fix:进一步模块化,修复观察错位问题
This commit is contained in:
@@ -163,13 +163,13 @@ MOOD_STYLE_CONFIG = {
|
||||
"console_format": (
|
||||
"<white>{time:YYYY-MM-DD HH:mm:ss}</white> | "
|
||||
"<level>{level: <8}</level> | "
|
||||
"<light-green>心情</light-green> | "
|
||||
"</magenta>心情</magenta> | "
|
||||
"<level>{message}</level>"
|
||||
),
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 心情 | {message}",
|
||||
},
|
||||
"simple": {
|
||||
"console_format": "<level>{time:MM-DD HH:mm}</level> | <magenta>心情</magenta> | {message}",
|
||||
"console_format": "<level>{time:MM-DD HH:mm}</level> | <magenta>心情 | {message} </magenta>",
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 心情 | {message}",
|
||||
},
|
||||
}
|
||||
@@ -315,14 +315,14 @@ CHAT_STYLE_CONFIG = {
|
||||
"console_format": (
|
||||
"<white>{time:YYYY-MM-DD HH:mm:ss}</white> | "
|
||||
"<level>{level: <8}</level> | "
|
||||
"<light-blue>见闻</light-blue> | "
|
||||
"<green>见闻</green> | "
|
||||
"<level>{message}</level>"
|
||||
),
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 见闻 | {message}",
|
||||
},
|
||||
"simple": {
|
||||
"console_format": (
|
||||
"<level>{time:MM-DD HH:mm}</level> | <light-blue>见闻</light-blue> | <green>{message}</green>"
|
||||
"<level>{time:MM-DD HH:mm}</level> | <green>见闻</green> | <green>{message}</green>"
|
||||
), # noqa: E501
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 见闻 | {message}",
|
||||
},
|
||||
@@ -387,7 +387,7 @@ SUBHEARTFLOW_MANAGER_STYLE_CONFIG = {
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 麦麦水群[管理] | {message}",
|
||||
},
|
||||
"simple": {
|
||||
"console_format": ("<level>{time:MM-DD HH:mm}</level> | <fg #3399FF>麦麦水群[管理] | {message}</fg #3399FF>"), # noqa: E501
|
||||
"console_format": ("<level>{time:MM-DD HH:mm}</level> | <fg #005BA2>麦麦水群[管理] | {message}</fg #005BA2>"), # noqa: E501
|
||||
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 麦麦水群[管理] | {message}",
|
||||
},
|
||||
}
|
||||
|
||||
@@ -13,8 +13,8 @@ mai_state_config = LogConfig(
|
||||
logger = get_module_logger("mai_state_manager", config=mai_state_config)
|
||||
|
||||
|
||||
# enable_unlimited_hfc_chat = True
|
||||
enable_unlimited_hfc_chat = False
|
||||
enable_unlimited_hfc_chat = True
|
||||
# enable_unlimited_hfc_chat = False
|
||||
|
||||
|
||||
class MaiState(enum.Enum):
|
||||
@@ -22,14 +22,14 @@ class MaiState(enum.Enum):
|
||||
聊天状态:
|
||||
OFFLINE: 不在线:回复概率极低,不会进行任何聊天
|
||||
PEEKING: 看一眼手机:回复概率较低,会进行一些普通聊天
|
||||
NORMAL_CHAT: 正常聊天:回复概率较高,会进行一些普通聊天和少量的专注聊天
|
||||
NORMAL_CHAT: 正常看手机:回复概率较高,会进行一些普通聊天和少量的专注聊天
|
||||
FOCUSED_CHAT: 专注聊天:回复概率极高,会进行专注聊天和少量的普通聊天
|
||||
"""
|
||||
|
||||
OFFLINE = "不在线"
|
||||
PEEKING = "看一眼"
|
||||
NORMAL_CHAT = "正常聊天"
|
||||
FOCUSED_CHAT = "专心聊天"
|
||||
PEEKING = "看一眼手机"
|
||||
NORMAL_CHAT = "正常看手机"
|
||||
FOCUSED_CHAT = "专心看手机"
|
||||
|
||||
def get_normal_chat_max_num(self):
|
||||
# 调试用
|
||||
@@ -137,11 +137,11 @@ class MaiStateManager:
|
||||
if current_status == MaiState.OFFLINE:
|
||||
logger.info("当前[离线],没看手机,思考要不要上线看看......")
|
||||
elif current_status == MaiState.PEEKING:
|
||||
logger.info("当前[看一眼],思考要不要继续聊下去......")
|
||||
logger.info("当前[看一眼手机],思考要不要继续聊下去......")
|
||||
elif current_status == MaiState.NORMAL_CHAT:
|
||||
logger.info("当前在[正常聊天]思考要不要继续聊下去......")
|
||||
logger.info("当前在[正常看手机]思考要不要继续聊下去......")
|
||||
elif current_status == MaiState.FOCUSED_CHAT:
|
||||
logger.info("当前在[专心聊天]思考要不要继续聊下去......")
|
||||
logger.info("当前在[专心看手机]思考要不要继续聊下去......")
