ion_prompt: {relation_prompt}")
|
||||
# print(f"relat11111111ion_prompt: {relation_prompt}")
|
||||
|
||||
# 心情
|
||||
mood_manager = MoodManager.get_instance()
|
||||
@@ -314,7 +316,7 @@ class PromptBuilder:
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.MAX_CONTEXT_SIZE,
|
||||
limit=global_config.observation_context_size,
|
||||
)
|
||||
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
|
||||
@@ -44,6 +44,8 @@ class NormalChat:
|
||||
# 存储此实例的兴趣监控任务
|
||||
self.start_time = time.time()
|
||||
|
||||
self.last_speak_time = 0
|
||||
|
||||
self._chat_task: Optional[asyncio.Task] = None
|
||||
logger.info(f"[{self.stream_name}] NormalChat 实例初始化完成。")
|
||||
|
||||
@@ -119,6 +121,8 @@ class NormalChat:
|
||||
|
||||
await message_manager.add_message(message_set)
|
||||
|
||||
self.last_speak_time = time.time()
|
||||
|
||||
return first_bot_msg
|
||||
|
||||
# 改为实例方法
|
||||
|
||||
@@ -29,7 +29,7 @@ class NormalChatGenerator:
|
||||
)
|
||||
|
||||
self.model_sum = LLMRequest(
|
||||
model=global_config.llm_summary_by_topic, temperature=0.7, max_tokens=3000, request_type="relation"
|
||||
model=global_config.llm_summary, temperature=0.7, max_tokens=3000, request_type="relation"
|
||||
)
|
||||
self.current_model_type = "r1" # 默认使用 R1
|
||||
self.current_model_name = "unknown model"
|
||||
|
||||
@@ -11,6 +11,9 @@ from .lpmmconfig import global_config
|
||||
from .utils.dyn_topk import dyn_select_top_k
|
||||
|
||||
|
||||
MAX_KNOWLEDGE_LENGTH = 10000 # 最大知识长度
|
||||
|
||||
|
||||
class QAManager:
|
||||
def __init__(
|
||||
self,
|
||||
@@ -112,8 +115,10 @@ class QAManager:
|
||||
for res in query_res
|
||||
]
|
||||
found_knowledge = "\n".join(
|
||||
[f"第{i + 1}条知识:{k[1]}\n 该条知识对于问题的相关性:{k[0]}" for i, k in enumerate(knowledge)]
|
||||
[f"第{i + 1}条知识:{k[0]}\n 该条知识对于问题的相关性:{k[1]}" for i, k in enumerate(knowledge)]
|
||||
)
|
||||
if len(found_knowledge) > MAX_KNOWLEDGE_LENGTH:
|
||||
found_knowledge = found_knowledge[:MAX_KNOWLEDGE_LENGTH] + "\n"
|
||||
return found_knowledge
|
||||
else:
|
||||
logger.info("LPMM知识库并未初始化,使用旧版数据库进行检索")
|
||||
|
||||
@@ -189,7 +189,7 @@ class Hippocampus:
|
||||
def __init__(self):
|
||||
self.memory_graph = MemoryGraph()
|
||||
self.llm_topic_judge = None
|
||||
self.llm_summary_by_topic = None
|
||||
self.llm_summary = None
|
||||
self.entorhinal_cortex = None
|
||||
self.parahippocampal_gyrus = None
|
||||
self.config = None
|
||||
@@ -203,7 +203,7 @@ class Hippocampus:
|
||||
# 从数据库加载记忆图
|
||||
self.entorhinal_cortex.sync_memory_from_db()
|
||||
self.llm_topic_judge = LLMRequest(self.config.llm_topic_judge, request_type="memory")
|
||||
self.llm_summary_by_topic = LLMRequest(self.config.llm_summary_by_topic, request_type="memory")
|
||||
self.llm_summary = LLMRequest(self.config.llm_summary, request_type="memory")
|
||||
|
||||
def get_all_node_names(self) -> list:
|
||||
"""获取记忆图中所有节点的名字列表"""
|
||||
@@ -1169,7 +1169,7 @@ class ParahippocampalGyrus:
