feat:优化planner的运作模式(同时保留旧切换选项(未完善))

This commit is contained in:
SengokuCola
2025-06-02 16:40:29 +08:00
parent 8b513cd980
commit 6ad2b8b3de
8 changed files with 497 additions and 6 deletions

View File

@@ -24,10 +24,11 @@ from src.chat.heart_flow.observation.structure_observation import StructureObser
from src.chat.heart_flow.observation.actions_observation import ActionObservation
from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.focus_chat.memory_activator import MemoryActivator
from src.chat.focus_chat.info_processors.base_processor import BaseProcessor
from src.chat.focus_chat.info_processors.self_processor import SelfProcessor
from src.chat.focus_chat.planners.planner import ActionPlanner
from src.chat.focus_chat.planners.planner_factory import PlannerFactory
from src.chat.focus_chat.planners.modify_actions import ActionModifier
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
@@ -119,8 +120,9 @@ class HeartFChatting:
self._register_default_processors()
self.expressor = DefaultExpressor(chat_id=self.stream_id)
self.replyer = DefaultReplyer(chat_id=self.stream_id)
self.action_manager = ActionManager()
self.action_planner = ActionPlanner(log_prefix=self.log_prefix, action_manager=self.action_manager)
self.action_planner = PlannerFactory.create_planner(log_prefix=self.log_prefix, action_manager=self.action_manager)
self.action_modifier = ActionModifier(action_manager=self.action_manager)
self.action_observation = ActionObservation(observe_id=self.stream_id)
@@ -167,8 +169,10 @@ class HeartFChatting:
try:
await self.expressor.initialize()
await self.replyer.initialize()
self.chat_stream = await asyncio.to_thread(chat_manager.get_stream, self.stream_id)
self.expressor.chat_stream = self.chat_stream
self.replyer.chat_stream = self.chat_stream
self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]"
except Exception as e:
logger.error(f"[HFC:{self.stream_id}] 初始化HFC时发生错误: {e}")
@@ -583,6 +587,7 @@ class HeartFChatting:
thinking_id=thinking_id,
observations=self.all_observations,
expressor=self.expressor,
replyer=self.replyer,
chat_stream=self.chat_stream,
log_prefix=self.log_prefix,
shutting_down=self._shutting_down,

View File

@@ -118,6 +118,7 @@ class MemoryActivator:
# 只取response的第一个元素字符串
response_str = response[0]
print(f"response_str: {response_str[1]}")
keywords = list(get_keywords_from_json(response_str))
# 更新关键词缓存

View File

@@ -0,0 +1,25 @@
from abc import ABC, abstractmethod
from typing import List, Dict, Any
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.info.info_base import InfoBase
class BasePlanner(ABC):
"""规划器基类"""
def __init__(self, log_prefix: str, action_manager: ActionManager):
self.log_prefix = log_prefix
self.action_manager = action_manager
@abstractmethod
async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
规划下一步行动
Args:
all_plan_info: 所有计划信息
running_memorys: 回忆信息
Returns:
Dict[str, Any]: 规划结果
"""
pass

View File

@@ -16,6 +16,7 @@ from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
from src.chat.focus_chat.planners.action_manager import ActionManager
from json_repair import repair_json
from src.chat.focus_chat.planners.base_planner import BasePlanner
logger = get_logger("planner")
@@ -73,9 +74,9 @@ action_name: {action_name}
)
class ActionPlanner:
class ActionPlanner(BasePlanner):
def __init__(self, log_prefix: str, action_manager: ActionManager):
self.log_prefix = log_prefix
super().__init__(log_prefix, action_manager)
# LLM规划器配置
self.planner_llm = LLMRequest(
model=global_config.model.focus_planner,
@@ -83,8 +84,6 @@ class ActionPlanner:
request_type="focus.planner", # 用于动作规划
)
self.action_manager = action_manager
async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定做出什么动作

