feat:拆分expressor和replyer
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
from typing import Dict, List, Optional, Type, Any
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, _ACTION_REGISTRY
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
|
||||
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.common.logger_manager import get_logger
|
||||
@@ -135,6 +136,7 @@ class ActionManager:
|
||||
thinking_id: str,
|
||||
observations: List[Observation],
|
||||
expressor: DefaultExpressor,
|
||||
replyer: DefaultReplyer,
|
||||
chat_stream: ChatStream,
|
||||
log_prefix: str,
|
||||
shutting_down: bool = False,
|
||||
@@ -150,6 +152,7 @@ class ActionManager:
|
||||
thinking_id: 思考ID
|
||||
observations: 观察列表
|
||||
expressor: 表达器
|
||||
replyer: 回复器
|
||||
chat_stream: 聊天流
|
||||
log_prefix: 日志前缀
|
||||
shutting_down: 是否正在关闭
|
||||
@@ -176,6 +179,7 @@ class ActionManager:
|
||||
thinking_id=thinking_id,
|
||||
observations=observations,
|
||||
expressor=expressor,
|
||||
replyer=replyer,
|
||||
chat_stream=chat_stream,
|
||||
log_prefix=log_prefix,
|
||||
shutting_down=shutting_down,
|
||||
|
||||
@@ -45,6 +45,8 @@ class PluginAction(BaseAction):
|
||||
self._services["expressor"] = kwargs["expressor"]
|
||||
if "chat_stream" in kwargs:
|
||||
self._services["chat_stream"] = kwargs["chat_stream"]
|
||||
if "replyer" in kwargs:
|
||||
self._services["replyer"] = kwargs["replyer"]
|
||||
|
||||
self.log_prefix = kwargs.get("log_prefix", "")
|
||||
self._load_plugin_config() # 初始化时加载插件配置
|
||||
|
||||
555
src/chat/focus_chat/replyer/default_replyer.py
Normal file
555
src/chat/focus_chat/replyer/default_replyer.py
Normal file
@@ -0,0 +1,555 @@
|
||||
import traceback
|
||||
from typing import List, Optional, Dict, Any, Tuple
|
||||
from src.chat.message_receive.message import MessageRecv, MessageThinking, MessageSending
|
||||
from src.chat.message_receive.message import Seg # Local import needed after move
|
||||
from src.chat.message_receive.message import UserInfo
|
||||
from src.chat.message_receive.chat_stream import chat_manager
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
from src.chat.utils.utils_image import image_path_to_base64 # Local import needed after move
|
||||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||||
from src.chat.emoji_system.emoji_manager import emoji_manager
|
||||
from src.chat.focus_chat.heartFC_sender import HeartFCSender
|
||||
from src.chat.utils.utils import process_llm_response
|
||||
from src.chat.utils.info_catcher import info_catcher_manager
|
||||
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
import time
|
||||
from src.chat.focus_chat.expressors.exprssion_learner import expression_learner
|
||||
import random
|
||||
|
||||
logger = get_logger("expressor")
|
||||
|
||||
|
||||
def init_prompt():
|
||||
Prompt(
|
||||
"""
|
||||
你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:
|
||||
{style_habbits}
|
||||
|
||||
你现在正在群里聊天,以下是群里正在进行的聊天内容:
|
||||
{chat_info}
|
||||
|
||||
以上是聊天内容,你需要了解聊天记录中的内容
|
||||
|
||||
{chat_target}
|
||||
{identity},在这聊天中,"{target_message}"引起了你的注意,你想要在群里发言或者回复这条消息。原因是:{reason}。
|
||||
你需要使用合适的语法和句法,参考聊天内容,组织一条日常且口语化的回复。
|
||||
请你根据情景使用以下句法:
|
||||
{grammar_habbits}
|
||||