|
||||
# 调用修改后的 topic_what,不再需要 time_info
|
||||
topic_what_prompt = self.hippocampus.topic_what(input_text, topic)
|
||||
try:
|
||||
task = self.hippocampus.llm_summary_by_topic.generate_response_async(topic_what_prompt)
|
||||
task = self.hippocampus.llm_summary.generate_response_async(topic_what_prompt)
|
||||
tasks.append((topic.strip(), task))
|
||||
except Exception as e:
|
||||
logger.error(f"生成话题 '{topic}' 的摘要时发生错误: {e}")
|
||||
|
||||
@@ -24,7 +24,7 @@ class MemoryConfig:
|
||||
consolidate_memory_interval: int # 记忆整合间隔
|
||||
|
||||
llm_topic_judge: str # 话题判断模型
|
||||
llm_summary_by_topic: str # 话题总结模型
|
||||
llm_summary: str # 话题总结模型
|
||||
|
||||
@classmethod
|
||||
def from_global_config(cls, global_config):
|
||||
@@ -44,7 +44,5 @@ class MemoryConfig:
|
||||
consolidate_memory_percentage=getattr(global_config, "consolidate_memory_percentage", 0.01),
|
||||
consolidate_memory_interval=getattr(global_config, "consolidate_memory_interval", 1000),
|
||||
llm_topic_judge=getattr(global_config, "llm_topic_judge", "default_judge_model"), # 添加默认模型名
|
||||
llm_summary_by_topic=getattr(
|
||||
global_config, "llm_summary_by_topic", "default_summary_model"
|
||||
), # 添加默认模型名
|
||||
llm_summary=getattr(global_config, "llm_summary", "default_summary_model"), # 添加默认模型名
|
||||
)
|
||||
|
||||
@@ -632,7 +632,7 @@ class LLMRequest:
|
||||
**params_copy,
|
||||
}
|
||||
if "max_tokens" not in payload and "max_completion_tokens" not in payload:
|
||||
payload["max_tokens"] = global_config.max_response_length
|
||||
payload["max_tokens"] = global_config.model_max_output_length
|
||||
# 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
|
||||
if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload:
|
||||
payload["max_completion_tokens"] = payload.pop("max_tokens")
|
||||
|
||||
@@ -282,10 +282,10 @@ class RelationshipManager:
|
||||
if is_id:
|
||||
person_id = person
|
||||
else:
|
||||
print(f"person: {person}")
|
||||
# print(f"person: {person}")
|
||||
person_id = person_info_manager.get_person_id(person[0], person[1])
|
||||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
||||
print(f"person_name: {person_name}")
|
||||
# print(f"person_name: {person_name}")
|
||||
relationship_value = await person_info_manager.get_value(person_id, "relationship_value")
|
||||
level_num = self.calculate_level_num(relationship_value)
|
||||
|
||||
|
||||
@@ -8,13 +8,12 @@ from typing import List
|
||||
|
||||
class InfoCatcher:
|
||||
def __init__(self):
|
||||
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文
|
||||
self.context_length = global_config.MAX_CONTEXT_SIZE
|
||||
self.chat_history_in_thinking = [] # 思考期间的聊天内容
|
||||
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文
|
||||
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文喵~
|
||||
self.context_length = global_config.observation_context_size
|
||||
self.chat_history_in_thinking = [] # 思考期间的聊天内容喵~
