import aiohttp
import asyncio
import requests
import time
import re
from typing import Tuple, Union
from nonebot import get_driver
from loguru import logger
from ..chat.config import global_config
from ..chat.utils_image import compress_base64_image_by_scale
driver = get_driver()
config = driver.config
class LLM_request:
def __init__(self, model, **kwargs):
# 将大写的配置键转换为小写并从config中获取实际值
try:
self.api_key = getattr(config, model["key"])
self.base_url = getattr(config, model["base_url"])
except AttributeError as e:
logger.error(f"配置错误:找不到对应的配置项 - {str(e)}")
raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e
self.model_name = model["name"]
self.params = kwargs
async def _execute_request(
self,
endpoint: str,
prompt: str = None,
image_base64: str = None,
payload: dict = None,
retry_policy: dict = None,
response_handler: callable = None,
):
"""统一请求执行入口
Args:
endpoint: API端点路径 (如 "chat/completions")
prompt: prompt文本
image_base64: 图片的base64编码
payload: 请求体数据
is_async: 是否异步
retry_policy: 自定义重试策略
(示例: {"max_retries":3, "base_wait":15, "retry_codes":[429,500]})
response_handler: 自定义响应处理器
"""
# 合并重试策略
default_retry = {
"max_retries": 3, "base_wait": 15,
"retry_codes": [429, 413, 500, 503],
"abort_codes": [400, 401, 402, 403]}
policy = {**default_retry, **(retry_policy or {})}
# 常见Error Code Mapping
error_code_mapping = {
400: "参数不正确",
401: "API key 错误,认证失败",
402: "账号余额不足",
403: "需要实名,或余额不足",
404: "Not Found",
429: "请求过于频繁,请稍后再试",
500: "服务器内部故障",
503: "服务器负载过高"
}
api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
logger.info(f"发送请求到URL: {api_url}")
logger.info(f"使用模型: {self.model_name}")
# 构建请求体
if image_base64:
payload = await self._build_payload(prompt, image_base64)
elif payload is None:
payload = await self._build_payload(prompt)
for retry in range(policy["max_retries"]):
try:
# 使用上下文管理器处理会话
headers = await self._build_headers()
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=payload) as response:
# 处理需要重试的状态码
if response.status in policy["retry_codes"]:
wait_time = policy["base_wait"] * (2 ** retry)
logger.warning(f"错误码: {response.status}, 等待 {wait_time}秒后重试")
if response.status == 413:
logger.warning("请求体过大,尝试压缩...")
image_base64 = compress_base64_image_by_scale(image_base64)
payload = await self._build_payload(prompt, image_base64)
elif response.status in [500, 503]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
else:
logger.warning(f"请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
elif response.status in policy["abort_codes"]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
response.raise_for_status()
result = await response.json()
# 使用自定义处理器或默认处理
return response_handler(result) if response_handler else self._default_response_handler(result)
except Exception as e:
if retry < policy["max_retries"] - 1:
wait_time = policy["base_wait"] * (2 ** retry)
logger.error(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
await asyncio.sleep(wait_time)
else:
logger.critical(f"请求失败: {str(e)}")
logger.critical(f"请求头: {await self._build_headers()} 请求体: {payload}")
raise RuntimeError(f"API请求失败: {str(e)}")
logger.error("达到最大重试次数,请求仍然失败")
raise RuntimeError("达到最大重试次数,API请求仍然失败")
async def _build_payload(self, prompt: str, image_base64: str = None) -> dict:
"""构建请求体"""
if image_base64:
return {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
]
}
],
"max_tokens": global_config.max_response_length,
**self.params
}
else:
return {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": global_config.max_response_length,
**self.params
}
def _default_response_handler(self, result: dict) -> Tuple:
"""默认响应解析"""
if "choices" in result and result["choices"]:
message = result["choices"][0]["message"]
content = message.get("content", "")
content, reasoning = self._extract_reasoning(content)
reasoning_content = message.get("model_extra", {}).get("reasoning_content", "")
if not reasoning_content:
reasoning_content = reasoning
return content, reasoning_content
return "没有返回结果", ""
def _extract_reasoning(self, content: str) -> tuple[str, str]:
"""CoT思维链提取"""
match = re.search(r'(?:)?(.*?)', content, re.DOTALL)
content = re.sub(r'(?:)?.*?', '', content, flags=re.DOTALL, count=1).strip()
if match:
reasoning = match.group(1).strip()
else:
reasoning = ""
return content, reasoning
async def _build_headers(self) -> dict:
"""构建请求头"""
return {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
async def generate_response(self, prompt: str) -> Tuple[str, str]:
"""根据输入的提示生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt
)
return content, reasoning_content
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
"""根据输入的提示和图片生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt,
image_base64=image_base64
)
return content, reasoning_content
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
"""异步方式根据输入的提示生成模型的响应"""
# 构建请求体
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.5,
"max_tokens": global_config.max_response_length,
**self.params
}
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
payload=data,
prompt=prompt
)
return content, reasoning_content
async def get_embedding(self, text: str) -> Union[list, None]:
"""异步方法:获取文本的embedding向量
Args:
text: 需要获取embedding的文本
Returns:
list: embedding向量,如果失败则返回None
"""
def embedding_handler(result):
"""处理响应"""
if "data" in result and len(result["data"]) > 0:
return result["data"][0].get("embedding", None)
return None
embedding = await self._execute_request(
endpoint="/embeddings",
prompt=text,
payload={
"model": self.model_name,
"input": text,
"encoding_format": "float"
},
retry_policy={
"max_retries": 2,
"base_wait": 6
},
response_handler=embedding_handler
)
return embedding