{config_expression_style},请注意不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容。
|
||||
请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。
|
||||
不要浮夸,不要夸张修辞,只输出一条回复就好。
|
||||
现在,你说:
|
||||
""",
|
||||
"default_replyer_prompt",
|
||||
)
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:
|
||||
{style_habbits}
|
||||
|
||||
你现在正在群里聊天,以下是群里正在进行的聊天内容:
|
||||
{chat_info}
|
||||
|
||||
以上是聊天内容,你需要了解聊天记录中的内容
|
||||
|
||||
{chat_target}
|
||||
你的名字是{bot_name},{prompt_personality},在这聊天中,"{target_message}"引起了你的注意,对这句话,你想表达:{in_mind_reply},原因是:{reason}。你现在要思考怎么回复
|
||||
你需要使用合适的语法和句法,参考聊天内容,组织一条日常且口语化的回复。
|
||||
请你根据情景使用以下句法:
|
||||
{grammar_habbits}
|
||||
{config_expression_style},你可以完全重组回复,保留最基本的表达含义就好,但重组后保持语意通顺。
|
||||
不要浮夸,不要夸张修辞,平淡且不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 ),只输出一条回复就好。
|
||||
现在,你说:
|
||||
""",
|
||||
"default_replyer_private_prompt", # New template for private FOCUSED chat
|
||||
)
|
||||
|
||||
|
||||
class DefaultReplyer:
|
||||
def __init__(self, chat_id: str):
|
||||
self.log_prefix = "expressor"
|
||||
# TODO: API-Adapter修改标记
|
||||
self.express_model = LLMRequest(
|
||||
model=global_config.model.focus_expressor,
|
||||
# temperature=global_config.model.focus_expressor["temp"],
|
||||
max_tokens=256,
|
||||
request_type="focus.expressor",
|
||||
)
|
||||
self.heart_fc_sender = HeartFCSender()
|
||||
|
||||
self.chat_id = chat_id
|
||||
self.chat_stream: Optional[ChatStream] = None
|
||||
self.is_group_chat = True
|
||||
self.chat_target_info = None
|
||||
|
||||
async def initialize(self):
|
||||
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_id)
|
||||
|
||||
async def _create_thinking_message(self, anchor_message: Optional[MessageRecv], thinking_id: str):
|
||||
"""创建思考消息 (尝试锚定到 anchor_message)"""
|
||||
if not anchor_message or not anchor_message.chat_stream:
|
||||
logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流。")
|
||||
return None
|
||||
|
||||
chat = anchor_message.chat_stream
|
||||
messageinfo = anchor_message.message_info
|
||||
thinking_time_point = parse_thinking_id_to_timestamp(thinking_id)
|
||||
bot_user_info = UserInfo(
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=messageinfo.platform,
|
||||
)
|
||||
|
||||
thinking_message = MessageThinking(
|
||||
message_id=thinking_id,
|
||||
chat_stream=chat,
|
||||
bot_user_info=bot_user_info,
|
||||
reply=anchor_message, # 回复的是锚点消息
|
||||
thinking_start_time=thinking_time_point,
|
||||
)
|
||||
# logger.debug(f"创建思考消息thinking_message:{thinking_message}")
|
||||
|
||||
await self.heart_fc_sender.register_thinking(thinking_message)
|
||||
|
||||
async def deal_reply(
|
||||
self,
|
||||
cycle_timers: dict,
|
||||
action_data: Dict[str, Any],
|
||||
reasoning: str,
|
||||
anchor_message: MessageRecv,
|
||||
thinking_id: str,
|
||||
) -> tuple[bool, Optional[List[Tuple[str, str]]]]:
|
||||
# 创建思考消息
|
||||
await self._create_thinking_message(anchor_message, thinking_id)
|
||||
|
||||
reply = [] # 初始化 reply,防止未定义
|
||||
try:
|
||||
has_sent_something = False
|
||||
|
||||
# 处理文本部分
|
||||
# text_part = action_data.get("text", [])
|
||||
# if text_part:
|
||||
with Timer("生成回复", cycle_timers):
|
||||
# 可以保留原有的文本处理逻辑或进行适当调整
|
||||
reply = await self.reply(
|
||||
# in_mind_reply=text_part,
|
||||