|
||||
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文喵~
|
||||
|
||||
self.chat_id = ""
|
||||
self.response_mode = global_config.response_mode
|
||||
self.trigger_response_text = ""
|
||||
self.response_text = ""
|
||||
|
||||
@@ -36,10 +35,10 @@ class InfoCatcher:
|
||||
"model": "",
|
||||
}
|
||||
|
||||
# 使用字典来存储 reasoning 模式的数据
|
||||
# 使用字典来存储 reasoning 模式的数据喵~
|
||||
self.reasoning_data = {"thinking_log": "", "prompt": "", "response": "", "model": ""}
|
||||
|
||||
# 耗时
|
||||
# 耗时喵~
|
||||
self.timing_results = {
|
||||
"interested_rate_time": 0,
|
||||
"sub_heartflow_observe_time": 0,
|
||||
@@ -73,15 +72,25 @@ class InfoCatcher:
|
||||
self.heartflow_data["sub_heartflow_now"] = current_mind
|
||||
|
||||
def catch_after_llm_generated(self, prompt: str, response: str, reasoning_content: str = "", model_name: str = ""):
|
||||
if self.response_mode == "heart_flow":
|
||||
self.heartflow_data["prompt"] = prompt
|
||||
self.heartflow_data["response"] = response
|
||||
self.heartflow_data["model"] = model_name
|
||||
elif self.response_mode == "reasoning":
|
||||
self.reasoning_data["thinking_log"] = reasoning_content
|
||||
self.reasoning_data["prompt"] = prompt
|
||||
self.reasoning_data["response"] = response
|
||||
self.reasoning_data["model"] = model_name
|
||||
# if self.response_mode == "heart_flow": # 条件判断不需要了喵~
|
||||
# self.heartflow_data["prompt"] = prompt
|
||||
# self.heartflow_data["response"] = response
|
||||
# self.heartflow_data["model"] = model_name
|
||||
# elif self.response_mode == "reasoning": # 条件判断不需要了喵~
|
||||
# self.reasoning_data["thinking_log"] = reasoning_content
|
||||
# self.reasoning_data["prompt"] = prompt
|
||||
# self.reasoning_data["response"] = response
|
||||
# self.reasoning_data["model"] = model_name
|
||||
|
||||
# 直接记录信息喵~
|
||||
self.reasoning_data["thinking_log"] = reasoning_content
|
||||
self.reasoning_data["prompt"] = prompt
|
||||
self.reasoning_data["response"] = response
|
||||
self.reasoning_data["model"] = model_name
|
||||
# 如果 heartflow 数据也需要通用字段,可以取消下面的注释喵~
|
||||
# self.heartflow_data["prompt"] = prompt
|
||||
# self.heartflow_data["response"] = response
|
||||
# self.heartflow_data["model"] = model_name
|
||||
|
||||
self.response_text = response
|
||||
|
||||
@@ -172,13 +181,13 @@ class InfoCatcher:
|
||||
}
|
||||
|
||||
def done_catch(self):
|
||||
"""将收集到的信息存储到数据库的 thinking_log 集合中"""
|
||||
"""将收集到的信息存储到数据库的 thinking_log 集合中喵~"""
|
||||
try:
|
||||
# 将消息对象转换为可序列化的字典
|
||||
# 将消息对象转换为可序列化的字典喵~
|
||||
|
||||
thinking_log_data = {
|
||||
"chat_id": self.chat_id,
|
||||
"response_mode": self.response_mode,
|
||||
# "response_mode": self.response_mode, # 这个也删掉喵~
|
||||
"trigger_text": self.trigger_response_text,
|
||||
"response_text": self.response_text,
|
||||
"trigger_info": {
|
||||
@@ -195,18 +204,20 @@ class InfoCatcher:
|
||||
"chat_history_after_response": self.message_list_to_dict(self.chat_history_after_response),