|
||||
|
||||
# 1. 麦麦每分钟都有概率离线
|
||||
if time_since_last_min_check >= 60:
|
||||
|
||||
@@ -22,6 +22,9 @@ class Observation:
|
||||
self.observe_type = observe_type
|
||||
self.observe_id = observe_id
|
||||
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
|
||||
|
||||
async def observe(self):
|
||||
pass
|
||||
|
||||
|
||||
# 聊天观察
|
||||
|
||||
@@ -43,6 +43,7 @@ class InterestChatting:
|
||||
max_probability=max_reply_probability,
|
||||
state_change_callback: Optional[Callable[[ChatState], None]] = None,
|
||||
):
|
||||
# 基础属性初始化
|
||||
self.interest_level: float = 0.0
|
||||
self.last_update_time: float = time.time()
|
||||
self.decay_rate_per_second: float = decay_rate
|
||||
@@ -56,16 +57,26 @@ class InterestChatting:
|
||||
self.max_reply_probability: float = max_probability
|
||||
self.current_reply_probability: float = 0.0
|
||||
self.is_above_threshold: bool = False
|
||||
|
||||
# 任务相关属性初始化
|
||||
self.update_task: Optional[asyncio.Task] = None
|
||||
self._stop_event = asyncio.Event()
|
||||
self._task_lock = asyncio.Lock()
|
||||
self._is_running = False
|
||||
|
||||
self.interest_dict: Dict[str, tuple[MessageRecv, float, bool]] = {}
|
||||
self.update_interval = 1.0
|
||||
self.start_updates(self.update_interval) # 初始化时启动后台更新任务
|
||||
|
||||
self.above_threshold = False
|
||||
self.start_hfc_probability = 0.0
|
||||
|
||||
@classmethod
|
||||
async def create(cls, *args, **kwargs):
|
||||
"""异步工厂方法,用于创建并初始化 InterestChatting 实例"""
|
||||
instance = cls(*args, **kwargs)
|
||||
await instance.start_updates(instance.update_interval)
|
||||
return instance
|
||||
|
||||
def add_interest_dict(self, message: MessageRecv, interest_value: float, is_mentioned: bool):
|
||||
self.interest_dict[message.message_info.message_id] = (message, interest_value, is_mentioned)
|
||||
self.last_interaction_time = time.time()
|
||||
@@ -141,59 +152,74 @@ class InterestChatting:
|
||||
# --- 新增后台更新任务相关方法 ---
|
||||
async def _run_update_loop(self, update_interval: float = 1.0):
|
||||
"""后台循环,定期更新兴趣和回复概率。"""
|
||||
while not self._stop_event.is_set():
|
||||
try:
|
||||
if self.interest_level != 0:
|
||||
await self._calculate_decay()
|
||||
try:
|
||||
while not self._stop_event.is_set():
|
||||
try:
|
||||
if self.interest_level != 0:
|
||||
await self._calculate_decay()
|
||||
|
||||
await self._update_reply_probability()
|
||||
await self._update_reply_probability()
|
||||
|
||||
# 等待下一个周期或停止事件
|
||||
await asyncio.wait_for(self._stop_event.wait(), timeout=update_interval)
|
||||
except asyncio.TimeoutError:
|
||||
# 正常超时,继续循环
|
||||
continue
|
||||
except asyncio.CancelledError:
|
||||
logger.info("InterestChatting 更新循环被取消。")
|
||||
break
|
||||
except Exception as e:
|
||||
logger.error(f"InterestChatting 更新循环出错: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
# 防止错误导致CPU飙升,稍作等待
|
||||
await asyncio.sleep(5)
|
||||
logger.info("InterestChatting 更新循环已停止。")
|
||||
# 等待下一个周期或停止事件
|
||||
await asyncio.wait_for(self._stop_event.wait(), timeout=update_interval)
|
||||
except asyncio.TimeoutError:
|
||||
# 正常超时,继续循环
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.error(f"InterestChatting 更新循环出错: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
# 防止错误导致CPU飙升,稍作等待
|
||||
await asyncio.sleep(5)
|
||||
except asyncio.CancelledError:
|
||||
logger.info("InterestChatting 更新循环被取消。")
|
||||
finally:
|
||||
self._is_running = False
|
||||
logger.info("InterestChatting 更新循环已停止。")
|
||||
|
||||
def start_updates(self, update_interval: float = 1.0):
|
||||
"""启动后台更新任务"""
|
||||
if self.update_task is None or self.update_task.done():
|
||||
self._stop_event.clear()
|
||||
self.update_task = asyncio.create_task(self._run_update_loop(update_interval))
|
||||
logger.debug("后台兴趣更新任务已创建并启动。")
|
||||
else:
|
||||
logger.debug("后台兴趣更新任务已在运行中。")
|
||||
async def start_updates(self, update_interval: float = 1.0):
|
||||
"""启动后台更新任务,使用锁确保并发安全"""
|
||||
async with self._task_lock:
|
||||
if self._is_running:
|
||||
logger.debug("后台兴趣更新任务已在运行中。")
|
||||
return
|
||||
|
||||
# 清理已完成或已取消的任务
|
||||
if self.update_task and (self.update_task.done() or self.update_task.cancelled()):
|
||||
self.update_task = None
|
||||
|
||||
if not self.update_task:
|
||||
self._stop_event.clear()
|
||||
self._is_running = True
|
||||
self.update_task = asyncio.create_task(self._run_update_loop(update_interval))
|
||||
logger.debug("后台兴趣更新任务已创建并启动。")
|
||||
|
||||
async def stop_updates(self):
|
||||
"""停止后台更新任务"""
|
||||
if self.update_task and not self.update_task.done():
|
||||
"""停止后台更新任务,使用锁确保并发安全"""
|
||||
async with self._task_lock:
|
||||
if not self._is_running:
|
||||
logger.debug("后台兴趣更新任务未运行。")
|
||||
return
|
||||
|
||||
logger.info("正在停止 InterestChatting 后台更新任务...")
|
||||
self._stop_event.set() # 发送停止信号
|
||||
try:
|
||||
# 等待任务结束,设置超时
|
||||
await asyncio.wait_for(self.update_task, timeout=5.0)
|
||||
logger.info("InterestChatting 后台更新任务已成功停止。")
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning("停止 InterestChatting 后台任务超时,尝试取消...")
|
||||
self.update_task.cancel()
|
||||
self._stop_event.set()
|
||||
|
||||
if self.update_task and not self.update_task.done():
|
||||
try:
|
||||
await self.update_task # 等待取消完成
|
||||
except asyncio.CancelledError:
|
||||
logger.info("InterestChatting 后台更新任务已被取消。")
|
||||
except Exception as e:
|
||||
logger.error(f"停止 InterestChatting 后台任务时发生异常: {e}")
|
||||
finally:
|
||||
self.update_task = None
|
||||
else:
|
||||
logger.debug("InterestChatting 后台更新任务未运行或已完成。")
|
||||
# 等待任务结束,设置超时
|
||||
await asyncio.wait_for(self.update_task, timeout=5.0)
|
||||
logger.info("InterestChatting 后台更新任务已成功停止。")
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning("停止 InterestChatting 后台任务超时,尝试取消...")
|
||||
self.update_task.cancel()
|
||||
try:
|
||||
await self.update_task # 等待取消完成
|
||||
except asyncio.CancelledError:
|
||||
logger.info("InterestChatting 后台更新任务已被取消。")
|
||||
except Exception as e:
|
||||
logger.error(f"停止 InterestChatting 后台任务时发生异常: {e}")
|
||||
finally:
|
||||
self.update_task = None
|
||||
self._is_running = False
|
||||
|
||||
# --- 结束 新增方法 ---
|
||||
|
||||
@@ -214,7 +240,7 @@ class SubHeartflow:
|
||||
|
||||
# 聊天状态管理
|
||||
self.chat_state: ChatStateInfo = ChatStateInfo() # 该sub_heartflow的聊天状态信息
|
||||
self.interest_chatting = InterestChatting(state_change_callback=self.set_chat_state)
|
||||
self.interest_chatting = None # 将在 initialize 中创建
|
||||
|
||||
# 活动状态管理
|
||||
self.last_active_time = time.time() # 最后活跃时间
|
||||
@@ -234,6 +260,11 @@ class SubHeartflow:
|
||||
|
||||
self.log_prefix = chat_manager.get_stream_name(self.subheartflow_id) or self.subheartflow_id
|
||||
|
||||
async def initialize(self):
|
||||
"""异步初始化方法"""
|
||||
self.interest_chatting = await InterestChatting.create(state_change_callback=self.set_chat_state)
|
||||
logger.debug(f"{self.log_prefix} InterestChatting 实例已创建并初始化。")
|
||||
|
||||
async def add_time_current_state(self, add_time: float):
|
||||
self.current_state_time += add_time
|
||||
|
||||
@@ -412,7 +443,7 @@ class SubHeartflow:
|
||||
- 负责子心流的主要后台循环
|
||||
- 每30秒检查一次停止标志
|
||||
"""
|
||||
logger.info(f"{self.log_prefix} 子心流开始工作...")
