22 KiB
22 KiB
MaiBot 插件详细解析指南
📋 目录
插件基类详解
BasePlugin 核心功能
BasePlugin 是所有插件的基类,提供插件的生命周期管理和基础功能。
@register_plugin
class MyPlugin(BasePlugin):
# 必需的基本信息
plugin_name = "my_plugin" # 插件唯一标识
plugin_description = "插件功能描述" # 简短描述
plugin_version = "1.0.0" # 版本号
plugin_author = "作者名称" # 作者信息
enable_plugin = True # 是否启用
# 可选配置
dependencies = ["other_plugin"] # 依赖的其他插件
config_file_name = "config.toml" # 配置文件名
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""返回插件包含的组件列表(必须实现)"""
return [
(MyAction.get_action_info(), MyAction),
(MyCommand.get_command_info(), MyCommand)
]
插件生命周期
- 加载阶段 - 插件管理器扫描插件目录
- 实例化阶段 - 创建插件实例,传入
plugin_dir - 配置加载 - 自动加载配置文件(如果指定)
- 依赖检查 - 验证依赖的插件是否存在
- 组件注册 - 注册所有组件到注册中心
- 运行阶段 - 组件响应用户交互
配置访问
class MyPlugin(BasePlugin):
config_file_name = "config.toml"
def some_method(self):
# 获取配置值
max_retry = self.get_config("network.max_retry", 3)
api_key = self.get_config("api.key", "")
# 配置支持嵌套结构
db_config = self.get_config("database", {})
Action组件深入
Action激活机制
Action组件支持多种激活方式,可以组合使用:
1. 关键词激活
class KeywordAction(BaseAction):
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["天气", "weather", "温度"]
keyword_case_sensitive = False # 是否区分大小写
async def execute(self) -> Tuple[bool, str]:
# 获取触发的关键词
triggered_keyword = self.action_data.get("triggered_keyword")
return True, f"检测到关键词: {triggered_keyword}"
2. LLM智能判断
class SmartAction(BaseAction):
focus_activation_type = ActionActivationType.LLM_JUDGE
llm_judge_prompt = """
判断用户消息是否表达了情感支持的需求。
如果用户显得沮丧、焦虑或需要安慰,返回True,否则返回False。
"""
async def execute(self) -> Tuple[bool, str]:
# LLM判断为需要情感支持
user_emotion = self.action_data.get("emotion", "neutral")
return True, "我理解你现在的感受,有什么可以帮助你的吗? 🤗"
3. 随机激活
class RandomAction(BaseAction):
focus_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.1 # 10%概率触发
async def execute(self) -> Tuple[bool, str]:
import random
responses = ["今天天气不错呢!", "你知道吗,刚才想到一个有趣的事...", "随便聊聊吧!"]
return True, random.choice(responses)
4. 始终激活
class AlwaysAction(BaseAction):
focus_activation_type = ActionActivationType.ALWAYS
parallel_action = True # 允许与其他Action并行
async def execute(self) -> Tuple[bool, str]:
# 记录所有消息到数据库
await self.api.store_user_data("last_message", self.action_data.get("message"))
return True, "" # 静默执行,不发送回复
Action数据访问
class DataAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 访问消息数据
message = self.action_data.get("message", "")
username = self.action_data.get("username", "用户")
user_id = self.action_data.get("user_id", "")
platform = self.action_data.get("platform", "")
# 访问系统数据
thinking_id = self.thinking_id
reasoning = self.reasoning # 执行该动作的理由
# 访问计时器信息
timers = self.cycle_timers
return True, f"处理来自 {platform} 的用户 {username} 的消息"
聊天模式支持
class ModeAwareAction(BaseAction):
mode_enable = ChatMode.PRIVATE # 只在私聊中启用
# mode_enable = ChatMode.GROUP # 只在群聊中启用
# mode_enable = ChatMode.ALL # 在所有模式中启用
async def execute(self) -> Tuple[bool, str]:
current_mode = self.action_data.get("chat_mode", ChatMode.PRIVATE)
return True, f"当前聊天模式: {current_mode.name}"
Command组件深入
高级正则表达式模式
Command使用正则表达式进行精确匹配,支持复杂的参数提取:
1. 基础命令
class BasicCommand(BaseCommand):
command_pattern = r"^/hello$"
command_help = "简单的问候命令"
async def execute(self) -> Tuple[bool, Optional[str]]:
await self.send_reply("Hello!")
return True, "Hello!"