anchor_message=anchor_message,
|
||||
thinking_id=thinking_id,
|
||||
reason=reasoning,
|
||||
action_data=action_data,
|
||||
)
|
||||
|
||||
# with Timer("选择表情", cycle_timers):
|
||||
# emoji_keyword = action_data.get("emojis", [])
|
||||
# emoji_base64 = await self._choose_emoji(emoji_keyword)
|
||||
# if emoji_base64:
|
||||
# reply.append(("emoji", emoji_base64))
|
||||
|
||||
if reply:
|
||||
with Timer("发送消息", cycle_timers):
|
||||
sent_msg_list = await self.send_response_messages(
|
||||
anchor_message=anchor_message,
|
||||
thinking_id=thinking_id,
|
||||
response_set=reply,
|
||||
)
|
||||
has_sent_something = True
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix} 文本回复生成失败")
|
||||
|
||||
if not has_sent_something:
|
||||
logger.warning(f"{self.log_prefix} 回复动作未包含任何有效内容")
|
||||
|
||||
return has_sent_something, sent_msg_list
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"回复失败: {e}")
|
||||
traceback.print_exc()
|
||||
return False, None
|
||||
|
||||
# --- 回复器 (Replier) 的定义 --- #
|
||||
|
||||
async def reply(
|
||||
self,
|
||||
# in_mind_reply: str,
|
||||
reason: str,
|
||||
anchor_message: MessageRecv,
|
||||
thinking_id: str,
|
||||
action_data: Dict[str, Any],
|
||||
) -> Optional[List[str]]:
|
||||
"""
|
||||
回复器 (Replier): 核心逻辑,负责生成回复文本。
|
||||
(已整合原 HeartFCGenerator 的功能)
|
||||
"""
|
||||
try:
|
||||
# 1. 获取情绪影响因子并调整模型温度
|
||||
# arousal_multiplier = mood_manager.get_arousal_multiplier()
|
||||
# current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
|
||||
# self.express_model.params["temperature"] = current_temp # 动态调整温度
|
||||
|
||||
# 2. 获取信息捕捉器
|
||||
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
|
||||
|
||||
# --- Determine sender_name for private chat ---
|
||||
sender_name_for_prompt = "某人" # Default for group or if info unavailable
|
||||
if not self.is_group_chat and self.chat_target_info:
|
||||
# Prioritize person_name, then nickname
|
||||
sender_name_for_prompt = (
|
||||
self.chat_target_info.get("person_name")
|
||||
or self.chat_target_info.get("user_nickname")
|
||||
or sender_name_for_prompt
|
||||
)
|
||||
# --- End determining sender_name ---
|
||||
|
||||
target_message = action_data.get("target", "")
|
||||
identity = action_data.get("identity", "")
|
||||
|
||||
# 3. 构建 Prompt
|
||||
with Timer("构建Prompt", {}): # 内部计时器,可选保留
|
||||
prompt = await self.build_prompt_focus(
|
||||
chat_stream=self.chat_stream, # Pass the stream object
|
||||
# in_mind_reply=in_mind_reply,
|
||||
identity=identity,
|
||||
reason=reason,
|
||||
sender_name=sender_name_for_prompt, # Pass determined name
|
||||
target_message=target_message,
|
||||
config_expression_style=global_config.expression.expression_style,
|
||||
)
|
||||
|
||||
# 4. 调用 LLM 生成回复
|
||||
content = None
|
||||
reasoning_content = None
|
||||
model_name = "unknown_model"
|
||||
if not prompt:
|
||||
logger.error(f"{self.log_prefix}[Replier-{thinking_id}] Prompt 构建失败,无法生成回复。")
|
||||
return None
|
||||
|
||||
try:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# TODO: API-Adapter修改标记
|
||||
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
|
||||
content, (reasoning_content, model_name) = await self.express_model.generate_response_async(prompt)
|
||||
|
||||
logger.info(f"最终回复: {content}")