View File

@@ -0,0 +1,52 @@
from typing import Dict, Type
from src.chat.focus_chat.planners.base_planner import BasePlanner
from src.chat.focus_chat.planners.planner_complex import ActionPlanner as ComplexActionPlanner
from src.chat.focus_chat.planners.planner_simple import ActionPlanner as SimpleActionPlanner
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.config.config import global_config
from src.common.logger_manager import get_logger
logger = get_logger("planner_factory")
class PlannerFactory:
"""规划器工厂类,用于创建不同类型的规划器实例"""
# 注册所有可用的规划器类型
_planner_types: Dict[str, Type[BasePlanner]] = {
"complex": ComplexActionPlanner,
"simple": SimpleActionPlanner,
}
@classmethod
def register_planner(cls, name: str, planner_class: Type[BasePlanner]) -> None:
"""
注册新的规划器类型
Args:
name: 规划器类型名称
planner_class: 规划器类
"""
cls._planner_types[name] = planner_class
logger.info(f"注册新的规划器类型: {name}")
@classmethod
def create_planner(cls, log_prefix: str, action_manager: ActionManager) -> BasePlanner:
"""
创建规划器实例
Args:
log_prefix: 日志前缀
action_manager: 动作管理器实例
Returns:
BasePlanner: 规划器实例
"""
planner_type = global_config.focus_chat.planner_type
if planner_type not in cls._planner_types:
logger.warning(f"{log_prefix} 未知的规划器类型: {planner_type},使用默认规划器")
planner_type = "complex"
planner_class = cls._planner_types[planner_type]
logger.info(f"{log_prefix} 使用{planner_type}规划器")
return planner_class(log_prefix=log_prefix, action_manager=action_manager)