|
||||
logger.trace(f"{self.log_prefix} 子心流开始工作...")
|
||||
|
||||
while not self.should_stop:
|
||||
await asyncio.sleep(30) # 30秒检查一次停止标志
|
||||
|
||||
@@ -10,7 +10,7 @@ from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.do_tool.tool_use import ToolUser
|
||||
from src.plugins.utils.json_utils import safe_json_dumps, normalize_llm_response, process_llm_tool_calls
|
||||
from src.heart_flow.chat_state_info import ChatStateInfo
|
||||
|
||||
from src.plugins.chat.chat_stream import chat_manager
|
||||
|
||||
subheartflow_config = LogConfig(
|
||||
console_format=SUB_HEARTFLOW_STYLE_CONFIG["console_format"],
|
||||
@@ -30,6 +30,8 @@ def init_prompt():
|
||||
prompt += "现在请你生成你的内心想法,要求思考群里正在进行的话题,之前大家聊过的话题,群里成员的关系。"
|
||||
prompt += "请你思考,要不要对群里的话题进行回复,以及如何对群聊内容进行回复\n"
|
||||
prompt += "回复的要求是:不要总是重复自己提到过的话题,如果你要回复,最好只回复一个人的一个话题\n"
|
||||
prompt += "如果最后一条消息是你自己发的,观察到的内容只有你自己的发言,并且之后没有人回复你,不要回复。"
|
||||
prompt += "如果聊天记录中最新的消息是你自己发送的,并且你还想继续回复,你应该紧紧衔接你发送的消息,进行话题的深入,补充,或追问等等。"
|
||||
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要回复自己的发言\n"
|
||||
prompt += "现在请你先输出想法,{hf_do_next},不要分点输出,文字不要浮夸"
|
||||
prompt += "在输出完想法后,请你思考应该使用什么工具。工具可以帮你取得一些你不知道的信息,或者进行一些操作。"
|
||||
@@ -138,7 +140,7 @@ class SubMind:
|
||||
hf_do_next=hf_do_next,
|
||||
)
|
||||
|
||||
logger.debug(f"[{self.subheartflow_id}] 心流思考提示词构建完成")
|
||||
# logger.debug(f"[{self.subheartflow_id}] 心流思考提示词构建完成")
|
||||
|
||||
# ---------- 5. 执行LLM请求并处理响应 ----------
|
||||
content = "" # 初始化内容变量
|
||||
@@ -190,7 +192,8 @@ class SubMind:
|
||||
content = "思考过程中出现错误"
|
||||
|
||||
# 记录最终思考结果
|
||||
logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{content}\n")
|
||||
name = chat_manager.get_stream_name(self.subheartflow_id)
|
||||
logger.debug(f"[{name}] \nPrompt:\n{prompt}\n\n心流思考结果:\n{content}\n")
|
||||
|
||||
# 处理空响应情况
|
||||
if not content:
|
||||
|
||||
@@ -75,18 +75,22 @@ class SubHeartflowManager:
|
||||
return subflow
|
||||
|
||||
# 创建新的子心流实例
|
||||
logger.info(f"子心流 {subheartflow_id} 不存在,正在创建...")
|
||||
# logger.info(f"子心流 {subheartflow_id} 不存在,正在创建...")
|
||||
try:
|
||||
# 初始化子心流
|
||||
new_subflow = SubHeartflow(subheartflow_id, mai_states)
|
||||
|
||||
# 异步初始化
|
||||
await new_subflow.initialize()
|
||||
|
||||
# 添加聊天观察者
|
||||
observation = ChattingObservation(chat_id=subheartflow_id)
|
||||
new_subflow.add_observation(observation)
|
||||
|
||||
# 注册子心流
|
||||
self.subheartflows[subheartflow_id] = new_subflow
|
||||
logger.info(f"子心流 {subheartflow_id} 创建成功")
|
||||
heartflow_name = chat_manager.get_stream_name(subheartflow_id) or subheartflow_id
|
||||
logger.info(f"[{heartflow_name}] 开始看消息")
|
||||
|
||||
# 启动后台任务
|
||||
asyncio.create_task(new_subflow.subheartflow_start_working())
|
||||
@@ -264,104 +268,70 @@ class SubHeartflowManager:
|
||||
|
||||
async def evaluate_interest_and_promote(self, current_mai_state: MaiStateInfo):
|
||||
"""评估子心流兴趣度,满足条件且未达上限则提升到FOCUSED状态(基于start_hfc_probability)"""
|
||||
log_prefix_manager = "[子心流管理器-兴趣评估]"
|
||||
logger.debug(f"{log_prefix_manager} 开始周期... 当前状态: {current_mai_state.get_current_state().value}")
|
||||
|
||||
# 获取 FOCUSED 状态的数量上限
|
||||
current_state_enum = current_mai_state.get_current_state()
|
||||
focused_limit = current_state_enum.get_focused_chat_max_num()
|
||||
log_prefix = "[兴趣评估]"
|
||||
current_state = current_mai_state.get_current_state()
|
||||
focused_limit = current_state.get_focused_chat_max_num()
|
||||
|
||||
|
||||
if int(time.time()) % 20 == 0: # 每20秒输出一次
|
||||
logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 可以在{focused_limit}个群激情聊天")
|
||||
|
||||
if focused_limit <= 0:
|
||||
logger.debug(
|
||||
f"{log_prefix_manager} 当前状态 ({current_state_enum.value}) 不允许 FOCUSED 子心流, 跳过提升检查。"
|
||||
)
|
||||
# logger.debug(f"{log_prefix} 当前状态 ({current_state.value}) 不允许 FOCUSED 子心流")
|
||||
return
|
||||
|
||||
# 获取当前 FOCUSED 状态的数量 (初始值)
|
||||
current_focused_count = self.count_subflows_by_state(ChatState.FOCUSED)
|
||||
logger.debug(f"{log_prefix_manager} 专注上限: {focused_limit}, 当前专注数: {current_focused_count}")
|
||||
if current_focused_count >= focused_limit:
|
||||
logger.debug(f"{log_prefix} 已达专注上限 ({current_focused_count}/{focused_limit})")
|
||||
return
|
||||
|
||||
# 使用快照安全遍历
|
||||
subflows_snapshot = list(self.subheartflows.values())
|
||||
promoted_count = 0 # 记录本次提升的数量
|
||||
try:
|
||||
for sub_hf in subflows_snapshot:
|
||||
flow_id = sub_hf.subheartflow_id
|
||||
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
|
||||
log_prefix_flow = f"[{stream_name}]"
|
||||
states_num = (
|
||||
self.count_subflows_by_state(ChatState.ABSENT),
|
||||
self.count_subflows_by_state(ChatState.CHAT),
|
||||
current_focused_count
|
||||
)
