Files
Mofox-Core/src/plugins/utils/json_utils.py
SengokuCola bbbbe41476 fr
2025-04-30 18:49:49 +08:00

227 lines
8.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import logging
from typing import Any, Dict, TypeVar, List, Union, Tuple
import ast
# 定义类型变量用于泛型类型提示
T = TypeVar("T")
# 获取logger
logger = logging.getLogger("json_utils")
def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
"""
安全地解析JSON字符串出错时返回默认值
现在尝试处理单引号和标准JSON
参数:
json_str: 要解析的JSON字符串
default_value: 解析失败时返回的默认值
返回:
解析后的Python对象或在解析失败时返回default_value
"""
if not json_str or not isinstance(json_str, str):
logger.warning(f"safe_json_loads 接收到非字符串输入: {type(json_str)}, 值: {json_str}")
return default_value
try:
# 尝试标准的 JSON 解析
return json.loads(json_str)
except json.JSONDecodeError:
# 如果标准解析失败,尝试将单引号替换为双引号再解析
# (注意:这种替换可能不安全,如果字符串内容本身包含引号)
# 更安全的方式是用 ast.literal_eval
try:
# logger.debug(f"标准JSON解析失败尝试用 ast.literal_eval 解析: {json_str[:100]}...")
result = ast.literal_eval(json_str)
# 确保结果是字典(因为我们通常期望参数是字典)
if isinstance(result, dict):
return result
else:
logger.warning(f"ast.literal_eval 解析成功但结果不是字典: {type(result)}, 内容: {result}")
return default_value
except (ValueError, SyntaxError, MemoryError, RecursionError) as ast_e:
logger.error(f"使用 ast.literal_eval 解析失败: {ast_e}, 字符串: {json_str[:100]}...")
return default_value
except Exception as e:
logger.error(f"使用 ast.literal_eval 解析时发生意外错误: {e}, 字符串: {json_str[:100]}...")
return default_value
except Exception as e:
logger.error(f"JSON解析过程中发生意外错误: {e}, 字符串: {json_str[:100]}...")
return default_value
def extract_tool_call_arguments(tool_call: Dict[str, Any], default_value: Dict[str, Any] = None) -> Dict[str, Any]:
"""
从LLM工具调用对象中提取参数
参数:
tool_call: 工具调用对象字典
default_value: 解析失败时返回的默认值
返回:
解析后的参数字典或在解析失败时返回default_value
"""
default_result = default_value or {}
if not tool_call or not isinstance(tool_call, dict):
logger.error(f"无效的工具调用对象: {tool_call}")
return default_result
try:
# 提取function参数
function_data = tool_call.get("function", {})
if not function_data or not isinstance(function_data, dict):
logger.error(f"工具调用缺少function字段或格式不正确: {tool_call}")
return default_result
# 提取arguments
arguments_str = function_data.get("arguments", "{}")
if not arguments_str:
return default_result
# 解析JSON
return safe_json_loads(arguments_str, default_result)
except Exception as e:
logger.error(f"提取工具调用参数时出错: {e}")
return default_result
def safe_json_dumps(obj: Any, default_value: str = "{}", ensure_ascii: bool = False, pretty: bool = False) -> str:
"""
安全地将Python对象序列化为JSON字符串
参数:
obj: 要序列化的Python对象
default_value: 序列化失败时返回的默认值
ensure_ascii: 是否确保ASCII编码(默认False允许中文等非ASCII字符)
pretty: 是否美化输出JSON
返回:
序列化后的JSON字符串或在序列化失败时返回default_value
"""
try:
indent = 2 if pretty else None
return json.dumps(obj, ensure_ascii=ensure_ascii, indent=indent)
except TypeError as e:
logger.error(f"JSON序列化失败(类型错误): {e}")
return default_value
except Exception as e:
logger.error(f"JSON序列化过程中发生意外错误: {e}")
return default_value
def normalize_llm_response(response: Any, log_prefix: str = "") -> Tuple[bool, List[Any], str]:
"""
标准化LLM响应格式将各种格式如元组转换为统一的列表格式
参数:
response: 原始LLM响应
log_prefix: 日志前缀
返回:
元组 (成功标志, 标准化后的响应列表, 错误消息)
"""
logger.debug(f"{log_prefix}原始人 LLM响应: {response}")
# 检查是否为None
if response is None:
return False, [], "LLM响应为None"
# 记录原始类型
logger.debug(f"{log_prefix}LLM响应原始类型: {type(response).__name__}")
# 将元组转换为列表
if isinstance(response, tuple):
logger.debug(f"{log_prefix}将元组响应转换为列表")
response = list(response)
# 确保是列表类型
if not isinstance(response, list):
return False, [], f"无法处理的LLM响应类型: {type(response).__name__}"
# 处理工具调用部分(如果存在)
if len(response) == 3:
content, reasoning, tool_calls = response
# 将工具调用部分转换为列表(如果是元组)
if isinstance(tool_calls, tuple):
logger.debug(f"{log_prefix}将工具调用元组转换为列表")
tool_calls = list(tool_calls)
response[2] = tool_calls
return True, response, ""
def process_llm_tool_calls(
tool_calls: List[Dict[str, Any]], log_prefix: str = ""
) -> Tuple[bool, List[Dict[str, Any]], str]:
"""
处理并验证LLM响应中的工具调用列表
参数:
tool_calls: 从LLM响应中直接获取的工具调用列表
log_prefix: 日志前缀
返回:
元组 (成功标志, 验证后的工具调用列表, 错误消息)
"""
# 如果列表为空,表示没有工具调用,这不是错误
if not tool_calls:
return True, [], "工具调用列表为空"
# 验证每个工具调用的格式
valid_tool_calls = []
for i, tool_call in enumerate(tool_calls):
if not isinstance(tool_call, dict):
logger.warning(f"{log_prefix}工具调用[{i}]不是字典: {type(tool_call).__name__}, 内容: {tool_call}")
continue
# 检查基本结构
if tool_call.get("type") != "function":
logger.warning(
f"{log_prefix}工具调用[{i}]不是function类型: type={tool_call.get('type', '未定义')}, 内容: {tool_call}"
)
continue
if "function" not in tool_call or not isinstance(tool_call.get("function"), dict):
logger.warning(f"{log_prefix}工具调用[{i}]缺少'function'字段或其类型不正确: {tool_call}")
continue
func_details = tool_call["function"]
if "name" not in func_details or not isinstance(func_details.get("name"), str):
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'name'或类型不正确: {func_details}")
continue
# 验证参数 'arguments'
args_value = func_details.get("arguments")
# 1. 检查 arguments 是否存在且是字符串
if args_value is None or not isinstance(args_value, str):
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'arguments'字符串: {func_details}")
continue
# 2. 尝试安全地解析 arguments 字符串
parsed_args = safe_json_loads(args_value, None)
# 3. 检查解析结果是否为字典
if parsed_args is None or not isinstance(parsed_args, dict):
logger.warning(
f"{log_prefix}工具调用[{i}]的'arguments'无法解析为有效的JSON字典, "
f"原始字符串: {args_value[:100]}..., 解析结果类型: {type(parsed_args).__name__}"
)
continue
# 如果检查通过,将原始的 tool_call 加入有效列表
valid_tool_calls.append(tool_call)
if not valid_tool_calls and tool_calls: # 如果原始列表不为空,但验证后为空
return False, [], "所有工具调用格式均无效"
return True, valid_tool_calls, ""