|
||||
|
||||
info_catcher.catch_after_llm_generated(
|
||||
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name
|
||||
)
|
||||
|
||||
except Exception as llm_e:
|
||||
# 精简报错信息
|
||||
logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}")
|
||||
return None # LLM 调用失败则无法生成回复
|
||||
|
||||
processed_response = process_llm_response(content)
|
||||
|
||||
# 5. 处理 LLM 响应
|
||||
if not content:
|
||||
logger.warning(f"{self.log_prefix}LLM 生成了空内容。")
|
||||
return None
|
||||
if not processed_response:
|
||||
logger.warning(f"{self.log_prefix}处理后的回复为空。")
|
||||
return None
|
||||
|
||||
reply_set = []
|
||||
for str in processed_response:
|
||||
reply_seg = ("text", str)
|
||||
reply_set.append(reply_seg)
|
||||
|
||||
return reply_set
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}回复生成意外失败: {e}")
|
||||
traceback.print_exc()
|
||||
return None
|
||||
|
||||
async def build_prompt_focus(
|
||||
self,
|
||||
reason,
|
||||
chat_stream,
|
||||
sender_name,
|
||||
# in_mind_reply,
|
||||
identity,
|
||||
target_message,
|
||||
config_expression_style,
|
||||
) -> str:
|
||||
is_group_chat = bool(chat_stream.group_info)
|
||||
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.focus_chat.observation_context_size,
|
||||
)
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
message_list_before_now,
|
||||
replace_bot_name=True,
|
||||
merge_messages=True,
|
||||
timestamp_mode="relative",
|
||||
read_mark=0.0,
|
||||
truncate=True,
|
||||
)
|
||||
|
||||
(
|
||||
learnt_style_expressions,
|
||||
learnt_grammar_expressions,
|
||||
personality_expressions,
|
||||
) = await expression_learner.get_expression_by_chat_id(chat_stream.stream_id)
|
||||
|
||||
style_habbits = []
|
||||
grammar_habbits = []
|
||||
# 1. learnt_expressions加权随机选3条
|
||||
if learnt_style_expressions:
|
||||
weights = [expr["count"] for expr in learnt_style_expressions]
|
||||
selected_learnt = weighted_sample_no_replacement(learnt_style_expressions, weights, 3)
|
||||
for expr in selected_learnt:
|
||||
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
|
||||
style_habbits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||||
# 2. learnt_grammar_expressions加权随机选3条
|
||||
if learnt_grammar_expressions:
|
||||
weights = [expr["count"] for expr in learnt_grammar_expressions]
|
||||
selected_learnt = weighted_sample_no_replacement(learnt_grammar_expressions, weights, 3)
|
||||
for expr in selected_learnt:
|
||||
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
|
||||
grammar_habbits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||||
# 3. personality_expressions随机选1条
|
||||
if personality_expressions:
|
||||
expr = random.choice(personality_expressions)
|
||||
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
|
||||
style_habbits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||||
|
||||
style_habbits_str = "\n".join(style_habbits)
|
||||
grammar_habbits_str = "\n".join(grammar_habbits)
|
||||
|
||||
logger.debug("开始构建 focus prompt")
|
||||
|
||||
# --- Choose template based on chat type ---
|
||||
if is_group_chat:
|
||||
template_name = "default_replyer_prompt"
|
||||
# Group specific formatting variables (already fetched or default)
|
||||
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||||
# chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
template_name,
|
||||
style_habbits=style_habbits_str,
|
||||
grammar_habbits=grammar_habbits_str,
|
||||
chat_target=chat_target_1,
|
||||
chat_info=chat_talking_prompt,
|
||||
# bot_name=global_config.bot.nickname,
|
||||
# prompt_personality="",
|
||||
reason=reason,
|
||||
# in_mind_reply=in_mind_reply,
|
||||
identity=identity,
|
||||
target_message=target_message,
|
||||
config_expression_style=config_expression_style,
|
||||
)
|
||||
else: # Private chat
|
||||
template_name = "default_replyer_private_prompt"
|
||||
chat_target_1 = "你正在和人私聊"
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
template_name,
|
||||
style_habbits=style_habbits_str,
|
||||
grammar_habbits=grammar_habbits_str,
|
||||
chat_target=chat_target_1,
|
||||
chat_info=chat_talking_prompt,
|
||||
# bot_name=global_config.bot.nickname,
|
||||
# prompt_personality="",
|
||||
reason=reason,
|
||||
# in_mind_reply=in_mind_reply,
|
||||
identity=identity,
|
||||
target_message=target_message,
|
||||
config_expression_style=config_expression_style,
|
||||
)
|
||||
|
||||
return prompt
|
||||
|
||||
# --- 发送器 (Sender) --- #
|
||||
|
||||
async def send_response_messages(
|
||||
self,
|
||||
anchor_message: Optional[MessageRecv],
|
||||
response_set: List[Tuple[str, str]],
|
||||
thinking_id: str = "",
|
||||
display_message: str = "",
|
||||
) -> Optional[MessageSending]:
|
||||
"""发送回复消息 (尝试锚定到 anchor_message),使用 HeartFCSender"""
|
||||
chat = self.chat_stream
|
||||
chat_id = self.chat_id
|
||||
if chat is None:
|
||||
logger.error(f"{self.log_prefix} 无法发送回复,chat_stream 为空。")
|
||||
return None
|
||||
if not anchor_message:
|
||||
logger.error(f"{self.log_prefix} 无法发送回复,anchor_message 为空。")
|
||||
return None
|
||||
|
||||
stream_name = chat_manager.get_stream_name(chat_id) or chat_id # 获取流名称用于日志
|
||||
|
||||
# 检查思考过程是否仍在进行,并获取开始时间
|
||||
if thinking_id:
|
||||
thinking_start_time = await self.heart_fc_sender.get_thinking_start_time(chat_id, thinking_id)
|
||||
else:
|
||||
thinking_id = "ds" + str(round(time.time(), 2))
|
||||
thinking_start_time = time.time()
|
||||
|
||||
if thinking_start_time is None:
|
||||
logger.error(f"[{stream_name}]思考过程未找到或已结束,无法发送回复。")
|
||||
return None
|
||||
|
||||
mark_head = False
|
||||
# first_bot_msg: Optional[MessageSending] = None
|
||||
reply_message_ids = [] # 记录实际发送的消息ID
|
||||
|
||||
sent_msg_list = []
|
||||
|
||||
for i, msg_text in enumerate(response_set):
|
||||
# 为每个消息片段生成唯一ID
|
||||
type = msg_text[0]
|
||||
data = msg_text[1]
|
||||
|
||||
if global_config.experimental.debug_show_chat_mode and type == "text":
|
||||
data += "ᶠ"
|
||||
|
||||
part_message_id = f"{thinking_id}_{i}"
|
||||
message_segment = Seg(type=type, data=data)
|
||||
|
||||
if type == "emoji":
|
||||
is_emoji = True
|
||||
else:
|
||||
is_emoji = False
|
||||
reply_to = not mark_head
|
||||
|
||||
bot_message = await self._build_single_sending_message(
|
||||
anchor_message=anchor_message,
|
||||
message_id=part_message_id,
|
||||
message_segment=message_segment,
|
||||
display_message=display_message,
|
||||
reply_to=reply_to,
|
||||
is_emoji=is_emoji,
|
||||
thinking_id=thinking_id,
|
||||
thinking_start_time=thinking_start_time,