|
||||
|
||||
# 只处理 CHAT 状态的子心流
|
||||
# The code snippet is checking if the `chat_status` attribute of `sub_hf.chat_state` is not equal to
|
||||
# `ChatState.CHAT`. If the condition is met, the code will continue to the next iteration of the loop
|
||||
# or block of code where this snippet is located.
|
||||
# if sub_hf.chat_state.chat_status != ChatState.CHAT:
|
||||
# continue
|
||||
|
||||
# 检查是否满足提升概率
|
||||
should_hfc = random.random() < sub_hf.interest_chatting.start_hfc_probability
|
||||
if not should_hfc:
|
||||
for sub_hf in list(self.subheartflows.values()):
|
||||
flow_id = sub_hf.subheartflow_id
|
||||
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
|
||||
|
||||
# 跳过非CHAT状态或已经是FOCUSED状态的子心流
|
||||
if sub_hf.chat_state.chat_status == ChatState.FOCUSED:
|
||||
continue
|
||||
|
||||
from .mai_state_manager import enable_unlimited_hfc_chat
|
||||
if not enable_unlimited_hfc_chat:
|
||||
if sub_hf.chat_state.chat_status != ChatState.CHAT:
|
||||
continue
|
||||
|
||||
# 检查是否满足提升概率
|
||||
if random.random() >= sub_hf.interest_chatting.start_hfc_probability:
|
||||
continue
|
||||
|
||||
# --- 关键检查:检查 FOCUSED 数量是否已达上限 ---
|
||||
# 注意:在循环内部再次获取当前数量,因为之前的提升可能已经改变了计数
|
||||
# 使用已经记录并在循环中更新的 current_focused_count
|
||||
if current_focused_count >= focused_limit:
|
||||
logger.debug(
|
||||
f"{log_prefix_manager} {log_prefix_flow} 达到专注上限 ({current_focused_count}/{focused_limit}), 无法提升。概率={sub_hf.interest_chatting.start_hfc_probability:.2f}"
|
||||
)
|
||||
continue # 跳过这个子心流,继续检查下一个
|
||||
# 再次检查是否达到上限
|
||||
if current_focused_count >= focused_limit:
|
||||
logger.debug(f"{log_prefix} [{stream_name}] 已达专注上限")
|
||||
break
|
||||
|
||||
# --- 执行提升 ---
|
||||
# 获取当前实例以检查最新状态 (防御性编程)
|
||||
current_subflow = self.subheartflows.get(flow_id)
|
||||
if not current_subflow:
|
||||
logger.warning(f"{log_prefix_manager} {log_prefix_flow} 尝试提升时状态已改变或实例消失,跳过。")
|
||||
continue
|
||||
# 获取最新状态并执行提升
|
||||
current_subflow = self.subheartflows.get(flow_id)
|
||||
if not current_subflow:
|
||||
continue
|
||||
|
||||
logger.info(
|
||||
f"{log_prefix_manager} {log_prefix_flow} 兴趣评估触发升级 (prob={sub_hf.interest_chatting.start_hfc_probability:.2f}, 上限:{focused_limit}, 当前:{current_focused_count}) -> FOCUSED"
|
||||
)
|
||||
logger.info(
|
||||
f"{log_prefix} [{stream_name}] 触发 激情水群 (概率={current_subflow.interest_chatting.start_hfc_probability:.2f})"
|
||||
)
|
||||
|
||||
states_num = (
|
||||
self.count_subflows_by_state(ChatState.ABSENT),
|
||||
self.count_subflows_by_state(ChatState.CHAT), # 这个值在提升前计算
|
||||
current_focused_count, # 这个值在提升前计算
|
||||
)
|
||||
# 执行状态提升
|
||||
await current_subflow.set_chat_state(ChatState.FOCUSED, states_num)
|
||||
|
||||
# 验证提升结果
|
||||
if (final_subflow := self.subheartflows.get(flow_id)) and \
|
||||
final_subflow.chat_state.chat_status == ChatState.FOCUSED:
|
||||
current_focused_count += 1
|
||||
|
||||
# --- 状态设置 ---
|
||||
original_state = current_subflow.chat_state.chat_status # 记录原始状态
|
||||
await current_subflow.set_chat_state(ChatState.FOCUSED, states_num)
|
||||
|
||||
# --- 状态验证 ---
|
||||
final_subflow = self.subheartflows.get(flow_id)
|
||||
if final_subflow:
|
||||
final_state = final_subflow.chat_state.chat_status
|
||||
if final_state == ChatState.FOCUSED:
|
||||
logger.debug(
|
||||
f"{log_prefix_manager} {log_prefix_flow} 成功从 {original_state.value} 升级到 FOCUSED 状态"
|
||||
)
|
||||
promoted_count += 1
|
||||
# 提升成功后,更新当前专注计数,以便后续检查能使用最新值
|
||||
current_focused_count += 1
|
||||
elif final_state == original_state: # 状态未变
|
||||
logger.warning(
|
||||
f"{log_prefix_manager} {log_prefix_flow} 尝试从 {original_state.value} 升级 FOCUSED 失败,状态仍为: {final_state.value} (可能被内部逻辑阻止)"
|
||||
)
|
||||
else: # 状态变成其他了?
|
||||
logger.warning(
|
||||
f"{log_prefix_manager} {log_prefix_flow} 尝试从 {original_state.value} 升级 FOCUSED 后状态变为 {final_state.value}"
|
||||
)
|
||||
else: # 子心流消失了?