2. 带参数命令
class ParameterCommand(BaseCommand):
command_pattern = r"^/user\s+(?P<action>add|remove|list)\s+(?P<name>\w+)?$"
command_help = "用户管理命令,用法:/user <add|remove|list> [用户名]"
command_examples = ["/user add alice", "/user remove bob", "/user list"]
async def execute(self) -> Tuple[bool, Optional[str]]:
action = self.matched_groups.get("action")
name = self.matched_groups.get("name")
if action == "add" and name:
# 添加用户逻辑
await self.api.store_user_data(f"user_{name}", {"name": name, "created": self.api.get_current_time()})
response = f"用户 {name} 已添加"
elif action == "remove" and name:
# 删除用户逻辑
await self.api.delete_user_data(f"user_{name}")
response = f"用户 {name} 已删除"
elif action == "list":
# 列出用户逻辑
users = await self.api.get_user_data_pattern("user_*")
response = f"用户列表: {', '.join(users.keys())}"
else:
response = "参数错误,请查看帮助信息"
await self.send_reply(response)
return True, response
3. 复杂参数解析
class AdvancedCommand(BaseCommand):
command_pattern = r"^/remind\s+(?P<time>\d{1,2}:\d{2})\s+(?P<date>\d{4}-\d{2}-\d{2})?\s+(?P<message>.+)$"
command_help = "设置提醒,用法:/remind <时间> [日期] <消息>"
command_examples = [
"/remind 14:30 买牛奶",
"/remind 09:00 2024-12-25 圣诞节快乐"
]
async def execute(self) -> Tuple[bool, Optional[str]]:
time_str = self.matched_groups.get("time")
date_str = self.matched_groups.get("date")
message = self.matched_groups.get("message")
# 解析时间
from datetime import datetime, date
try:
hour, minute = map(int, time_str.split(":"))
if date_str:
reminder_date = datetime.strptime(date_str, "%Y-%m-%d").date()
else:
reminder_date = date.today()
# 创建提醒
reminder_time = datetime.combine(reminder_date, datetime.min.time().replace(hour=hour, minute=minute))
await self.api.store_user_data("reminder", {
"time": reminder_time.isoformat(),
"message": message,
"user_id": self.api.get_current_user_id()
})
response = f"已设置提醒:{reminder_time.strftime('%Y-%m-%d %H:%M')} - {message}"
except ValueError as e:
response = f"时间格式错误: {e}"
await self.send_reply(response)
return True, response
命令权限控制
class AdminCommand(BaseCommand):
command_pattern = r"^/admin\s+(?P<operation>\w+)"
command_help = "管理员命令(需要权限)"
async def execute(self) -> Tuple[bool, Optional[str]]:
# 检查用户权限
user_id = self.api.get_current_user_id()
user_role = await self.api.get_user_info(user_id, "role", "user")
if user_role != "admin":
await self.send_reply("❌ 权限不足,需要管理员权限")
return False, "权限不足"
operation = self.matched_groups.get("operation")
# 执行管理员操作...
return True, f"管理员操作 {operation} 已执行"
API系统详解
MessageAPI - 消息发送
class MessageExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 发送文本消息
await self.api.send_message("text", "这是一条文本消息")
# 发送带格式的消息
await self.api.send_message("text", "**粗体文本** *斜体文本*")
# 发送图片(如果支持)
await self.api.send_message("image", "/path/to/image.jpg")
# 发送文件(如果支持)
await self.api.send_message("file", "/path/to/document.pdf")
# 获取消息发送状态
success = await self.api.send_message("text", "测试消息")
if success:
logger.info("消息发送成功")
return True, "消息发送演示完成"
LLMAPI - 大模型调用
class LLMExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 获取可用模型
models = self.api.get_available_models()
if not models:
return False, "没有可用的模型"
# 选择第一个可用模型
model_name, model_config = next(iter(models.items()))
# 生成文本
prompt = "写一首关于春天的诗"
success, response, usage, model_used = await self.api.generate_with_model(
prompt=prompt,
model_config=model_config,
max_tokens=200,
temperature=0.7
)
if success:
logger.info(f"使用模型 {model_used} 生成了 {usage.get('total_tokens', 0)} 个token")
return True, f"生成的诗歌:\n{response}"
else:
return False, f"生成失败:{response}"
DatabaseAPI - 数据库操作
class DatabaseExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
user_id = self.api.get_current_user_id()
