Files
Mofox-Core/template/model_config_template.toml
tt-P607 87704702ad feat(kfc):独立私聊回复模型配置
- 在 ModelTaskConfig 中为私聊场景添加 `replyer_private` 字段
- 更新 KFC 回复器和统一模块以使用新的私聊配置
- 配置模板版本升级至 1.4.2,并更新 DeepSeek 模型名称
- 增强 KokoroFlowChatter 的执行日志
2025-12-13 19:38:06 +08:00

301 lines
11 KiB
TOML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[inner]
version = "1.4.2"
# 配置文件版本号迭代规则同bot_config.toml
[[api_providers]] # API服务提供商可以配置多个
name = "DeepSeek" # API服务商名称可随意命名在models的api-provider中需使用这个命名
base_url = "https://api.deepseek.com/v1" # API服务商的BaseURL
api_key = ["your-api-key-here-1", "your-api-key-here-2"] # API密钥支持单个密钥或密钥列表轮询
client_type = "openai" # 请求客户端(可选,默认值为"openai"使用gimini等Google系模型时请配置为"gemini"
max_retry = 2 # 最大重试次数单个模型API调用失败最多重试的次数
timeout = 30 # API请求超时时间单位
retry_interval = 10 # 重试间隔时间(单位:秒)
[[api_providers]] # SiliconFlow的API服务商配置
name = "SiliconFlow"
base_url = "https://api.siliconflow.cn/v1"
api_key = "your-siliconflow-api-key-here"
client_type = "openai"
max_retry = 2
timeout = 30
retry_interval = 10
[[api_providers]] # 特殊Google的Gemini使用特殊API与OpenAI格式不兼容需要配置client为"aiohttp_gemini"
name = "Google"
base_url = "https://generativelanguage.googleapis.com/v1beta"
api_key = ["your-google-api-key-1", "your-google-api-key-2"]
client_type = "aiohttp_gemini" # 官方的gemini客户端现在已经死了
max_retry = 2
timeout = 30
retry_interval = 10
#[[api_providers]] # AWS Bedrock配置示例 - 方式1IAM凭证模式取消注释以启用
#name = "AWS_Bedrock"
#base_url = "" # Bedrock不需要base_url留空即可
#api_key = "YOUR_AWS_ACCESS_KEY_ID" # 你的AWS Access Key ID
#client_type = "bedrock" # 使用bedrock客户端
#max_retry = 2
#timeout = 60 # Bedrock推荐较长超时时间
#retry_interval = 10
#[api_providers.extra_params] # Bedrock需要的额外配置
#aws_secret_key = "YOUR_AWS_SECRET_ACCESS_KEY" # 你的AWS Secret Access Key
#region = "us-east-1" # AWS区域可选us-east-1, us-west-2, eu-central-1等
#[[api_providers]] # AWS Bedrock配置示例 - 方式2IAM角色模式推荐EC2/ECS部署
#name = "AWS_Bedrock_Role"
#base_url = "" # Bedrock不需要base_url
#api_key = "dummy" # IAM角色模式不使用api_key但字段必填可填任意值
#client_type = "bedrock"
#max_retry = 2
#timeout = 60
#retry_interval = 10
#[api_providers.extra_params]
## 不配置aws_secret_key将自动使用IAM角色/环境变量认证
#region = "us-east-1" # 只需配置区域
[[models]] # 模型(可以配置多个)
model_identifier = "deepseek-chat" # 模型标识符API服务商提供的模型标识符
name = "deepseek-v3" # 模型名称(可随意命名,在后面中需使用这个命名)
api_provider = "DeepSeek" # API服务商名称对应在api_providers中配置的服务商名称
price_in = 2.0 # 输入价格用于API调用统计单位元/ M token可选若无该字段默认值为0
price_out = 8.0 # 输出价格用于API调用统计单位元/ M token可选若无该字段默认值为0
#force_stream_mode = false # [可选] 强制流式输出模式。如果模型不支持非流式输出,请取消注释以启用。默认为 false。
#anti_truncation = false # [可选] 启用反截断功能。当模型输出不完整时系统会自动重试。建议只为需要的模型如Gemini开启。默认为 false。
#enable_prompt_perturbation = false # [可选] 启用提示词扰动。此功能整合了内容混淆和注意力优化,默认为 false。
#perturbation_strength = "light" # [可选] 扰动强度。仅在 enable_prompt_perturbation 为 true 时生效。可选值为 "light", "medium", "heavy"。默认为 "light"。
#enable_semantic_variants = false # [可选] 启用语义变体。作为一种扰动策略,生成语义上相似但表达不同的提示。默认为 false。
[[models]]
model_identifier = "deepseek-ai/DeepSeek-V3."