|
||||
logger.warning(f"{log_prefix_manager} {log_prefix_flow} 升级后验证时子心流 {flow_id} 消失")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{log_prefix_manager} 兴趣评估周期出错: {e}", exc_info=True)
|
||||
|
||||
if promoted_count > 0:
|
||||
logger.info(f"{log_prefix_manager} 评估周期结束, 成功提升 {promoted_count} 个子心流到 FOCUSED。")
|
||||
else:
|
||||
logger.debug(f"{log_prefix_manager} 评估周期结束, 未提升任何子心流。")
|
||||
|
||||
async def randomly_deactivate_subflows(self, deactivation_probability: float = 0.3):
|
||||
async def randomly_deactivate_subflows(self, deactivation_probability: float = 0.1):
|
||||
"""以一定概率将 FOCUSED 或 CHAT 状态的子心流回退到 ABSENT 状态。"""
|
||||
log_prefix_manager = "[子心流管理器-随机停用]"
|
||||
logger.debug(f"{log_prefix_manager} 开始随机停用检查... (概率: {deactivation_probability:.0%})")
|
||||
|
||||
@@ -154,7 +154,7 @@ class MainSystem:
|
||||
"""打印情绪状态"""
|
||||
while True:
|
||||
self.mood_manager.print_mood_status()
|
||||
await asyncio.sleep(30)
|
||||
await asyncio.sleep(60)
|
||||
|
||||
@staticmethod
|
||||
async def remove_recalled_message_task():
|
||||
|
||||
@@ -152,7 +152,7 @@ class ImageManager:
|
||||
"timestamp": timestamp,
|
||||
}
|
||||
db.images.update_one({"hash": image_hash}, {"$set": image_doc}, upsert=True)
|
||||
logger.success(f"保存表情包: {file_path}")
|
||||
logger.trace(f"保存表情包: {file_path}")
|
||||
except Exception as e:
|
||||
logger.error(f"保存表情包文件失败: {str(e)}")
|
||||
|
||||
|
||||
@@ -28,6 +28,11 @@ EMOJI_DIR = os.path.join("data", "emoji") # 表情包存储目录
|
||||
EMOJI_REGISTED_DIR = os.path.join("data", "emoji_registed") # 已注册的表情包注册目录
|
||||
|
||||
|
||||
'''
|
||||
还没经过测试,有些地方数据库和内存数据同步可能不完全
|
||||
|
||||
'''
|
||||
|
||||
class MaiEmoji:
|
||||
"""定义一个表情包"""
|
||||
|
||||
@@ -247,10 +252,12 @@ class EmojiManager:
|
||||
def record_usage(self, hash: str):
|
||||
"""记录表情使用次数"""
|
||||
try:
|
||||
db.emoji.update_one({"hash": hash}, {"$inc": {"usage_count": 1}})
|
||||
for emoji in self.emoji_objects:
|
||||
if emoji.hash == hash:
|
||||
emoji.usage_count += 1
|
||||
break
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"记录表情使用失败: {str(e)}")
|
||||
|
||||
@@ -304,12 +311,11 @@ class EmojiManager:
|
||||
selected_emoji, similarity = random.choice(top_5_emojis)
|
||||
|
||||
# 更新使用次数
|
||||
db.emoji.update_one({"hash": selected_emoji.hash}, {"$inc": {"usage_count": 1}})
|
||||
|
||||
logger.info(f"[匹配] 找到表情包: {selected_emoji.description} (相似度: {similarity:.4f})")
|
||||
self.record_usage(selected_emoji.hash)
|
||||
|
||||
time_end = time.time()
|
||||
logger.info(f"[匹配] 搜索表情包用时: {time_end - time_start:.2f} 秒")
|
||||
|
||||
logger.info(f"找到[{text_emotion}]表情包,用时:{time_end - time_start:.2f}秒: {selected_emoji.description} (相似度: {similarity:.4f})")
|
||||
return selected_emoji.path, f"[ {selected_emoji.description} ]"
|
||||
|
||||
except Exception as e:
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -57,9 +57,6 @@ class HeartFCGenerator:
|
||||
)
|
||||
|
||||
if model_response:
|
||||
logger.info(
|
||||
f"{global_config.BOT_NICKNAME}的回复是:{model_response},生成回复时间: {t_generate_response.human_readable}"
|
||||
)
|
||||
model_processed_response = await self._process_response(model_response)
|
||||
|
||||
return model_processed_response
|
||||
|
||||
159
src/plugins/heartFC_chat/heartFC_readme.md
Normal file
159
src/plugins/heartFC_chat/heartFC_readme.md
Normal file
@@ -0,0 +1,159 @@
|
||||
# HeartFC_chat 工作原理文档
|
||||
|
||||
HeartFC_chat 是一个基于心流理论的聊天系统,通过模拟人类的思维过程和情感变化来实现自然的对话交互。系统采用Plan-Replier-Sender循环机制,实现了智能化的对话决策和生成。
|
||||
|
||||
## 核心工作流程
|
||||
|
||||
### 1. 消息处理与存储 (HeartFCProcessor)
|
||||
[代码位置: src/plugins/heartFC_chat/heartflow_processor.py]
|
||||
|
||||
消息处理器负责接收和预处理消息,主要完成以下工作:
|
||||
```mermaid
|
||||
graph TD
|
||||
A[接收原始消息] --> B[解析为MessageRecv对象]
|
||||
B --> C[消息缓冲处理]
|
||||
C --> D[过滤检查]
|
||||
D --> E[存储到数据库]
|
||||
```
|
||||
|
||||
核心实现:
|
||||
- 消息处理入口:`process_message()` [行号: 38-215]
|
||||
- 消息解析和缓冲:`message_buffer.start_caching_messages()` [行号: 63]
|
||||
- 过滤检查:`_check_ban_words()`, `_check_ban_regex()` [行号: 196-215]
|
||||
- 消息存储:`storage.store_message()` [行号: 108]
|
||||
|
||||
### 2. 对话管理循环 (HeartFChatting)
|
||||
[代码位置: src/plugins/heartFC_chat/heartFC_chat.py]
|
||||
|
||||
HeartFChatting是系统的核心组件,实现了完整的对话管理循环:
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A[Plan阶段] -->|决策是否回复| B[Replier阶段]
|
||||
B -->|生成回复内容| C[Sender阶段]
|
||||
C -->|发送消息| D[等待新消息]
|
||||
D --> A
|
||||
```
|
||||
|
||||
#### Plan阶段 [行号: 282-386]
|
||||
- 主要函数:`_planner()`
|
||||
- 功能实现:
|
||||
* 获取观察信息:`observation.observe()` [行号: 297]
|
||||
* 思维处理:`sub_mind.do_thinking_before_reply()` [行号: 301]
|
||||
* LLM决策:使用`PLANNER_TOOL_DEFINITION`进行动作规划 [行号: 13-42]
|
||||
|
||||
#### Replier阶段 [行号: 388-416]
|
||||
- 主要函数:`_replier_work()`
|
||||
- 调用生成器:`gpt_instance.generate_response()` [行号: 394]
|
||||
- 处理生成结果和错误情况
|
||||
|
||||
#### Sender阶段 [行号: 418-450]
|
||||
- 主要函数:`_sender()`
|
||||
- 发送实现:
|
||||
* 创建消息:`_create_thinking_message()` [行号: 452-477]
|
||||
* 发送回复:`_send_response_messages()` [行号: 479-525]
|
||||
* 处理表情:`_handle_emoji()` [行号: 527-567]
|
||||
|
||||
### 3. 回复生成机制 (HeartFCGenerator)
|