|
||||
}
|
||||
|
||||
# 根据不同的响应模式添加相应的数据
|
||||
if self.response_mode == "heart_flow":
|
||||
thinking_log_data["mode_specific_data"] = self.heartflow_data
|
||||
elif self.response_mode == "reasoning":
|
||||
thinking_log_data["mode_specific_data"] = self.reasoning_data
|
||||
# 根据不同的响应模式添加相应的数据喵~ # 现在直接都加上去好了喵~
|
||||
# if self.response_mode == "heart_flow":
|
||||
# thinking_log_data["mode_specific_data"] = self.heartflow_data
|
||||
# elif self.response_mode == "reasoning":
|
||||
# thinking_log_data["mode_specific_data"] = self.reasoning_data
|
||||
thinking_log_data["heartflow_data"] = self.heartflow_data
|
||||
thinking_log_data["reasoning_data"] = self.reasoning_data
|
||||
|
||||
# 将数据插入到 thinking_log 集合中
|
||||
# 将数据插入到 thinking_log 集合中喵~
|
||||
db.thinking_log.insert_one(thinking_log_data)
|
||||
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"存储思考日志时出错: {str(e)}")
|
||||
print(f"存储思考日志时出错: {str(e)} 喵~")
|
||||
print(traceback.format_exc())
|
||||
return False
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Dict, TypeVar, List, Union, Tuple
|
||||
import ast
|
||||
|
||||
# 定义类型变量用于泛型类型提示
|
||||
T = TypeVar("T")
|
||||
@@ -12,6 +13,7 @@ logger = logging.getLogger("json_utils")
|
||||
def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
|
||||
"""
|
||||
安全地解析JSON字符串,出错时返回默认值
|
||||
现在尝试处理单引号和标准JSON
|
||||
|
||||
参数:
|
||||
json_str: 要解析的JSON字符串
|
||||
@@ -20,16 +22,34 @@ def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
|
||||
返回:
|
||||
解析后的Python对象,或在解析失败时返回default_value
|
||||
"""
|
||||
if not json_str:
|
||||
if not json_str or not isinstance(json_str, str):
|
||||
logger.warning(f"safe_json_loads 接收到非字符串输入: {type(json_str)}, 值: {json_str}")
|
||||
return default_value
|
||||
|
||||
try:
|
||||
# 尝试标准的 JSON 解析
|
||||
return json.loads(json_str)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"JSON解析失败: {e}, JSON字符串: {json_str[:100]}...")
|
||||
return default_value
|
||||
except json.JSONDecodeError:
|
||||
# 如果标准解析失败,尝试将单引号替换为双引号再解析
|
||||
# (注意:这种替换可能不安全,如果字符串内容本身包含引号)
|
||||
# 更安全的方式是用 ast.literal_eval
|
||||
try:
|
||||
# logger.debug(f"标准JSON解析失败,尝试用 ast.literal_eval 解析: {json_str[:100]}...")
|
||||
result = ast.literal_eval(json_str)
|
||||
# 确保结果是字典(因为我们通常期望参数是字典)
|
||||
if isinstance(result, dict):
|
||||
return result
|
||||
else:
|
||||
logger.warning(f"ast.literal_eval 解析成功但结果不是字典: {type(result)}, 内容: {result}")
|
||||
return default_value
|
||||
except (ValueError, SyntaxError, MemoryError, RecursionError) as ast_e:
|
||||
logger.error(f"使用 ast.literal_eval 解析失败: {ast_e}, 字符串: {json_str[:100]}...")
|
||||
return default_value
|
||||
except Exception as e:
|
||||
logger.error(f"使用 ast.literal_eval 解析时发生意外错误: {e}, 字符串: {json_str[:100]}...")
|
||||
return default_value
|
||||
except Exception as e:
|
||||
logger.error(f"JSON解析过程中发生意外错误: {e}")
|
||||
logger.error(f"JSON解析过程中发生意外错误: {e}, 字符串: {json_str[:100]}...")
