feat(kfc):独立私聊回复模型配置
- 在 ModelTaskConfig 中为私聊场景添加 `replyer_private` 字段 - 更新 KFC 回复器和统一模块以使用新的私聊配置 - 配置模板版本升级至 1.4.2,并更新 DeepSeek 模型名称 - 增强 KokoroFlowChatter 的执行日志
This commit is contained in:
@@ -130,7 +130,8 @@ class ModelTaskConfig(ValidatedConfigBase):
|
||||
# 必需配置项
|
||||
utils: TaskConfig = Field(..., description="组件模型配置")
|
||||
utils_small: TaskConfig = Field(..., description="组件小模型配置")
|
||||
replyer: TaskConfig = Field(..., description="normal_chat首要回复模型模型配置")
|
||||
replyer: TaskConfig = Field(..., description="normal_chat首要回复模型模型配置(群聊使用)")
|
||||
replyer_private: TaskConfig = Field(..., description="normal_chat首要回复模型模型配置(私聊使用)")
|
||||
maizone: TaskConfig = Field(..., description="maizone专用模型")
|
||||
emotion: TaskConfig = Field(..., description="情绪模型配置")
|
||||
vlm: TaskConfig = Field(..., description="视觉语言模型配置")
|
||||
|
||||
@@ -206,7 +206,8 @@ class KokoroFlowChatter(BaseChatter):
|
||||
exec_results = []
|
||||
has_reply = False
|
||||
|
||||
for action in plan_response.actions:
|
||||
for idx, action in enumerate(plan_response.actions, 1):
|
||||
logger.debug(f"[KFC] 执行第 {idx}/{len(plan_response.actions)} 个动作: {action.type}")
|
||||
action_data = action.params.copy()
|
||||
|
||||
result = await self.action_manager.execute_action(
|
||||
@@ -218,6 +219,7 @@ class KokoroFlowChatter(BaseChatter):
|
||||
thinking_id=None,
|
||||
log_prefix="[KFC]",
|
||||
)
|
||||
logger.debug(f"[KFC] 动作 {action.type} 执行结果: success={result.get('success')}, reply_text={result.get('reply_text', '')[:50]}")
|
||||
exec_results.append(result)
|
||||
if result.get("success") and action.type in ("kfc_reply", "respond"):
|
||||
has_reply = True
|
||||
|
||||
@@ -61,12 +61,12 @@ async def generate_reply_text(
|
||||
if global_config and global_config.debug.show_prompt:
|
||||
logger.info(f"[KFC Replyer] 生成的回复提示词:\n{prompt}")
|
||||
|
||||
# 2. 获取 replyer 模型配置并调用 LLM
|
||||
# 2. 获取 replyer_private 模型配置并调用 LLM(KFC私聊专用)
|
||||
models = llm_api.get_available_models()
|
||||
replyer_config = models.get("replyer")
|
||||
replyer_config = models.get("replyer_private")
|
||||
|
||||
if not replyer_config:
|
||||
logger.error("[KFC Replyer] 未找到 replyer 模型配置")
|
||||
logger.error("[KFC Replyer] 未找到 replyer_private 模型配置")
|
||||
return False, "(回复生成失败:未找到模型配置)"
|
||||
|
||||
success, raw_response, _reasoning, _model_name = await llm_api.generate_with_model(
|
||||
|
||||
@@ -389,13 +389,13 @@ async def generate_unified_response(
|
||||
f"--- PROMPT END ---"
|
||||
)
|
||||
|
||||
# 获取 replyer 模型配置并调用 LLM
|
||||
# 获取 replyer_private 模型配置并调用 LLM(KFC私聊专用)
|
||||
models = llm_api.get_available_models()
|
||||
replyer_config = models.get("replyer")
|
||||
replyer_config = models.get("replyer_private")
|
||||
|
||||
if not replyer_config:
|
||||
logger.error("[KFC Unified] 未找到 replyer 模型配置")
|
||||
return LLMResponse.create_error_response("未找到 replyer 模型配置")
|
||||
logger.error("[KFC Unified] 未找到 replyer_private 模型配置")
|
||||
return LLMResponse.create_error_response("未找到 replyer_private 模型配置")
|
||||
|
||||
# 调用 LLM(使用合并后的提示词)
|
||||
success, raw_response, _reasoning, _model_name = await llm_api.generate_with_model(
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[inner]
|
||||
version = "1.4.1"
|
||||
version = "1.4.2"
|
||||
|
||||
# 配置文件版本号迭代规则同bot_config.toml
|
||||
|
||||
@@ -68,8 +68,8 @@ price_out = 8.0 # 输出价格(用于API调用统计,单
|
||||
#enable_semantic_variants = false # [可选] 启用语义变体。作为一种扰动策略,生成语义上相似但表达不同的提示。默认为 false。
|
||||
|
||||
[[models]]
|
||||
model_identifier = "deepseek-ai/DeepSeek-V3.2-Exp"
|
||||
name = "siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"
|
||||
model_identifier = "deepseek-ai/DeepSeek-V3."