||||
[代码位置: src/plugins/heartFC_chat/heartFC_generator.py]
|
||||
|
||||
回复生成器负责产生高质量的回复内容:
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A[获取上下文信息] --> B[构建提示词]
|
||||
B --> C[调用LLM生成]
|
||||
C --> D[后处理优化]
|
||||
D --> E[返回回复集]
|
||||
```
|
||||
|
||||
核心实现:
|
||||
- 生成入口:`generate_response()` [行号: 39-67]
|
||||
* 情感调节:`arousal_multiplier = MoodManager.get_instance().get_arousal_multiplier()` [行号: 47]
|
||||
* 模型生成:`_generate_response_with_model()` [行号: 69-95]
|
||||
* 响应处理:`_process_response()` [行号: 97-106]
|
||||
|
||||
### 4. 提示词构建系统 (HeartFlowPromptBuilder)
|
||||
[代码位置: src/plugins/heartFC_chat/heartflow_prompt_builder.py]
|
||||
|
||||
提示词构建器支持两种工作模式,HeartFC_chat专门使用Focus模式,而Normal模式是为normal_chat设计的:
|
||||
|
||||
#### 专注模式 (Focus Mode) - HeartFC_chat专用
|
||||
- 实现函数:`_build_prompt_focus()` [行号: 116-141]
|
||||
- 特点:
|
||||
* 专注于当前对话状态和思维
|
||||
* 更强的目标导向性
|
||||
* 用于HeartFC_chat的Plan-Replier-Sender循环
|
||||
* 简化的上下文处理,专注于决策
|
||||
|
||||
#### 普通模式 (Normal Mode) - Normal_chat专用
|
||||
- 实现函数:`_build_prompt_normal()` [行号: 143-215]
|
||||
- 特点:
|
||||
* 用于normal_chat的常规对话
|
||||
* 完整的个性化处理
|
||||
* 关系系统集成
|
||||
* 知识库检索:`get_prompt_info()` [行号: 217-591]
|
||||
|
||||
HeartFC_chat的Focus模式工作流程:
|
||||
```mermaid
|
||||
graph TD
|
||||
A[获取结构化信息] --> B[获取当前思维状态]
|
||||
B --> C[构建专注模式提示词]
|
||||
C --> D[用于Plan阶段决策]
|
||||
D --> E[用于Replier阶段生成]
|
||||
```
|
||||
|
||||
## 智能特性
|
||||
|
||||
### 1. 对话决策机制
|
||||
- LLM决策工具定义:`PLANNER_TOOL_DEFINITION` [heartFC_chat.py 行号: 13-42]
|
||||
- 决策执行:`_planner()` [heartFC_chat.py 行号: 282-386]
|
||||
- 考虑因素:
|
||||
* 上下文相关性
|
||||
* 情感状态
|
||||
* 兴趣程度
|
||||
* 对话时机
|
||||
|
||||
### 2. 状态管理
|
||||
[代码位置: src/plugins/heartFC_chat/heartFC_chat.py]
|
||||
- 状态机实现:`HeartFChatting`类 [行号: 44-567]
|
||||
- 核心功能:
|
||||
* 初始化:`_initialize()` [行号: 89-112]
|
||||
* 循环控制:`_run_pf_loop()` [行号: 192-281]
|
||||
* 状态转换:`_handle_loop_completion()` [行号: 166-190]
|
||||
|
||||
### 3. 回复生成策略
|
||||
[代码位置: src/plugins/heartFC_chat/heartFC_generator.py]
|
||||
- 温度调节:`current_model.temperature = global_config.llm_normal["temp"] * arousal_multiplier` [行号: 48]
|
||||
- 生成控制:`_generate_response_with_model()` [行号: 69-95]
|
||||
- 响应处理:`_process_response()` [行号: 97-106]
|
||||
|
||||
## 系统配置
|
||||
|
||||
### 关键参数
|
||||
- LLM配置:`model_normal` [heartFC_generator.py 行号: 32-37]
|
||||
- 过滤规则:`_check_ban_words()`, `_check_ban_regex()` [heartflow_processor.py 行号: 196-215]
|
||||
- 状态控制:`INITIAL_DURATION = 60.0` [heartFC_chat.py 行号: 11]
|
||||
|
||||
### 优化建议
|
||||
1. 调整LLM参数:`temperature`和`max_tokens`
|
||||
2. 优化提示词模板:`init_prompt()` [heartflow_prompt_builder.py 行号: 8-115]
|
||||
3. 配置状态转换条件
|
||||
4. 维护过滤规则
|
||||
|
||||
## 注意事项
|
||||
|
||||
1. 系统稳定性
|
||||
- 异常处理:各主要函数都包含try-except块
|
||||
- 状态检查:`_processing_lock`确保并发安全
|
||||
- 循环控制:`_loop_active`和`_loop_task`管理
|
||||
|
||||
2. 性能优化
|
||||
- 缓存使用:`message_buffer`系统
|
||||
- LLM调用优化:批量处理和复用
|
||||
- 异步处理:使用`asyncio`
|
||||
|
||||
3. 质量控制
|
||||
- 日志记录:使用`get_module_logger()`
|
||||
- 错误追踪:详细的异常记录
|
||||
- 响应监控:完整的状态跟踪
|
||||
@@ -12,6 +12,7 @@ from ..chat.chat_stream import chat_manager
|
||||
from ..chat.message_buffer import message_buffer
|
||||
from ..utils.timer_calculater import Timer
|
||||
from src.plugins.person_info.relationship_manager import relationship_manager
|
||||
from typing import Optional, Tuple
|
||||
|
||||
# 定义日志配置
|
||||
processor_config = LogConfig(
|
||||
@@ -22,193 +23,204 @@ logger = get_module_logger("heartflow_processor", config=processor_config)
|
||||
|
||||
|
||||
class HeartFCProcessor:
|
||||
"""心流处理器,负责处理接收到的消息并计算兴趣度"""
|
||||
|
||||
def __init__(self):
|
||||
"""初始化心流处理器,创建消息存储实例"""
|
||||
self.storage = MessageStorage()
|
||||
|
||||
async def process_message(self, message_data: str) -> None:
|
||||
"""处理接收到的原始消息数据,完成消息解析、缓冲、过滤、存储、兴趣度计算与更新等核心流程。
|
||||
|
||||
此函数是消息处理的核心入口,负责接收原始字符串格式的消息数据,并将其转化为结构化的 `MessageRecv` 对象。
|
||||
主要执行步骤包括:
|
||||
1. 解析 `message_data` 为 `MessageRecv` 对象,提取用户信息、群组信息等。
|
||||
2. 将消息加入 `message_buffer` 进行缓冲处理,以应对消息轰炸或者某些人一条消息分几次发等情况。
|
||||
3. 获取或创建对应的 `chat_stream` 和 `subheartflow` 实例,用于管理会话状态和心流。
|
||||
4. 对消息内容进行初步处理(如提取纯文本)。
|
||||
5. 应用全局配置中的过滤词和正则表达式,过滤不符合规则的消息。
|
||||
6. 查询消息缓冲结果,如果消息被缓冲器拦截(例如,判断为消息轰炸的一部分),则中止后续处理。
|
||||
7. 对于通过缓冲的消息,将其存储到 `MessageStorage` 中。
|
||||
|
||||
8. 调用海马体(`HippocampusManager`)计算消息内容的记忆激活率。(这部分算法后续会进行优化)
|
||||
9. 根据是否被提及(@)和记忆激活率,计算最终的兴趣度增量。(提及的额外兴趣增幅)
|
||||
10. 使用计算出的增量更新 `InterestManager` 中对应会话的兴趣度。
|
||||
11. 记录处理后的消息信息及当前的兴趣度到日志。
|
||||
|
||||
注意:此函数本身不负责生成和发送回复。回复的决策和生成逻辑被移至 `HeartFC_Chat` 类中的监控任务,
|
||||
该任务会根据 `InterestManager` 中的兴趣度变化来决定何时触发回复。
|
||||
|
||||
async def _handle_error(self, error: Exception, context: str, message: Optional[MessageRecv] = None) -> None:
|
||||
"""统一的错误处理函数
|
||||
|
||||
Args:
|
||||
message_data: str: 从消息源接收到的原始消息字符串。
|
||||
error: 捕获到的异常
|
||||
context: 错误发生的上下文描述
|
||||
message: 可选的消息对象,用于记录相关消息内容
|
||||
"""
|
||||
logger.error(f"{context}: {error}")
|
||||
logger.error(traceback.format_exc())
|
||||
if message and hasattr(message, 'raw_message'):
|
||||