|
||||
return default_value
|
||||
|
||||
|
||||
@@ -177,25 +197,27 @@ def process_llm_tool_calls(
|
||||
if "name" not in func_details or not isinstance(func_details.get("name"), str):
|
||||
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'name'或类型不正确: {func_details}")
|
||||
continue
|
||||
if "arguments" not in func_details or not isinstance(
|
||||
func_details.get("arguments"), str
|
||||
): # 参数是字符串形式的JSON
|
||||
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'arguments'或类型不正确: {func_details}")
|
||||
|
||||
# 验证参数 'arguments'
|
||||
args_value = func_details.get("arguments")
|
||||
|
||||
# 1. 检查 arguments 是否存在且是字符串
|
||||
if args_value is None or not isinstance(args_value, str):
|
||||
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'arguments'字符串: {func_details}")
|
||||
continue
|
||||
|
||||
# 可选:尝试解析参数JSON,确保其有效
|
||||
args_str = func_details["arguments"]
|
||||
try:
|
||||
json.loads(args_str) # 尝试解析,但不存储结果
|
||||
except json.JSONDecodeError as e:
|
||||
# 2. 尝试安全地解析 arguments 字符串
|
||||
parsed_args = safe_json_loads(args_value, None)
|
||||
|
||||
# 3. 检查解析结果是否为字典
|
||||
if parsed_args is None or not isinstance(parsed_args, dict):
|
||||
logger.warning(
|
||||
f"{log_prefix}工具调用[{i}]的'arguments'不是有效的JSON字符串: {e}, 内容: {args_str[:100]}..."
|
||||
f"{log_prefix}工具调用[{i}]的'arguments'无法解析为有效的JSON字典, "
|
||||
f"原始字符串: {args_value[:100]}..., 解析结果类型: {type(parsed_args).__name__}"
|
||||
)
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.warning(f"{log_prefix}解析工具调用[{i}]的'arguments'时发生意外错误: {e}, 内容: {args_str[:100]}...")
|
||||
continue
|
||||
|
||||
# 如果检查通过,将原始的 tool_call 加入有效列表
|
||||
valid_tool_calls.append(tool_call)
|
||||
|
||||
if not valid_tool_calls and tool_calls: # 如果原始列表不为空,但验证后为空
|
||||
|
||||
@@ -64,6 +64,9 @@ class ClassicalWillingManager(BaseWillingManager):
|
||||
self.chat_reply_willing[chat_id] = max(0, current_willing - 1.8)
|
||||
|
||||
async def after_generate_reply_handle(self, message_id):
|
||||
if message_id not in self.ongoing_messages:
|
||||
return
|
||||
|
||||
chat_id = self.ongoing_messages[message_id].chat_id
|
||||
current_willing = self.chat_reply_willing.get(chat_id, 0)
|
||||
if current_willing < 1:
|
||||
|
||||
@@ -77,7 +77,7 @@ class BaseWillingManager(ABC):
|
||||
if not issubclass(manager_class, cls):
|
||||
raise TypeError(f"Manager class {manager_class.__name__} is not a subclass of {cls.__name__}")
|
||||
else:
|
||||
logger.info(f"成功载入willing模式:{manager_type}")
|
||||
logger.info(f"普通回复模式:{manager_type}")
|
||||
return manager_class()
|
||||
except (ImportError, AttributeError, TypeError) as e:
|
||||
module = importlib.import_module(".mode_classical", __package__)
|
||||