|
||||
name = "siliconflow-deepseek-ai/DeepSeek-V3.2"
|
||||
api_provider = "SiliconFlow"
|
||||
price_in = 2.0
|
||||
price_out = 8.0
|
||||
@@ -170,7 +170,7 @@ thinking_budget = 256 # Gemini2.5系列旧版参数,不同模型范围
|
||||
#price_out = 0.0
|
||||
|
||||
[model_task_config.utils] # 在麦麦的一些组件中使用的模型,例如表情包模块,取名模块,关系模块,是麦麦必须的模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"] # 使用的模型列表,每个子项对应上面的模型名称(name)
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"] # 使用的模型列表,每个子项对应上面的模型名称(name)
|
||||
temperature = 0.2 # 模型温度,新V3建议0.1-0.3
|
||||
max_tokens = 800 # 最大输出token数
|
||||
#concurrency_count = 2 # 并发请求数量,默认为1(不并发),设置为2或更高启用并发
|
||||
@@ -180,29 +180,34 @@ model_list = ["qwen3-8b"]
|
||||
temperature = 0.7
|
||||
max_tokens = 800
|
||||
|
||||
[model_task_config.replyer] # 首要回复模型,还用于表达器和表达方式学习
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
[model_task_config.replyer] # 首要回复模型(群聊使用),还用于表达器和表达方式学习
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.2 # 模型温度,新V3建议0.1-0.3
|
||||
max_tokens = 800
|
||||
|
||||
[model_task_config.replyer_private] # 私聊回复模型(KFC私聊专用)
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"] # 可以配置不同的模型用于私聊
|
||||
temperature = 0.2 # 模型温度,新V3建议0.1-0.3
|
||||
max_tokens = 800
|
||||
|
||||
[model_task_config.planner] #决策:负责决定麦麦该做什么的模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.3
|
||||
max_tokens = 800
|
||||
|
||||
|
||||
[model_task_config.emotion] #负责麦麦的情绪变化
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.3
|
||||
max_tokens = 800
|
||||
|
||||
[model_task_config.mood] #负责麦麦的心情变化
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.3
|
||||
max_tokens = 800
|
||||
|
||||
[model_task_config.maizone] # maizone模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.7
|
||||
max_tokens = 800
|
||||
|
||||
@@ -229,22 +234,22 @@ temperature = 0.7
|
||||
max_tokens = 800
|
||||
|
||||
[model_task_config.schedule_generator]#日程表生成模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.7
|
||||
max_tokens = 1000
|
||||
|
||||
[model_task_config.anti_injection] # 反注入检测专用模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"] # 使用快速的小模型进行检测
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"] # 使用快速的小模型进行检测
|
||||
temperature = 0.1 # 低温度确保检测结果稳定
|
||||
max_tokens = 200 # 检测结果不需要太长的输出
|
||||
|
||||
[model_task_config.monthly_plan_generator] # 月层计划生成模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.7
|
||||
max_tokens = 1000
|
||||
|
||||
[model_task_config.relationship_tracker] # 用户关系追踪模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.7
|
||||
max_tokens = 1000
|
||||
|
||||
@@ -258,12 +263,12 @@ embedding_dimension = 1024
|
||||
#------------LPMM知识库模型------------
|
||||
|
||||
[model_task_config.lpmm_entity_extract] # 实体提取模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.2
|
||||
max_tokens = 800
|
||||
|
||||
[model_task_config.lpmm_rdf_build] # RDF构建模型
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.2
|
||||
max_tokens = 800
|
||||
|
||||
@@ -285,7 +290,7 @@ temperature = 0.2
|
||||
max_tokens = 1000
|
||||
|
||||
[model_task_config.memory_long_term_builder] # 长期记忆构建模型(短期→长期图结构)
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2-Exp"]
|
||||
model_list = ["siliconflow-deepseek-ai/DeepSeek-V3.2"]
|
||||
temperature = 0.2
|
||||
max_tokens = 1500
|
||||
|
||||
|
||||
Reference in New Issue
Block a user