# 存储用户数据
await self.api.store_user_data("user_score", 100)
await self.api.store_user_data("user_level", "beginner")
# 存储复杂数据结构
user_profile = {
"name": "Alice",
"age": 25,
"interests": ["music", "reading", "coding"],
"settings": {
"theme": "dark",
"language": "zh-CN"
}
}
await self.api.store_user_data("profile", user_profile)
# 读取数据
score = await self.api.get_user_data("user_score", 0)
profile = await self.api.get_user_data("profile", {})
# 删除数据
await self.api.delete_user_data("old_key")
# 批量查询
all_user_data = await self.api.get_user_data_pattern("user_*")
# 存储Action执行记录
await self.api.store_action_info(
action_build_into_prompt=True,
action_prompt_display="用户查询了个人信息",
action_done=True
)
return True, f"用户数据操作完成,当前积分:{score}"
ConfigAPI - 配置访问
class ConfigExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 读取全局配置
bot_name = self.api.get_global_config("bot.name", "MaiBot")
debug_mode = self.api.get_global_config("system.debug", False)
# 获取用户信息
current_user = self.api.get_current_user_id()
platform, user_id = await self.api.get_user_id_by_person_name("Alice")
# 获取特定用户信息
user_nickname = await self.api.get_person_info(current_user, "nickname", "未知用户")
user_language = await self.api.get_person_info(current_user, "language", "zh-CN")
return True, f"配置信息获取完成,机器人名称:{bot_name}"
UtilsAPI - 工具函数
class UtilsExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 时间相关
current_time = self.api.get_current_time()
formatted_time = self.api.format_time(current_time, "%Y-%m-%d %H:%M:%S")
# ID生成
unique_id = self.api.generate_unique_id()
random_string = self.api.generate_random_string(length=8)
# 文件操作
if self.api.file_exists("/path/to/file.txt"):
content = self.api.read_file("/path/to/file.txt")
self.api.write_file("/path/to/backup.txt", content)
# JSON处理
data = {"key": "value", "number": 42}
json_str = self.api.to_json(data)
parsed_data = self.api.from_json(json_str)
# 安全字符串处理
safe_filename = self.api.sanitize_filename("用户文件 (1).txt")
return True, f"工具函数演示完成,时间:{formatted_time}"
配置系统
TOML配置文件
# config.toml
[plugin]
name = "my_plugin"
description = "插件描述"
enabled = true
debug = false
[features]
enable_ai = true
enable_voice = false
max_users = 100
[api]
timeout = 30
retry_count = 3
base_url = "https://api.example.com"
[database]
cache_size = 1000
auto_cleanup = true
[messages]
welcome = "欢迎使用插件!"
error = "操作失败,请重试"
success = "操作成功完成"
[advanced]
custom_settings = { theme = "dark", language = "zh-CN" }
feature_flags = ["beta_feature", "experimental_ui"]
配置使用示例
class ConfigurablePlugin(BasePlugin):
config_file_name = "config.toml"
def get_plugin_components(self):
# 根据配置决定加载哪些组件
components = []
if self.get_config("features.enable_ai", False):
components.append((AIAction.get_action_info(), AIAction))
if self.get_config("features.enable_voice", False):
components.append((VoiceCommand.get_command_info(), VoiceCommand))
return components
class ConfigurableAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 注意:这里不能直接创建插件实例获取配置
# 应该通过其他方式访问配置,比如从API或全局配置中获取
# 使用默认值或硬编码配置
welcome_message = "欢迎使用插件!" # 应该从配置获取
timeout = 30 # 应该从配置获取
return True, welcome_message
注册中心机制
组件查询
from src.plugin_system.core.component_registry import component_registry
# 获取所有注册的Action
actions = component_registry.get_components_by_type(ComponentType.ACTION)
# 获取所有注册的Command
commands = component_registry.get_components_by_type(ComponentType.COMMAND)
# 查找特定命令
command_info = component_registry.find_command_by_text("/help")
# 获取插件信息
plugin_info = component_registry.get_plugin_info("simple_plugin")
# 获取插件的所有组件
plugin_components = component_registry.get_plugin_components("simple_plugin")
动态组件操作
# 注册新组件
component_info = ActionInfo(name="dynamic_action", ...)