@@ -110,7 +110,7 @@ class BaseWillingManager(ABC):
|
||||
def delete(self, message_id: str):
|
||||
del_message = self.ongoing_messages.pop(message_id, None)
|
||||
if not del_message:
|
||||
logger.debug(f"删除异常,当前消息{message_id}不存在")
|
||||
logger.debug(f"尝试删除不存在的消息 ID: {message_id},可能已被其他流程处理,喵~")
|
||||
|
||||
@abstractmethod
|
||||
async def async_task_starter(self) -> None:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[inner]
|
||||
version = "1.5.1"
|
||||
version = "1.6.0"
|
||||
|
||||
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
|
||||
#如果你想要修改配置文件,请在修改后将version的值进行变更
|
||||
@@ -65,33 +65,14 @@ time_zone = "Asia/Shanghai" # 给你的机器人设置时区,可以解决运
|
||||
[platforms] # 必填项目,填写每个平台适配器提供的链接
|
||||
nonebot-qq="http://127.0.0.1:18002/api/message"
|
||||
|
||||
[response] #群聊的回复策略
|
||||
#一般回复参数
|
||||
model_reasoning_probability = 0.7 # 麦麦回答时选择推理模型 模型的概率
|
||||
model_normal_probability = 0.3 # 麦麦回答时选择一般模型 模型的概率
|
||||
|
||||
[heartflow]
|
||||
allow_focus_mode = true # 是否允许进入FOCUSED状态
|
||||
# 是否启用heart_flowC(心流聊天,HFC)模式
|
||||
[chat] #麦麦的聊天通用设置
|
||||
allow_focus_mode = true # 是否允许专注聊天状态
|
||||
# 是否启用heart_flowC(HFC)模式
|
||||
# 启用后麦麦会自主选择进入heart_flowC模式(持续一段时间),进行主动的观察和回复,并给出回复,比较消耗token
|
||||
reply_trigger_threshold = 3.0 # 心流聊天触发阈值,越低越容易进入心流聊天
|
||||
probability_decay_factor_per_second = 0.2 # 概率衰减因子,越大衰减越快,越高越容易退出心流聊天
|
||||
default_decay_rate_per_second = 0.98 # 默认衰减率,越大衰减越快,越高越难进入心流聊天
|
||||
base_normal_chat_num = 3 # 最多允许多少个群进行普通聊天
|
||||
base_focused_chat_num = 2 # 最多允许多少个群进行专注聊天
|
||||
|
||||
|
||||
|
||||
sub_heart_flow_stop_time = 500 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
|
||||
|
||||
observation_context_size = 20 # 心流观察到的最长上下文大小,超过这个值的上下文会被压缩
|
||||
compressed_length = 5 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度,超过心流观察到的上下文长度,会压缩,最短压缩长度为5
|
||||
compress_length_limit = 5 #最多压缩份数,超过该数值的压缩上下文会被删除
|
||||
|
||||
|
||||
[message]
|
||||
max_context_size = 12 # 麦麦回复时获得的上文数量,建议12,太短太长都会导致脑袋尖尖
|
||||
emoji_chance = 0.2 # 麦麦一般回复时使用表情包的概率,设置为1让麦麦自己决定发不发
|
||||
thinking_timeout = 100 # 麦麦最长思考时间,超过这个时间的思考会放弃(往往是api反应太慢)
|
||||
max_response_length = 256 # 麦麦单次回答的最大token数
|
||||
observation_context_size = 15 # 观察到的最长上下文大小,建议15,太短太长都会导致脑袋尖尖
|
||||
message_buffer = true # 启用消息缓冲器?启用此项以解决消息的拆分问题,但会使麦麦的回复延迟
|
||||
|
||||
# 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息
|
||||
@@ -106,7 +87,14 @@ ban_msgs_regex = [
|
||||
# "\\[CQ:at,qq=\\d+\\]" # 匹配@
|
||||
]
|
||||
|
||||
[willing] # 一般回复模式的回复意愿设置
|
||||
[normal_chat] #普通聊天
|
||||
#一般回复参数
|
||||
model_reasoning_probability = 0.7 # 麦麦回答时选择推理模型 模型的概率
|
||||
model_normal_probability = 0.3 # 麦麦回答时选择一般模型 模型的概率
|
||||
|
||||
emoji_chance = 0.2 # 麦麦一般回复时使用表情包的概率,设置为1让麦麦自己决定发不发
