diff --git a/src/chat/focus_chat/heartFC_chat.py b/src/chat/focus_chat/heartFC_chat.py index 7988f860a..c431fcd3a 100644 --- a/src/chat/focus_chat/heartFC_chat.py +++ b/src/chat/focus_chat/heartFC_chat.py @@ -24,10 +24,11 @@ from src.chat.heart_flow.observation.structure_observation import StructureObser from src.chat.heart_flow.observation.actions_observation import ActionObservation from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor +from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer from src.chat.focus_chat.memory_activator import MemoryActivator from src.chat.focus_chat.info_processors.base_processor import BaseProcessor from src.chat.focus_chat.info_processors.self_processor import SelfProcessor -from src.chat.focus_chat.planners.planner import ActionPlanner +from src.chat.focus_chat.planners.planner_factory import PlannerFactory from src.chat.focus_chat.planners.modify_actions import ActionModifier from src.chat.focus_chat.planners.action_manager import ActionManager from src.chat.focus_chat.working_memory.working_memory import WorkingMemory @@ -119,8 +120,9 @@ class HeartFChatting: self._register_default_processors() self.expressor = DefaultExpressor(chat_id=self.stream_id) + self.replyer = DefaultReplyer(chat_id=self.stream_id) self.action_manager = ActionManager() - self.action_planner = ActionPlanner(log_prefix=self.log_prefix, action_manager=self.action_manager) + self.action_planner = PlannerFactory.create_planner(log_prefix=self.log_prefix, action_manager=self.action_manager) self.action_modifier = ActionModifier(action_manager=self.action_manager) self.action_observation = ActionObservation(observe_id=self.stream_id) @@ -167,8 +169,10 @@ class HeartFChatting: try: await self.expressor.initialize() + await self.replyer.initialize() self.chat_stream = await asyncio.to_thread(chat_manager.get_stream, self.stream_id) self.expressor.chat_stream = self.chat_stream + self.replyer.chat_stream = self.chat_stream self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]" except Exception as e: logger.error(f"[HFC:{self.stream_id}] 初始化HFC时发生错误: {e}") @@ -583,6 +587,7 @@ class HeartFChatting: thinking_id=thinking_id, observations=self.all_observations, expressor=self.expressor, + replyer=self.replyer, chat_stream=self.chat_stream, log_prefix=self.log_prefix, shutting_down=self._shutting_down, diff --git a/src/chat/focus_chat/memory_activator.py b/src/chat/focus_chat/memory_activator.py index 18a38f33e..44942de42 100644 --- a/src/chat/focus_chat/memory_activator.py +++ b/src/chat/focus_chat/memory_activator.py @@ -118,6 +118,7 @@ class MemoryActivator: # 只取response的第一个元素(字符串) response_str = response[0] + print(f"response_str: {response_str[1]}") keywords = list(get_keywords_from_json(response_str)) # 更新关键词缓存 diff --git a/src/chat/focus_chat/planners/base_planner.py b/src/chat/focus_chat/planners/base_planner.py new file mode 100644 index 000000000..f707445cf --- /dev/null +++ b/src/chat/focus_chat/planners/base_planner.py @@ -0,0 +1,25 @@ +from abc import ABC, abstractmethod +from typing import List, Dict, Any +from src.chat.focus_chat.planners.action_manager import ActionManager +from src.chat.focus_chat.info.info_base import InfoBase + +class BasePlanner(ABC): + """规划器基类""" + + def __init__(self, log_prefix: str, action_manager: ActionManager): + self.log_prefix = log_prefix + self.action_manager = action_manager + + @abstractmethod + async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]: + """ + 规划下一步行动 + + Args: + all_plan_info: 所有计划信息 + running_memorys: 回忆信息 + + Returns: + Dict[str, Any]: 规划结果 + """ + pass \ No newline at end of file diff --git a/src/chat/focus_chat/planners/planner.py b/src/chat/focus_chat/planners/planner_complex.py similarity index 99% rename from src/chat/focus_chat/planners/planner.py rename to src/chat/focus_chat/planners/planner_complex.py index 298da3115..50cc9f7a9 100644 --- a/src/chat/focus_chat/planners/planner.py +++ b/src/chat/focus_chat/planners/planner_complex.py @@ -16,6 +16,7 @@ from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.individuality.individuality import individuality from src.chat.focus_chat.planners.action_manager import ActionManager from json_repair import repair_json +from src.chat.focus_chat.planners.base_planner import BasePlanner logger = get_logger("planner") @@ -73,9 +74,9 @@ action_name: {action_name} ) -class ActionPlanner: +class ActionPlanner(BasePlanner): def __init__(self, log_prefix: str, action_manager: ActionManager): - self.log_prefix = log_prefix + super().