logger.error(f"相关消息原始内容: {message.raw_message}")
|
||||
|
||||
async def _process_relationship(self, message: MessageRecv) -> None:
|
||||
"""处理用户关系逻辑
|
||||
|
||||
Args:
|
||||
message: 消息对象,包含用户信息
|
||||
"""
|
||||
platform = message.message_info.platform
|
||||
user_id = message.message_info.user_info.user_id
|
||||
nickname = message.message_info.user_info.user_nickname
|
||||
cardname = message.message_info.user_info.user_cardname or nickname
|
||||
|
||||
is_known = await relationship_manager.is_known_some_one(platform, user_id)
|
||||
|
||||
if not is_known:
|
||||
logger.info(f"首次认识用户: {nickname}")
|
||||
await relationship_manager.first_knowing_some_one(
|
||||
platform, user_id, nickname, cardname, ""
|
||||
)
|
||||
elif not await relationship_manager.is_qved_name(platform, user_id):
|
||||
logger.info(f"给用户({nickname},{cardname})取名: {nickname}")
|
||||
await relationship_manager.first_knowing_some_one(
|
||||
platform, user_id, nickname, cardname, ""
|
||||
)
|
||||
|
||||
async def _calculate_interest(self, message: MessageRecv) -> Tuple[float, bool]:
|
||||
"""计算消息的兴趣度
|
||||
|
||||
Args:
|
||||
message: 待处理的消息对象
|
||||
|
||||
Returns:
|
||||
Tuple[float, bool]: (兴趣度, 是否被提及)
|
||||
"""
|
||||
is_mentioned, _ = is_mentioned_bot_in_message(message)
|
||||
interested_rate = 0.0
|
||||
|
||||
with Timer("记忆激活"):
|
||||
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
|
||||
message.processed_plain_text,
|
||||
fast_retrieval=True,
|
||||
)
|
||||
logger.trace(f"记忆激活率: {interested_rate:.2f}")
|
||||
|
||||
if is_mentioned:
|
||||
interest_increase_on_mention = 1
|
||||
interested_rate += interest_increase_on_mention
|
||||
|
||||
return interested_rate, is_mentioned
|
||||
|
||||
def _get_message_type(self, message: MessageRecv) -> str:
|
||||
"""获取消息类型
|
||||
|
||||
Args:
|
||||
message: 消息对象
|
||||
|
||||
Returns:
|
||||
str: 消息类型
|
||||
"""
|
||||
if message.message_segment.type != "seglist":
|
||||
return message.message_segment.type
|
||||
|
||||
if (isinstance(message.message_segment.data, list)
|
||||
and all(isinstance(x, Seg) for x in message.message_segment.data)
|
||||
and len(message.message_segment.data) == 1):
|
||||
return message.message_segment.data[0].type
|
||||
|
||||
return "seglist"
|
||||
|
||||
async def process_message(self, message_data: str) -> None:
|
||||
"""处理接收到的原始消息数据
|
||||
|
||||
主要流程:
|
||||
1. 消息解析与初始化
|
||||
2. 消息缓冲处理
|
||||
3. 过滤检查
|
||||
4. 兴趣度计算
|
||||
5. 关系处理
|
||||
|
||||
Args:
|
||||
message_data: 原始消息字符串
|
||||
"""
|
||||
timing_results = {} # 初始化 timing_results
|
||||
message = None
|
||||
try:
|
||||
# 1. 消息解析与初始化
|
||||
message = MessageRecv(message_data)
|
||||
groupinfo = message.message_info.group_info
|
||||
userinfo = message.message_info.user_info
|
||||
messageinfo = message.message_info
|
||||
|
||||
# 消息加入缓冲池
|
||||
# 2. 消息缓冲与流程序化
|
||||
await message_buffer.start_caching_messages(message)
|
||||
|
||||
# 创建聊天流
|
||||
|
||||
chat = await chat_manager.get_or_create_stream(
|
||||
platform=messageinfo.platform,
|
||||
user_info=userinfo,
|
||||
group_info=groupinfo,
|
||||
)
|
||||
|
||||
|
||||
subheartflow = await heartflow.create_subheartflow(chat.stream_id)
|
||||
|
||||
message.update_chat_stream(chat)
|
||||
|
||||
await heartflow.create_subheartflow(chat.stream_id)
|
||||
|
||||
await message.process()
|
||||
logger.trace(f"消息处理成功: {message.processed_plain_text}")
|
||||
|
||||
# 过滤词/正则表达式过滤
|
||||
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
|
||||
message.raw_message, chat, userinfo
|
||||
):
|
||||
|
||||
# 3. 过滤检查
|
||||
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or \
|
||||
self._check_ban_regex(message.raw_message, chat, userinfo):
|
||||
return
|
||||
|
||||
# 查询缓冲器结果
|
||||
# 4. 缓冲检查
|
||||
buffer_result = await message_buffer.query_buffer_result(message)
|
||||
|
||||
# 处理缓冲器结果 (Bombing logic)
|
||||
if not buffer_result:
|
||||
f_type = "seglist"
|
||||
if message.message_segment.type != "seglist":
|
||||
f_type = message.message_segment.type
|
||||
else:
|
||||
if (
|
||||
isinstance(message.message_segment.data, list)
|
||||
and all(isinstance(x, Seg) for x in message.message_segment.data)
|
||||
and len(message.message_segment.data) == 1
|
||||
):
|
||||
f_type = message.message_segment.data[0].type
|
||||
if f_type == "text":
|
||||
logger.debug(f"触发缓冲,消息:{message.processed_plain_text}")
|
||||
elif f_type == "image":
|
||||
logger.debug("触发缓冲,表情包/图片等待中")
|
||||
elif f_type == "seglist":
|
||||
logger.debug("触发缓冲,消息列表等待中")
|
||||
return # 被缓冲器拦截,不生成回复
|
||||
|
||||
# ---- 只有通过缓冲的消息才进行存储和后续处理 ----
|
||||
|
||||
# 存储消息 (使用可能被缓冲器更新过的 message)
|
||||
try:
|
||||
await self.storage.store_message(message, chat)
|
||||
logger.trace(f"存储成功 (通过缓冲后): {message.processed_plain_text}")
|
||||
except Exception as e:
|
||||
logger.error(f"存储消息失败: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
# 存储失败可能仍需考虑是否继续,暂时返回
|
||||
msg_type = self._get_message_type(message)
|
||||
type_messages = {
|
||||
"text": f"触发缓冲,消息:{message.processed_plain_text}",
|
||||
"image": "触发缓冲,表情包/图片等待中",
|
||||
"seglist": "触发缓冲,消息列表等待中"
|
||||
}
|
||||
