Files
Mofox-Core/src/plugins/models/utils_model.py

246 lines
9.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import aiohttp
import asyncio
import requests
import time
import re
from typing import Tuple, Union
from nonebot import get_driver
from loguru import logger
from ..chat.config import global_config
from ..chat.utils_image import compress_base64_image_by_scale
driver = get_driver()
config = driver.config
class LLM_request:
def __init__(self, model, **kwargs):
# 将大写的配置键转换为小写并从config中获取实际值
try:
self.api_key = getattr(config, model["key"])
self.base_url = getattr(config, model["base_url"])
except AttributeError as e:
logger.error(f"配置错误:找不到对应的配置项 - {str(e)}")
raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e
self.model_name = model["name"]
self.params = kwargs
async def _execute_request(
self,
endpoint: str,
prompt: str = None,
image_base64: str = None,
payload: dict = None,
retry_policy: dict = None,
response_handler: callable = None,
):
"""统一请求执行入口
Args:
endpoint: API端点路径 (如 "chat/completions")
prompt: prompt文本
image_base64: 图片的base64编码
payload: 请求体数据
is_async: 是否异步
retry_policy: 自定义重试策略
(示例: {"max_retries":3, "base_wait":15, "retry_codes":[429,500]})
response_handler: 自定义响应处理器
"""
# 合并重试策略
default_retry = {
"max_retries": 3, "base_wait": 15,
"retry_codes": [429, 413, 500, 503],
"abort_codes": [400, 401, 402, 403]}
policy = {**default_retry, **(retry_policy or {})}
# 常见Error Code Mapping
error_code_mapping = {
400: "参数不正确",
401: "API key 错误,认证失败",
402: "账号余额不足",
403: "需要实名,或余额不足",
404: "Not Found",
429: "请求过于频繁,请稍后再试",
500: "服务器内部故障",
503: "服务器负载过高"
}
api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
logger.info(f"发送请求到URL: {api_url}")
logger.info(f"使用模型: {self.model_name}")
# 构建请求体
if image_base64:
payload = await self._build_payload(prompt, image_base64)
elif payload is None:
payload = await self._build_payload(prompt)
for retry in range(policy["max_retries"]):
try:
# 使用上下文管理器处理会话
headers = await self._build_headers()
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=payload) as response:
# 处理需要重试的状态码
if response.status in policy["retry_codes"]:
wait_time = policy["base_wait"] * (2 ** retry)
logger.warning(f"错误码: {response.status}, 等待 {wait_time}秒后重试")
if response.status == 413:
logger.warning("请求体过大,尝试压缩...")
image_base64 = compress_base64_image_by_scale(image_base64)
payload = await self._build_payload(prompt, image_base64)
elif response.status in [500, 503]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
raise RuntimeError("服务器负载过高模型恢复失败QAQ")
else:
logger.warning(f"请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
elif response.status in policy["abort_codes"]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
response.raise_for_status()
result = await response.json()
# 使用自定义处理器或默认处理
return response_handler(result) if response_handler else self._default_response_handler(result)
except Exception as e:
if retry < policy["max_retries"] - 1:
wait_time = policy["base_wait"] * (2 ** retry)
logger.error(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
await asyncio.sleep(wait_time)
else:
logger.critical(f"请求失败: {str(e)}")
logger.critical(f"请求头: {await self._build_headers()} 请求体: {payload}")
raise RuntimeError(f"API请求失败: {str(e)}")
logger.error("达到最大重试次数,请求仍然失败")
raise RuntimeError("达到最大重试次数API请求仍然失败")
async def _build_payload(self, prompt: str, image_base64: str = None) -> dict:
"""构建请求体"""
if image_base64:
return {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
]
}
],
"max_tokens": global_config.max_response_length,
**self.params
}
else:
return {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": global_config.max_response_length,
**self.params
}
def _default_response_handler(self, result: dict) -> Tuple:
"""默认响应解析"""
if "choices" in result and result["choices"]:
message = result["choices"][0]["message"]
content = message.get("content", "")
content, reasoning = self._extract_reasoning(content)
reasoning_content = message.get("model_extra", {}).get("reasoning_content", "")
if not reasoning_content:
reasoning_content = reasoning
return content, reasoning_content
return "没有返回结果", ""
def _extract_reasoning(self, content: str) -> tuple[str, str]:
"""CoT思维链提取"""
match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL)
content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
if match:
reasoning = match.group(1).strip()
else:
reasoning = ""
return content, reasoning
async def _build_headers(self) -> dict:
"""构建请求头"""
return {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
async def generate_response(self, prompt: str) -> Tuple[str, str]:
"""根据输入的提示生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt
)
return content, reasoning_content
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
"""根据输入的提示和图片生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt,
image_base64=image_base64
)
return content, reasoning_content
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
"""异步方式根据输入的提示生成模型的响应"""
# 构建请求体
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.5,
"max_tokens": global_config.max_response_length,
**self.params
}
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
payload=data,
prompt=prompt
)
return content, reasoning_content
async def get_embedding(self, text: str) -> Union[list, None]:
"""异步方法获取文本的embedding向量
Args:
text: 需要获取embedding的文本
Returns:
list: embedding向量如果失败则返回None
"""
def embedding_handler(result):
"""处理响应"""
if "data" in result and len(result["data"]) > 0:
return result["data"][0].get("embedding", None)
return None
embedding = await self._execute_request(
endpoint="/embeddings",
prompt=text,
payload={
"model": self.model_name,
"input": text,
"encoding_format": "float"
},
retry_policy={
"max_retries": 2,
"base_wait": 6
},
response_handler=embedding_handler
)
return embedding