__init__(log_prefix, action_manager) # LLM规划器配置 self.planner_llm = LLMRequest( model=global_config.model.focus_planner, @@ -83,8 +84,6 @@ class ActionPlanner: request_type="focus.planner", # 用于动作规划 ) - self.action_manager = action_manager - async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]: """ 规划器 (Planner): 使用LLM根据上下文决定做出什么动作。 diff --git a/src/chat/focus_chat/planners/planner_factory.py b/src/chat/focus_chat/planners/planner_factory.py new file mode 100644 index 000000000..82d2cc3c7 --- /dev/null +++ b/src/chat/focus_chat/planners/planner_factory.py @@ -0,0 +1,52 @@ +from typing import Dict, Type +from src.chat.focus_chat.planners.base_planner import BasePlanner +from src.chat.focus_chat.planners.planner_complex import ActionPlanner as ComplexActionPlanner +from src.chat.focus_chat.planners.planner_simple import ActionPlanner as SimpleActionPlanner +from src.chat.focus_chat.planners.action_manager import ActionManager +from src.config.config import global_config +from src.common.logger_manager import get_logger + +logger = get_logger("planner_factory") + +class PlannerFactory: + """规划器工厂类,用于创建不同类型的规划器实例""" + + # 注册所有可用的规划器类型 + _planner_types: Dict[str, Type[BasePlanner]] = { + "complex": ComplexActionPlanner, + "simple": SimpleActionPlanner, + } + + @classmethod + def register_planner(cls, name: str, planner_class: Type[BasePlanner]) -> None: + """ + 注册新的规划器类型 + + Args: + name: 规划器类型名称 + planner_class: 规划器类 + """ + cls._planner_types[name] = planner_class + logger.info(f"注册新的规划器类型: {name}") + + @classmethod + def create_planner(cls, log_prefix: str, action_manager: ActionManager) -> BasePlanner: + """ + 创建规划器实例 + + Args: + log_prefix: 日志前缀 + action_manager: 动作管理器实例 + + Returns: + BasePlanner: 规划器实例 + """ + planner_type = global_config.focus_chat.planner_type + + if planner_type not in cls._planner_types: + logger.warning(f"{log_prefix} 未知的规划器类型: {planner_type},使用默认规划器") + planner_type = "complex" + + planner_class = cls._planner_types[planner_type] + logger.info(f"{log_prefix} 使用{planner_type}规划器") + return planner_class(log_prefix=log_prefix, action_manager=action_manager) \ No newline at end of file diff --git a/src/chat/focus_chat/planners/planner_simple.py b/src/chat/focus_chat/planners/planner_simple.py new file mode 100644 index 000000000..cd5e1a775 --- /dev/null +++ b/src/chat/focus_chat/planners/planner_simple.py @@ -0,0 +1,404 @@ +import json # <--- 确保导入 json +import traceback +from typing import List, Dict, Any, Optional +from rich.traceback import install +from src.llm_models.utils_model import LLMRequest +from src.config.config import global_config +from src.chat.focus_chat.info.info_base import InfoBase +from src.chat.focus_chat.info.obs_info import ObsInfo +from src.chat.focus_chat.info.cycle_info import CycleInfo +from src.chat.focus_chat.info.mind_info import MindInfo +from src.chat.focus_chat.info.action_info import ActionInfo +from src.chat.focus_chat.info.structured_info import StructuredInfo +from src.chat.focus_chat.info.self_info import SelfInfo +from src.common.logger_manager import get_logger +from src.chat.utils.prompt_builder import Prompt, global_prompt_manager +from src.individuality.individuality import individuality +from src.chat.focus_chat.planners.action_manager import ActionManager +from json_repair import repair_json +from src.chat.focus_chat.planners.base_planner import BasePlanner + +logger = get_logger("planner") + +install(extra_lines=3) + + +def init_prompt(): + Prompt( + """ +你的自我认知是: +{self_info_block} +{extra_info_block} +{memory_str} + +你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容: + +{chat_content_block} + +{mind_info_block} + +{cycle_info_block} +注意,除了下面动作选项之外,你在群聊里不能做其他任何事情,这是你能力的边界,现在请你选择合适的action: +{moderation_prompt} + +{action_options_text} + +以严格的 JSON 格式输出,且仅包含 JSON 内容,不要有任何其他文字或解释。 +请你以下面格式输出: +{{ + "action": "action_name" + "reasoning": "理由", + "参数": "参数的值"(可能有多个参数), +}} + +请输出你提取的JSON,不要有任何其他文字或解释: + +""", + "planner_prompt", + ) + + Prompt(""" +{raw_output} +请从上面这段内容中提取出JSON内容,不要有任何其他文字或解释。 +以严格的 JSON 格式输出,且仅包含 JSON 内容,不要有任何其他文字或解释。 +请你以下面格式输出: +{{ + "action": "action_name" + "参数": "参数的值"(可能有多个参数), +}} + +请输出你提取的JSON,不要有任何其他文字或解释:""", + "planner_prompt_json", + ) + + + + + Prompt( + """ +动作名称:{action_name} + 描述:{action_description} + {action_parameters} + 使用该动作的场景:{action_require}""", + "action_prompt", + ) + + +class ActionPlanner(BasePlanner): + def __init__(self, log_prefix: str, action_manager: ActionManager): + super().__init__(log_prefix, action_manager) + # LLM规划器配置 + self.planner_llm = LLMRequest( + model=global_config.model.focus_planner, + max_tokens=1000, + request_type="focus.planner", # 用于动作规划 + ) + + self.utils_llm = LLMRequest( + model=global_config.model.utils_small, + max_tokens=1000, + request_type="focus.planner", # 用于动作规划 + ) + + async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]: + """ + 规划器 (Planner): 使用LLM根据上下文决定做出什么动作。 + + 参数: + all_plan_info: 所有计划信息 + running_memorys: 回忆信息 + """ + + action = "no_reply" # 默认动作 + reasoning = "规划器初始化默认" + action_data = {} + + try: + # 获取观察信息 + extra_info: list[str] = [] + + # 设置默认值 + nickname_str = "" + for nicknames in global_config.bot.alias_names: + nickname_str += f"{nicknames}," + name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。" + + personality_block = individuality.get_personality_prompt(x_person=2, level=2) + identity_block = individuality.get_identity_prompt(x_person=2, level=2) + + self_info = name_block + personality_block + identity_block + current_mind = "你思考了很久,没有想清晰要做什么" + + cycle_info = "" + structured_info = "" + extra_info = [] + observed_messages = [] + observed_messages_str = "" + chat_type = "group" + is_group_chat = True + for info in all_plan_info: + if isinstance(info, ObsInfo): + observed_messages = info.get_talking_message() + observed_messages_str = info.get_talking_message_str_truncate() + chat_type = info.get_chat_type() + is_group_chat = chat_type == "group" + elif isinstance(info, MindInfo): + current_mind = info.get_current_mind() + elif isinstance(info, CycleInfo): + cycle_info = info.get_observe_info() + elif isinstance(info, SelfInfo): + self_info = info.get_processed_info() + elif isinstance(info, StructuredInfo): + structured_info = info.get_processed_info() + # print(f"structured_info: {structured_info}") + # elif not isinstance(info, ActionInfo): # 跳过已处理的ActionInfo + # extra_info.append(info.get_processed_info()) + + # 获取当前可用的动作 + current_available_actions = self.action_manager.get_using_actions() + + # 如果没有可用动作或只有no_reply动作,直接返回no_reply + if not current_available_actions or ( + len(current_available_actions) == 1 and "no_reply" in current_available_actions + ): + action = "no_reply" + reasoning = "没有可用的动作" if not current_available_actions else "只有no_reply动作可用,跳过规划" + logger.info(f"{self.log_prefix}{reasoning}") + self.action_manager.restore_actions() + logger.debug( + f"{self.log_prefix}沉默后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}" + ) + return { + "action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning}, + "current_mind": current_mind, + "observed_messages": observed_messages, + } + + # --- 构建提示词 (调用修改后的 PromptBuilder 方法) --- + prompt = await self.build_planner_prompt( + self_info_block=self_info, + is_group_chat=is_group_chat, # <-- Pass HFC state + chat_target_info=None, + observed_messages_str=observed_messages_str, # <-- Pass local