|
||||
)
|
||||
|
||||
try:
|
||||
if not mark_head:
|
||||
mark_head = True
|
||||
# first_bot_msg = bot_message # 保存第一个成功发送的消息对象
|
||||
typing = False
|
||||
else:
|
||||
typing = True
|
||||
|
||||
if type == "emoji":
|
||||
typing = False
|
||||
|
||||
if anchor_message.raw_message:
|
||||
set_reply = True
|
||||
else:
|
||||
set_reply = False
|
||||
sent_msg = await self.heart_fc_sender.send_message(
|
||||
bot_message, has_thinking=True, typing=typing, set_reply=set_reply
|
||||
)
|
||||
|
||||
reply_message_ids.append(part_message_id) # 记录我们生成的ID
|
||||
|
||||
sent_msg_list.append((type, sent_msg))
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}发送回复片段 {i} ({part_message_id}) 时失败: {e}")
|
||||
traceback.print_exc()
|
||||
# 这里可以选择是继续发送下一个片段还是中止
|
||||
|
||||
# 在尝试发送完所有片段后,完成原始的 thinking_id 状态
|
||||
try:
|
||||
await self.heart_fc_sender.complete_thinking(chat_id, thinking_id)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}完成思考状态 {thinking_id} 时出错: {e}")
|
||||
|
||||
return sent_msg_list
|
||||
|
||||
async def _choose_emoji(self, send_emoji: str):
|
||||
"""
|
||||
选择表情,根据send_emoji文本选择表情,返回表情base64
|
||||
"""
|
||||
emoji_base64 = ""
|
||||
emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji)
|
||||
if emoji_raw:
|
||||
emoji_path, _description = emoji_raw
|
||||
emoji_base64 = image_path_to_base64(emoji_path)
|
||||
return emoji_base64
|
||||
|
||||
async def _build_single_sending_message(
|
||||
self,
|
||||
anchor_message: MessageRecv,
|
||||
message_id: str,
|
||||
message_segment: Seg,
|
||||
reply_to: bool,
|
||||
is_emoji: bool,
|
||||
thinking_id: str,
|
||||
thinking_start_time: float,
|
||||
display_message: str,
|
||||
) -> MessageSending:
|
||||
"""构建单个发送消息"""
|
||||
|
||||
bot_user_info = UserInfo(
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=self.chat_stream.platform,
|
||||
)
|
||||
|
||||
bot_message = MessageSending(
|
||||
message_id=message_id, # 使用片段的唯一ID
|
||||
chat_stream=self.chat_stream,
|
||||
bot_user_info=bot_user_info,
|
||||
sender_info=anchor_message.message_info.user_info,
|
||||
message_segment=message_segment,
|
||||
reply=anchor_message, # 回复原始锚点
|
||||
is_head=reply_to,
|
||||
is_emoji=is_emoji,
|
||||
thinking_start_time=thinking_start_time, # 传递原始思考开始时间
|
||||
display_message=display_message,
|
||||
)
|
||||
|
||||
return bot_message
|
||||
|
||||
|
||||
def weighted_sample_no_replacement(items, weights, k) -> list:
|
||||
"""
|
||||
加权且不放回地随机抽取k个元素。
|
||||
|
||||
参数:
|
||||
items: 待抽取的元素列表
|
||||
weights: 每个元素对应的权重(与items等长,且为正数)
|
||||
k: 需要抽取的元素个数
|
||||
返回:
|
||||
selected: 按权重加权且不重复抽取的k个元素组成的列表
|
||||
|
||||
如果 items 中的元素不足 k 个,就只会返回所有可用的元素
|
||||
|
||||
实现思路:
|
||||
每次从当前池中按权重加权随机选出一个元素,选中后将其从池中移除,重复k次。
|
||||
这样保证了:
|
||||
1. count越大被选中概率越高
|
||||
2. 不会重复选中同一个元素
|
||||
"""
|
||||
selected = []
|
||||
pool = list(zip(items, weights))
|
||||
for _ in range(min(k, len(pool))):
|
||||
total = sum(w for _, w in pool)
|
||||
r = random.uniform(0, total)
|
||||
upto = 0
|
||||
for idx, (item, weight) in enumerate(pool):
|
||||
upto += weight
|
||||
if upto >= r:
|
||||
selected.append(item)
|
||||
pool.pop(idx)
|
||||
break
|
||||
return selected
|
||||
|
||||
|
||||
init_prompt()
|
||||
Reference in New Issue
Block a user