|
||||
thinking_timeout = 100 # 麦麦最长思考时间,超过这个时间的思考会放弃(往往是api反应太慢)
|
||||
|
||||
willing_mode = "classical" # 回复意愿模式 —— 经典模式:classical,动态模式:dynamic,mxp模式:mxp,自定义模式:custom(需要你自己实现)
|
||||
response_willing_amplifier = 1 # 麦麦回复意愿放大系数,一般为1
|
||||
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
|
||||
@@ -115,6 +103,16 @@ emoji_response_penalty = 0 # 表情包回复惩罚系数,设为0为不回复
|
||||
mentioned_bot_inevitable_reply = false # 提及 bot 必然回复
|
||||
at_bot_inevitable_reply = false # @bot 必然回复
|
||||
|
||||
[focus_chat] #专注聊天
|
||||
reply_trigger_threshold = 3.5 # 专注聊天触发阈值,越低越容易进入专注聊天
|
||||
default_decay_rate_per_second = 0.98 # 默认衰减率,越大衰减越快,越高越难进入专注聊天
|
||||
consecutive_no_reply_threshold = 3 # 连续不回复的阈值,越低越容易结束专注聊天
|
||||
|
||||
# 以下选项暂时无效
|
||||
compressed_length = 5 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度,超过心流观察到的上下文长度,会压缩,最短压缩长度为5
|
||||
compress_length_limit = 5 #最多压缩份数,超过该数值的压缩上下文会被删除
|
||||
|
||||
|
||||
[emoji]
|
||||
max_emoji_num = 40 # 表情包最大数量
|
||||
max_reach_deletion = true # 开启则在达到最大数量时删除表情包,关闭则达到最大数量时不删除,只是不会继续收集表情包
|
||||
@@ -181,6 +179,8 @@ response_max_length = 256 # 回复允许的最大长度
|
||||
response_max_sentence_num = 4 # 回复允许的最大句子数
|
||||
enable_kaomoji_protection = false # 是否启用颜文字保护
|
||||
|
||||
model_max_output_length = 256 # 模型单次返回的最大token数
|
||||
|
||||
[remote] #发送统计信息,主要是看全球有多少只麦麦
|
||||
enable = true
|
||||
|
||||
@@ -197,55 +197,44 @@ pfc_chatting = false # 是否启用PFC聊天,该功能仅作用于私聊,与
|
||||
# stream = <true|false> : 用于指定模型是否是使用流式输出
|
||||
# 如果不指定,则该项是 False
|
||||
|
||||
[model.llm_reasoning] #只在回复模式为reasoning时启用
|
||||
#这个模型必须是推理模型
|
||||
[model.llm_reasoning] # 一般聊天模式的推理回复模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
# name = "Qwen/QwQ-32B"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 4 #模型的输入价格(非必填,可以记录消耗)
|
||||
pri_out = 16 #模型的输出价格(非必填,可以记录消耗)
|
||||
pri_in = 1.0 #模型的输入价格(非必填,可以记录消耗)
|
||||
pri_out = 4.0 #模型的输出价格(非必填,可以记录消耗)
|
||||
|
||||
#非推理模型
|
||||
|
||||
[model.llm_normal] #V3 回复模型1 主要回复模型,默认temp 0.2 如果你使用的是老V3或者其他模型,请自己修改temp参数
|
||||
[model.llm_normal] #V3 回复模型 专注和一般聊天模式共用的回复模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 2 #模型的输入价格(非必填,可以记录消耗)
|
||||
pri_out = 8 #模型的输出价格(非必填,可以记录消耗)
|
||||
#默认temp 0.2 如果你使用的是老V3或者其他模型,请自己修改temp参数
|
||||
temp = 0.2 #模型的温度,新V3建议0.1-0.3
|
||||
|
||||
[model.llm_emotion_judge] #表情包判断
|
||||
name = "Qwen/Qwen2.5-14B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 0.7
|
||||
pri_out = 0.7
|
||||
|
||||
[model.llm_topic_judge] #记忆主题判断:建议使用qwen2.5 7b
|
||||
[model.llm_topic_judge] #主题判断模型:建议使用qwen2.5 7b
|
||||
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 0
|
||||
pri_out = 0
|
||||
pri_in = 0.35
|
||||
pri_out = 0.35
|
||||
|
||||