variable + current_mind=current_mind, # <-- Pass argument + structured_info=structured_info, # <-- Pass SubMind info + current_available_actions=current_available_actions, # <-- Pass determined actions + cycle_info=cycle_info, # <-- Pass cycle info + extra_info=extra_info, + running_memorys=running_memorys, + ) + + # --- 调用 LLM (普通文本生成) --- + llm_content = None + try: + prompt = f"{prompt}" + llm_content, (reasoning_content, _) = await self.planner_llm.generate_response_async(prompt=prompt) + + logger.debug( + f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}" + ) + + logger.debug(f"{self.log_prefix}LLM 原始响应: {llm_content}") + logger.debug(f"{self.log_prefix}LLM 原始理由响应: {reasoning_content}") + except Exception as req_e: + logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}") + reasoning = f"LLM 请求失败,你的模型出现问题: {req_e}" + action = "no_reply" + + # try: + # prompt_json = await global_prompt_manager.get_prompt_async("planner_prompt_json") + # prompt_json = prompt_json.format(raw_output=llm_content) + # llm_content_json, (reasoning_content_json, _) = await self.utils_llm.generate_response_async(prompt=prompt_json) + # logger.debug(f"{self.log_prefix}LLM格式化JSON: {llm_content_json}") + # logger.debug(f"{self.log_prefix}LLM格式化理由: {reasoning_content_json}") + # except Exception as json_e: + # logger.error(f"{self.log_prefix}解析LLM响应JSON失败,模型返回不标准: {json_e}. LLM原始输出: '{llm_content}'") + # reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'." + # action = "no_reply" + + + + if llm_content: + try: + fixed_json_string = repair_json(llm_content) + if isinstance(fixed_json_string, str): + try: + parsed_json = json.loads(fixed_json_string) + except json.JSONDecodeError as decode_error: + logger.error(f"JSON解析错误: {str(decode_error)}") + parsed_json = {} + else: + # 如果repair_json直接返回了字典对象,直接使用 + parsed_json = fixed_json_string + + # 提取决策,提供默认值 + extracted_action = parsed_json.get("action", "no_reply") + # extracted_reasoning = parsed_json.get("reasoning", "LLM未提供理由") + extracted_reasoning = "" + + # 将所有其他属性添加到action_data + action_data = {} + for key, value in parsed_json.items(): + if key not in ["action", "reasoning"]: + action_data[key] = value + + action_data["identity"] = self_info + + # 对于reply动作不需要额外处理,因为相关字段已经在上面的循环中添加到action_data + + if extracted_action not in current_available_actions: + logger.warning( + f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'" + ) + action = "no_reply" + reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}" + else: + # 动作有效且可用 + action = extracted_action + reasoning = extracted_reasoning + + except Exception as json_e: + logger.warning( + f"{self.log_prefix}解析LLM响应JSON失败,模型返回不标准: {json_e}. LLM原始输出: '{llm_content}'" + ) + reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'." + action = "no_reply" + + except Exception as outer_e: + logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}") + traceback.print_exc() + action = "no_reply" + reasoning = f"Planner 内部处理错误: {outer_e}" + + # logger.debug( + # f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}" + # ) + + # 恢复到默认动作集 + self.action_manager.restore_actions() + logger.debug( + f"{self.log_prefix}规划后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}" + ) + + action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning} + + plan_result = { + "action_result": action_result, + "current_mind": current_mind, + "observed_messages": observed_messages, + "action_prompt": prompt, + } + + return plan_result + + async def build_planner_prompt( + self, + self_info_block: str, + is_group_chat: bool, # Now passed as argument + chat_target_info: Optional[dict], # Now passed as argument + observed_messages_str: str, + current_mind: Optional[str], + structured_info: Optional[str], + current_available_actions: Dict[str, ActionInfo], + cycle_info: Optional[str], + extra_info: list[str], + running_memorys: List[Dict[str, Any]], + ) -> str: + """构建 Planner LLM 的提示词 (获取模板并填充数据)""" + try: + memory_str = "" + if