component_registry.register_component(component_info, DynamicAction)
# 注销组件
component_registry.unregister_component("dynamic_action")
# 检查组件是否存在
exists = component_registry.component_exists("my_action")
高级功能
组件依赖管理
class DependentPlugin(BasePlugin):
plugin_name = "dependent_plugin"
dependencies = ["simple_plugin", "core_plugin"] # 依赖其他插件
def get_plugin_components(self):
# 只有在依赖满足时才会被调用
return [(MyAction.get_action_info(), MyAction)]
动态组件创建
def create_dynamic_action(keyword: str, response: str):
"""动态创建Action组件"""
class DynamicAction(BaseAction):
focus_activation_type = ActionActivationType.KEYWORD
activation_keywords = [keyword]
async def execute(self) -> Tuple[bool, str]:
return True, response
return DynamicAction
# 使用
WeatherAction = create_dynamic_action("天气", "今天天气很好!")
组件生命周期钩子
class LifecycleAction(BaseAction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.on_initialize()
def on_initialize(self):
"""组件初始化时调用"""
logger.info("Action组件初始化")
async def execute(self) -> Tuple[bool, str]:
result = await self.on_execute()
self.on_complete()
return result
async def on_execute(self) -> Tuple[bool, str]:
"""实际执行逻辑"""
return True, "执行完成"
def on_complete(self):
"""执行完成后调用"""
logger.info("Action执行完成")
最佳实践
1. 错误处理
class RobustAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
try:
# 主要逻辑
result = await self.process_main_logic()
return True, result
except ValueError as e:
# 参数错误
logger.warning(f"参数错误: {e}")
return False, "参数格式不正确"
except ConnectionError as e:
# 网络错误
logger.error(f"网络连接失败: {e}")
return False, "网络连接异常,请稍后重试"
except Exception as e:
# 未知错误
logger.error(f"未知错误: {e}", exc_info=True)
return False, "处理失败,请联系管理员"
async def process_main_logic(self):
# 具体业务逻辑
pass
2. 性能优化
class OptimizedAction(BaseAction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._cache = {} # 本地缓存
async def execute(self) -> Tuple[bool, str]:
cache_key = self.generate_cache_key()
# 检查缓存
if cache_key in self._cache:
logger.debug("使用缓存结果")
return True, self._cache[cache_key]
# 计算结果
result = await self.compute_result()
# 存储到缓存
self._cache[cache_key] = result
return True, result
def generate_cache_key(self) -> str:
# 根据输入生成缓存键
message = self.action_data.get("message", "")
return f"result_{hash(message)}"
3. 资源管理
class ResourceAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 使用上下文管理器确保资源正确释放
async with self.api.get_resource_manager() as resources:
# 获取资源
db_connection = await resources.get_database()
file_handle = await resources.get_file("data.txt")
# 使用资源进行处理
result = await self.process_with_resources(db_connection, file_handle)
return True, result
# 资源会自动释放
4. 测试友好设计
class TestableAction(BaseAction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dependencies = self.create_dependencies()
def create_dependencies(self):
"""创建依赖对象,便于测试时注入mock"""
return {
'weather_service': WeatherService(),
'user_service': UserService()
}
async def execute(self) -> Tuple[bool, str]:
weather = await self.dependencies['weather_service'].get_weather()
user = await self.dependencies['user_service'].get_current_user()
return True, f"今天{weather},{user}!"
5. 日志记录
class LoggedAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
start_time = self.api.get_current_time()
logger.info(f"{self.log_prefix} 开始执行,用户: {self.action_data.get('username')}")
try:
result = await self.process()
duration = self.api.get_current_time() - start_time
logger.info(f"{self.log_prefix} 执行成功,耗时: {duration}ms")
return True, result
except Exception as e:
logger.error(f"{self.log_prefix} 执行失败: {e}", exc_info=True)
raise
总结
通过本详细指南,你已经深入了解了MaiBot插件系统的各个方面:
- 插件基类 - 生命周期管理和配置系统
- Action组件 - 多种激活机制和智能交互
- Command组件 - 强大的正则表达式匹配和参数处理
- API系统 - 7大模块提供完整功能支持
- 高级功能 - 依赖管理、动态创建、生命周期钩子
- 最佳实践 - 错误处理、性能优化、资源管理
现在你已经具备了开发复杂插件的所有知识!
📚 相关文档
💡 持续学习: 插件开发是一个实践的过程,建议边学边做,逐步掌握各种高级特性!