[model.llm_summary_by_topic] #概括模型,建议使用qwen2.5 32b 及以上
|
||||
[model.llm_summary] #概括模型,建议使用qwen2.5 32b 及以上
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
pri_out = 1.26
|
||||
|
||||
[model.llm_tool_use] #工具调用模型,需要使用支持工具调用的模型,建议使用qwen2.5 32b
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
pri_out = 1.26
|
||||
|
||||
# 识图模型
|
||||
|
||||
[model.vlm] #图像识别
|
||||
[model.vlm] # 图像识别模型
|
||||
name = "Pro/Qwen/Qwen2.5-VL-7B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 0.35
|
||||
pri_out = 0.35
|
||||
|
||||
|
||||
[model.llm_heartflow] # 用于控制麦麦是否参与聊天的模型
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
pri_out = 1.26
|
||||
|
||||
[model.llm_observation] #观察模型,压缩聊天内容,建议用免费的
|
||||
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||
@@ -254,19 +243,18 @@ provider = "SILICONFLOW"
|
||||
pri_in = 0
|
||||
pri_out = 0
|
||||
|
||||
[model.llm_sub_heartflow] #子心流:认真水群时,生成麦麦的内心想法
|
||||
name = "Qwen/Qwen2.5-72B-Instruct"
|
||||
[model.llm_sub_heartflow] #心流:认真水群时,生成麦麦的内心想法,必须使用具有工具调用能力的模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 4.13
|
||||
pri_out = 4.13
|
||||
temp = 0.7 #模型的温度,新V3建议0.1-0.3
|
||||
pri_in = 2
|
||||
pri_out = 8
|
||||
temp = 0.3 #模型的温度,新V3建议0.1-0.3
|
||||
|
||||
|
||||
[model.llm_plan] #决策模型:认真水群时,负责决定麦麦该做什么
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
[model.llm_plan] #决策:认真水群时,负责决定麦麦该做什么
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
pri_out = 1.26
|
||||
pri_in = 2
|
||||
pri_out = 8
|
||||
|
||||
#嵌入模型
|
||||
|
||||
@@ -303,11 +291,13 @@ pri_in = 2
|
||||
pri_out = 8
|
||||
|
||||
|
||||
#此模型暂时没有使用!!
|
||||
#此模型暂时没有使用!!
|
||||
#此模型暂时没有使用!!
|
||||
[model.llm_heartflow] #心流
|
||||
# name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||
#以下模型暂时没有使用!!
|
||||
#以下模型暂时没有使用!!
|
||||
#以下模型暂时没有使用!!
|
||||
#以下模型暂时没有使用!!
|
||||
#以下模型暂时没有使用!!
|
||||
|
||||
[model.llm_tool_use] #工具调用模型,需要使用支持工具调用的模型,建议使用qwen2.5 32b
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 1.26
|
||||
|
||||
26
(临时版)聊天兴趣监控.bat.bat
Normal file
26
(临时版)聊天兴趣监控.bat.bat
Normal file
@@ -0,0 +1,26 @@
|
||||
@echo off
|
||||
CHCP 65001 > nul
|
||||
setlocal enabledelayedexpansion
|
||||
|
||||
REM 查找venv虚拟环境
|
||||
set "venv_path=%~dp0venv\Scripts\activate.bat"
|
||||
if not exist "%venv_path%" (
|
||||
echo 错误: 未找到虚拟环境,请确保venv目录存在
|
||||
pause
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
REM 激活虚拟环境
|
||||
call "%venv_path%"
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo 错误: 虚拟环境激活失败
|
||||
pause
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
echo 虚拟环境已激活,正在启动 GUI...
|
||||
|
||||
REM 运行 Python 脚本
|
||||
python scripts/interest_monitor_gui.py
|
||||
|
||||
pause
|
||||
Reference in New Issue
Block a user