name = "siliconflow-deepseek-ai/DeepSeek-V3.2"
api_provider = "SiliconFlow"
price_in = 2.0
price_out = 8.0
[[models]]
model_identifier = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
name = "deepseek-r1-distill-qwen-32b"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]]
model_identifier = "Qwen/Qwen3-8B"
name = "qwen3-8b"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen3-14B"
name = "qwen3-14b"
api_provider = "SiliconFlow"
price_in = 0.5
price_out = 2.0
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen3-30B-A3B"
name = "qwen3-30b"
api_provider = "SiliconFlow"
price_in = 0.7
price_out = 2.8
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen2.5-VL-72B-Instruct"
name = "qwen2.5-vl-72b"
api_provider = "SiliconFlow"
price_in = 4.13
price_out = 4.13
[[models]]
model_identifier = "FunAudioLLM/SenseVoiceSmall"
name = "sensevoice-small"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[[models]]
model_identifier = "BAAI/bge-m3"
name = "bge-m3"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[[models]]
model_identifier = "moonshotai/Kimi-K2-Instruct"
name = "moonshotai-Kimi-K2-Instruct"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]] # Gemini 模型配置示例
model_identifier = "gemini-2.5-pro" # 或使用 "gemini-2.5-pro", "gemini-3-pro-preview" 等
name = "gemini-2.5-pro"
api_provider = "Google"
price_in = 0.0
price_out = 0.0
[models.extra_params]
# 思考配置(二选一,不能同时使用,否则会返回 400 错误):
#thinking_level = "medium" # Gemini3新版参数可选值: "low", "medium", "high"
thinking_budget = 256 # Gemini2.5系列旧版参数,不同模型范围不同(如 gemini-2.5-flash: 1-24576, gemini-2.5-pro: 128-32768
#[[models]] # AWS Bedrock - Claude 3.5 Sonnet配置示例取消注释以启用
#model_identifier = "us.anthropic.claude-3-5-sonnet-20240620-v1:0" # 跨区推理配置文件
#name = "claude-3.5-sonnet-bedrock"
#api_provider = "AWS_Bedrock"
#price_in = 3.0 # 每百万输入token价格USD
#price_out = 15.0 # 每百万输出token价格USD
#force_stream_mode = false
#[[models]] # AWS Bedrock - Amazon Nova Pro配置示例
#model_identifier = "us.amazon.nova-pro-v1:0"
#name = "nova-pro"
#api_provider = "AWS_Bedrock"
#price_in = 0.8
#price_out = 3.2
#[[models]] # AWS Bedrock - Titan Embeddings嵌入模型示例
#model_identifier = "amazon.titan-embed-text-v2:0"
#name = "titan-embed-v2"
#api_provider = "AWS_Bedrock"
#price_in = 0.00002 # 每千token
#price_out = 0.0
[model_task_config.utils] # 在麦麦的一些组件中使用的模型,例如表情包模块,取名模块,关系模块,是麦麦必须的模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"] # 使用的模型列表,每个子项对应上面的模型名称(name)
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800 # 最大输出token数
#concurrency_count = 2 # 并发请求数量默认为1不并发设置为2或更高启用并发
[model_task_config.utils_small] # 在麦麦的一些组件中使用的小模型,消耗量较大,建议使用速度较快的小模型
model_list = ["qwen3-8b"]
temperature = 0.7
max_tokens = 800
[model_task_config.replyer] # 首要回复模型(群聊使用),还用于表达器和表达方式学习
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800
[model_task_config.replyer_private] # 私聊回复模型KFC私聊专用
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"] # 可以配置不同的模型用于私聊
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800
[model_task_config.planner] #决策:负责决定麦麦该做什么的模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.3
max_tokens = 800
[model_task_config.emotion] #负责麦麦的情绪变化
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.3
max_tokens = 800
[model_task_config.mood] #负责麦麦的心情变化
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.3
max_tokens = 800
[model_task_config.maizone] # maizone模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.7
max_tokens = 800
[model_task_config.vlm] # 图像识别模型
model_list = ["qwen2.5-vl-72b"]
max_tokens = 800
[model_task_config.emoji_vlm] # 专用表情包识别模型
model_list = ["qwen2.5-vl-72b"]
max_tokens = 800
[model_task_config.utils_video] # 专用视频分析模型
model_list = ["qwen2.5-vl-72b"]
temperature = 0.3
max_tokens = 1500
[model_task_config.voice] # 语音识别模型
model_list = ["sensevoice-small"]
[model_task_config.tool_use] #工具调用模型,需要使用支持工具调用的模型
model_list = ["qwen3-14b"]
temperature = 0.7
max_tokens = 800
[model_task_config.schedule_generator]#日程表生成模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.7
max_tokens = 1000
[model_task_config.anti_injection] # 反注入检测专用模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"] # 使用快速的小模型进行检测
temperature = 0.1 # 低温度确保检测结果稳定
max_tokens = 200 # 检测结果不需要太长的输出
[model_task_config.monthly_plan_generator] # 月层计划生成模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.7
max_tokens = 1000
[model_task_config.relationship_tracker] # 用户关系追踪模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.7
max_tokens = 1000
#嵌入模型
[model_task_config.embedding]
model_list = ["bge-m3"]
embedding_dimension = 1024
#------------LPMM知识库模型------------
[model_task_config.lpmm_entity_extract] # 实体提取模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.2
max_tokens = 800
[model_task_config.lpmm_rdf_build] # RDF构建模型
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.2
max_tokens = 800
[model_task_config.lpmm_qa] # 问答模型
model_list = ["deepseek-r1-distill-qwen-32b"]
temperature = 0.7
max_tokens = 800
#------------记忆系统专用模型------------
[model_task_config.memory_short_term_builder] # 短期记忆构建模型(感知→短期格式化)
model_list = ["siliconflow-Qwen/Qwen3-Next-80B-A3B-Instruct"]
temperature = 0.2
max_tokens = 800
[model_task_config.memory_short_term_decider] # 短期记忆决策模型(决定合并/更新/新建/丢弃)
model_list = ["siliconflow-Qwen/Qwen3-Next-80B-A3B-Instruct"]
temperature = 0.2
max_tokens = 1000
[model_task_config.memory_long_term_builder] # 长期记忆构建模型(短期→长期图结构)
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
temperature = 0.2
max_tokens = 1500
[model_task_config.memory_judge] # 记忆检索裁判模型(判断检索是否充足)
model_list = ["qwen3-14b"]
temperature = 0.1
max_tokens = 600