global_config.focus_chat.parallel_processing: + memory_str = "" + if running_memorys: + memory_str = "以下是当前在聊天中,你回忆起的记忆:\n" + for running_memory in running_memorys: + memory_str += f"{running_memory['topic']}: {running_memory['content']}\n" + + chat_context_description = "你现在正在一个群聊中" + chat_target_name = None # Only relevant for private + if not is_group_chat and chat_target_info: + chat_target_name = ( + chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方" + ) + chat_context_description = f"你正在和 {chat_target_name} 私聊" + + chat_content_block = "" + if observed_messages_str: + chat_content_block = f"聊天记录:\n{observed_messages_str}" + else: + chat_content_block = "你还未开始聊天" + + mind_info_block = "" + if current_mind: + mind_info_block = f"对聊天的规划:{current_mind}" + else: + mind_info_block = "你刚参与聊天" + + personality_block = individuality.get_prompt(x_person=2, level=2) + + action_options_block = "" + for using_actions_name, using_actions_info in current_available_actions.items(): + # print(using_actions_name) + # print(using_actions_info) + # print(using_actions_info["parameters"]) + # print(using_actions_info["require"]) + # print(using_actions_info["description"]) + + using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt") + + param_text = "" + for param_name, param_description in using_actions_info["parameters"].items(): + param_text += f" {param_name}: {param_description}\n" + + require_text = "" + for require_item in using_actions_info["require"]: + require_text += f" - {require_item}\n" + + if param_text: + param_text = f"参数:\n{param_text}" + else: + param_text = "无需参数" + + using_action_prompt = using_action_prompt.format( + action_name=using_actions_name, + action_description=using_actions_info["description"], + action_parameters=param_text, + action_require=require_text, + ) + + action_options_block += using_action_prompt + + extra_info_block = "\n".join(extra_info) + extra_info_block += f"\n{structured_info}" + if extra_info or structured_info: + extra_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策" + else: + extra_info_block = "" + + # moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。" + moderation_prompt_block = "" + + planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt") + prompt = planner_prompt_template.format( + self_info_block=self_info_block, + memory_str=memory_str, + # bot_name=global_config.bot.nickname, + prompt_personality=personality_block, + chat_context_description=chat_context_description, + chat_content_block=chat_content_block, + mind_info_block=mind_info_block, + cycle_info_block=cycle_info, + action_options_text=action_options_block, + # action_available_block=action_available_block, + extra_info_block=extra_info_block, + moderation_prompt=moderation_prompt_block, + ) + return prompt + + except Exception as e: + logger.error(f"构建 Planner 提示词时出错: {e}") + logger.error(traceback.format_exc()) + return "构建 Planner Prompt 时出错" + + +init_prompt() diff --git a/src/config/official_configs.py b/src/config/official_configs.py index a71eeb087..822eb02e6 100644 --- a/src/config/official_configs.py +++ b/src/config/official_configs.py @@ -153,6 +153,9 @@ class FocusChatConfig(ConfigBase): processor_max_time: int = 25 """处理器最大时间,单位秒,如果超过这个时间,处理器会自动停止""" + planner_type: str = "default" + """规划器类型,可选值:default(默认规划器), simple(简单规划器)""" + @dataclass class FocusChatProcessorConfig(ConfigBase): diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml index d4cdbd15d..92dad9d8f 100644 --- a/template/bot_config_template.toml +++ b/template/bot_config_template.toml @@ -102,6 +102,8 @@ observation_context_size = 16 # 观察到的最长上下文大小 compressed_length = 8 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度,超过心流观察到的上下文长度,会压缩,最短压缩长度为5 compress_length_limit = 4 #最多压缩份数,超过该数值的压缩上下文会被删除 +planner_type = "complex" # 规划器类型,可选值:complex(复杂规划器), simple(简单规划器) + [focus_chat_processor] # 专注聊天处理器,打开可以实现更多功能,但是会增加token消耗 mind_processor = false # 是否启用思维处理器 self_identify_processor = true # 是否启用自我识别处理器