View File

@@ -0,0 +1,404 @@
import json # <--- 确保导入 json
import traceback
from typing import List, Dict, Any, Optional
from rich.traceback import install
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.obs_info import ObsInfo
from src.chat.focus_chat.info.cycle_info import CycleInfo
from src.chat.focus_chat.info.mind_info import MindInfo
from src.chat.focus_chat.info.action_info import ActionInfo
from src.chat.focus_chat.info.structured_info import StructuredInfo
from src.chat.focus_chat.info.self_info import SelfInfo
from src.common.logger_manager import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
from src.chat.focus_chat.planners.action_manager import ActionManager
from json_repair import repair_json
from src.chat.focus_chat.planners.base_planner import BasePlanner
logger = get_logger("planner")
install(extra_lines=3)
def init_prompt():
Prompt(
"""
你的自我认知是:
{self_info_block}
{extra_info_block}
{memory_str}
你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容:
{chat_content_block}
{mind_info_block}
{cycle_info_block}
注意除了下面动作选项之外你在群聊里不能做其他任何事情这是你能力的边界现在请你选择合适的action:
{moderation_prompt}
{action_options_text}
以严格的 JSON 格式输出,且仅包含 JSON 内容,不要有任何其他文字或解释。
请你以下面格式输出:
{{
"action": "action_name"
"reasoning": "理由",
"参数": "参数的值"(可能有多个参数),
}}
请输出你提取的JSON不要有任何其他文字或解释
""",
"planner_prompt",
)
Prompt("""
{raw_output}
请从上面这段内容中提取出JSON内容不要有任何其他文字或解释。
以严格的 JSON 格式输出,且仅包含 JSON 内容,不要有任何其他文字或解释。
请你以下面格式输出:
{{
"action": "action_name"
"参数": "参数的值"(可能有多个参数),
}}
请输出你提取的JSON不要有任何其他文字或解释""",
"planner_prompt_json",
)
Prompt(
"""
动作名称:{action_name}
描述:{action_description}
{action_parameters}
使用该动作的场景:{action_require}""",
"action_prompt",
)
class ActionPlanner(BasePlanner):
def __init__(self, log_prefix: str, action_manager: ActionManager):
super().__init__(log_prefix, action_manager)
# LLM规划器配置
self.planner_llm = LLMRequest(
model=global_config.model.focus_planner,
max_tokens=1000,
request_type="focus.planner", # 用于动作规划
)
self.utils_llm = LLMRequest(
model=global_config.model.utils_small,
max_tokens=1000,
request_type="focus.planner", # 用于动作规划
)
async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
参数:
all_plan_info: 所有计划信息
running_memorys: 回忆信息
"""
action = "no_reply" # 默认动作
reasoning = "规划器初始化默认"
action_data = {}
try:
# 获取观察信息
extra_info: list[str] = []
# 设置默认值
nickname_str = ""
for nicknames in global_config.bot.alias_names:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
personality_block = individuality.get_personality_prompt(x_person=2, level=2)
identity_block = individuality.get_identity_prompt(x_person=2, level=2)
self_info = name_block + personality_block + identity_block
current_mind = "你思考了很久,没有想清晰要做什么"
cycle_info = ""
structured_info = ""
extra_info = []
observed_messages = []
observed_messages_str = ""
chat_type = "group"
is_group_chat = True
for info in all_plan_info:
if isinstance(info, ObsInfo):
observed_messages = info.get_talking_message()
observed_messages_str = info.get_talking_message_str_truncate()
chat_type = info.get_chat_type()
is_group_chat = chat_type == "group"
elif isinstance(info, MindInfo):
current_mind = info.get_current_mind()
elif isinstance(info, CycleInfo):
cycle_info = info.get_observe_info()
elif isinstance(info, SelfInfo):
self_info = info.get_processed_info()
elif isinstance(info, StructuredInfo):
structured_info = info.get_processed_info()
# print(f"structured_info: {structured_info}")
# elif not isinstance(info, ActionInfo): # 跳过已处理的ActionInfo
# extra_info.append(info.get_processed_info())
# 获取当前可用的动作
current_available_actions = self.action_manager.get_using_actions()
# 如果没有可用动作或只有no_reply动作直接返回no_reply
if not current_available_actions or (
len(current_available_actions) == 1 and "no_reply" in current_available_actions
):
action = "no_reply"
reasoning = "没有可用的动作" if not current_available_actions else "只有no_reply动作可用跳过规划"
logger.info(f"{self.log_prefix}{reasoning}")
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}沉默后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
"current_mind": current_mind,
"observed_messages": observed_messages,
}
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt = await self.build_planner_prompt(
self_info_block=self_info,
is_group_chat=is_group_chat, # <-- Pass HFC state
chat_target_info=None,
observed_messages_str=observed_messages_str, # <-- Pass local variable
current_mind=current_mind, # <-- Pass argument
structured_info=structured_info, # <-- Pass SubMind info
current_available_actions=current_available_actions, # <-- Pass determined actions
cycle_info=cycle_info, # <-- Pass cycle info
extra_info=extra_info,
running_memorys=running_memorys,
)
# --- 调用 LLM (普通文本生成) ---
llm_content = None
try:
prompt = f"{prompt}"
llm_content, (reasoning_content, _) = await self.planner_llm.generate_response_async(prompt=prompt)
logger.debug(
f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}"
)
logger.debug(f"{self.log_prefix}LLM 原始响应: {llm_content}")
logger.debug(f"{self.log_prefix}LLM 原始理由响应: {reasoning_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
reasoning = f"LLM 请求失败,你的模型出现问题: {req_e}"
action = "no_reply"
# try:
# prompt_json = await global_prompt_manager.get_prompt_async("planner_prompt_json")
# prompt_json = prompt_json.format(raw_output=llm_content)
# llm_content_json, (reasoning_content_json, _) = await self.utils_llm.generate_response_async(prompt=prompt_json)
# logger.debug(f"{self.log_prefix}LLM格式化JSON: {llm_content_json}")
# logger.debug(f"{self.log_prefix}LLM格式化理由: {reasoning_content_json}")
# except Exception as json_e:
# logger.error(f"{self.log_prefix}解析LLM响应JSON失败模型返回不标准: {json_e}. LLM原始输出: '{llm_content}'")
# reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
# action = "no_reply"
if llm_content:
try:
fixed_json_string = repair_json(llm_content)
if isinstance(fixed_json_string, str):
try:
parsed_json = json.loads(fixed_json_string)
except json.JSONDecodeError as decode_error:
logger.error(f"JSON解析错误: {str(decode_error)}")
parsed_json = {}
else:
# 如果repair_json直接返回了字典对象直接使用
parsed_json = fixed_json_string
# 提取决策,提供默认值
extracted_action = parsed_json.get("action", "no_reply")
# extracted_reasoning = parsed_json.get("reasoning", "LLM未提供理由")
extracted_reasoning = ""
# 将所有其他属性添加到action_data
action_data = {}
for key, value in parsed_json.items():
if key not in ["action", "reasoning"]:
action_data[key] = value
action_data["identity"] = self_info
# 对于reply动作不需要额外处理因为相关字段已经在上面的循环中添加到action_data
if extracted_action not in current_available_actions:
logger.warning(
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
)
action = "no_reply"
reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}"
else:
# 动作有效且可用
action = extracted_action
reasoning = extracted_reasoning
except Exception as json_e:
logger.warning(
f"{self.log_prefix}解析LLM响应JSON失败模型返回不标准: {json_e}. LLM原始输出: '{llm_content}'"
)
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
action = "no_reply"
except Exception as outer_e:
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}")
traceback.print_exc()
action = "no_reply"
reasoning = f"Planner 内部处理错误: {outer_e}"
# logger.debug(
# f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}"
# )
# 恢复到默认动作集
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}规划后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning}
plan_result = {
"action_result": action_result,
"current_mind": current_mind,
"observed_messages": observed_messages,
"action_prompt": prompt,
}
return plan_result
async def build_planner_prompt(
self,
self_info_block: str,
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
observed_messages_str: str,
current_mind: Optional[str],
structured_info: Optional[str],
current_available_actions: Dict[str, ActionInfo],
cycle_info: Optional[str],
extra_info: list[str],
running_memorys: List[Dict[str, Any]],
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
memory_str = ""
if global_config.focus_chat.parallel_processing:
memory_str = ""
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['topic']}: {running_memory['content']}\n"
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None # Only relevant for private
if not is_group_chat and chat_target_info:
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
)
chat_context_description = f"你正在和 {chat_target_name} 私聊"
chat_content_block = ""
if observed_messages_str:
chat_content_block = f"聊天记录:\n{observed_messages_str}"
else:
chat_content_block = "你还未开始聊天"
mind_info_block = ""
if current_mind:
mind_info_block = f"对聊天的规划:{current_mind}"
else:
mind_info_block = "你刚参与聊天"
personality_block = individuality.get_prompt(x_person=2, level=2)
action_options_block = ""
for using_actions_name, using_actions_info in current_available_actions.items():
# print(using_actions_name)
# print(using_actions_info)
# print(using_actions_info["parameters"])
# print(using_actions_info["require"])
# print(using_actions_info["description"])
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
param_text = ""
for param_name, param_description in using_actions_info["parameters"].items():
param_text += f" {param_name}: {param_description}\n"
require_text = ""
for require_item in using_actions_info["require"]:
require_text += f" - {require_item}\n"
if param_text:
param_text = f"参数:\n{param_text}"
else:
param_text = "无需参数"
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info["description"],
action_parameters=param_text,
action_require=require_text,
)
action_options_block += using_action_prompt
extra_info_block = "\n".join(extra_info)
extra_info_block += f"\n{structured_info}"
if extra_info or structured_info:
extra_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策"
else:
extra_info_block = ""
# moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
moderation_prompt_block = ""
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")
prompt = planner_prompt_template.format(
self_info_block=self_info_block,
memory_str=memory_str,
# bot_name=global_config.bot.nickname,
prompt_personality=personality_block,
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
mind_info_block=mind_info_block,
cycle_info_block=cycle_info,
action_options_text=action_options_block,
# action_available_block=action_available_block,
extra_info_block=extra_info_block,
moderation_prompt=moderation_prompt_block,
)
return prompt
except Exception as e:
logger.error(f"构建 Planner 提示词时出错: {e}")
logger.error(traceback.format_exc())
return "构建 Planner Prompt 时出错"
init_prompt()

View File

@@ -153,6 +153,9 @@ class FocusChatConfig(ConfigBase):
processor_max_time: int = 25
"""处理器最大时间,单位秒,如果超过这个时间,处理器会自动停止"""
planner_type: str = "default"
"""规划器类型可选值default默认规划器, simple简单规划器"""
@dataclass
class FocusChatProcessorConfig(ConfigBase):

View File

@@ -102,6 +102,8 @@ observation_context_size = 16 # 观察到的最长上下文大小
compressed_length = 8 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5
compress_length_limit = 4 #最多压缩份数,超过该数值的压缩上下文会被删除
planner_type = "complex" # 规划器类型可选值complex复杂规划器, simple简单规划器
[focus_chat_processor] # 专注聊天处理器打开可以实现更多功能但是会增加token消耗
mind_processor = false # 是否启用思维处理器
self_identify_processor = true # 是否启用自我识别处理器