logger.debug(type_messages.get(msg_type, "触发未知类型缓冲"))
|
||||
return
|
||||
|
||||
# 激活度计算 (使用可能被缓冲器更新过的 message.processed_plain_text)
|
||||
is_mentioned, _ = is_mentioned_bot_in_message(message)
|
||||
interested_rate = 0.0 # 默认值
|
||||
try:
|
||||
with Timer("记忆激活", timing_results):
|
||||
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
|
||||
message.processed_plain_text,
|
||||
fast_retrieval=True, # 使用更新后的文本
|
||||
)
|
||||
logger.trace(f"记忆激活率 (通过缓冲后): {interested_rate:.2f}")
|
||||
except Exception as e:
|
||||
logger.error(f"计算记忆激活率失败: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
# 5. 消息存储
|
||||
await self.storage.store_message(message, chat)
|
||||
logger.trace(f"存储成功: {message.processed_plain_text}")
|
||||
|
||||
# --- 修改:兴趣度更新逻辑 --- #
|
||||
if is_mentioned:
|
||||
interest_increase_on_mention = 1
|
||||
mentioned_boost = interest_increase_on_mention # 从配置获取提及增加值
|
||||
interested_rate += mentioned_boost
|
||||
|
||||
# 更新兴趣度 (调用 SubHeartflow 的方法)
|
||||
# 6. 兴趣度计算与更新
|
||||
interested_rate, is_mentioned = await self._calculate_interest(message)
|
||||
current_time = time.time()
|
||||
await subheartflow.interest_chatting.increase_interest(current_time, value=interested_rate)
|
||||
|
||||
# 添加到 SubHeartflow 的 interest_dict,给normal_chat处理
|
||||
await subheartflow.add_interest_dict_entry(message, interested_rate, is_mentioned)
|
||||
|
||||
# 打印消息接收和处理信息
|
||||
# 7. 日志记录
|
||||
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))
|
||||
current_time = time.strftime("%H点%M分%S秒", time.localtime(message.message_info.time))
|
||||
logger.info(
|
||||
f"[{current_time}][{mes_name}]"
|
||||
f"{message.message_info.user_info.user_nickname}:"
|
||||
f"{userinfo.user_nickname}:"
|
||||
f"{message.processed_plain_text}"
|
||||
f"[兴趣度: {interested_rate:.2f}]"
|
||||
)
|
||||
|
||||
try:
|
||||
is_known = await relationship_manager.is_known_some_one(
|
||||
message.message_info.platform, message.message_info.user_info.user_id
|
||||
)
|
||||
if not is_known:
|
||||
logger.info(f"首次认识用户: {message.message_info.user_info.user_nickname}")
|
||||
await relationship_manager.first_knowing_some_one(
|
||||
message.message_info.platform,
|
||||
message.message_info.user_info.user_id,
|
||||
message.message_info.user_info.user_nickname,
|
||||
message.message_info.user_info.user_cardname or message.message_info.user_info.user_nickname,
|
||||
"",
|
||||
)
|
||||
else:
|
||||
# logger.debug(f"已认识用户: {message.message_info.user_info.user_nickname}")
|
||||
if not await relationship_manager.is_qved_name(
|
||||
message.message_info.platform, message.message_info.user_info.user_id
|
||||
):
|
||||
logger.info(f"更新已认识但未取名的用户: {message.message_info.user_info.user_nickname}")
|
||||
await relationship_manager.first_knowing_some_one(
|
||||
message.message_info.platform,
|
||||
message.message_info.user_info.user_id,
|
||||
message.message_info.user_info.user_nickname,
|
||||
message.message_info.user_info.user_cardname
|
||||
or message.message_info.user_info.user_nickname,
|
||||
"",
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"处理认识关系失败: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
# 8. 关系处理
|
||||
await self._process_relationship(message)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"消息处理失败 (process_message V3): {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
if message: # 记录失败的消息内容
|
||||
logger.error(f"失败消息原始内容: {message.raw_message}")
|
||||
await self._handle_error(e, "消息处理失败", message)
|
||||
|
||||
def _check_ban_words(self, text: str, chat, userinfo) -> bool:
|
||||
"""检查消息中是否包含过滤词"""
|
||||
"""检查消息是否包含过滤词
|
||||
|
||||
Args:
|
||||
text: 待检查的文本
|
||||
chat: 聊天对象
|
||||
userinfo: 用户信息
|
||||
|
||||
Returns:
|
||||
bool: 是否包含过滤词
|
||||
"""
|
||||
for word in global_config.ban_words:
|
||||
if word in text:
|
||||
logger.info(
|
||||
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
|
||||
)
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
logger.info(f"[过滤词识别]消息中含有{word},filtered")
|
||||
return True
|
||||
return False
|
||||
|
||||
def _check_ban_regex(self, text: str, chat, userinfo) -> bool:
|
||||
"""检查消息是否匹配过滤正则表达式"""
|
||||
"""检查消息是否匹配过滤正则表达式
|
||||
|
||||
Args:
|
||||
text: 待检查的文本
|
||||
chat: 聊天对象
|
||||
userinfo: 用户信息
|
||||
|
||||
Returns:
|
||||
bool: 是否匹配过滤正则
|
||||
"""
|
||||
for pattern in global_config.ban_msgs_regex:
|
||||
if pattern.search(text):
|
||||
logger.info(
|
||||
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
|
||||
)
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered")
|
||||
return True
|
||||
return False
|
||||
|
||||
@@ -21,8 +21,7 @@ logger = get_module_logger("prompt")
|
||||
def init_prompt():
|
||||
Prompt(
|
||||
"""
|
||||
你有以下信息可供参考:
|
||||
{structured_info}
|
||||
{info_from_tools}
|
||||
{chat_target}
|
||||
{chat_talking_prompt}
|
||||
现在你想要在群里发言或者回复。\n
|
||||
@@ -38,6 +37,12 @@ def init_prompt():
|
||||
{moderation_prompt}。注意:回复不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。""",
|
||||
"heart_flow_prompt",
|
||||
)
|
||||
|
||||
Prompt("""
|
||||
你有以下信息可供参考:
|
||||
{structured_info}
|
||||
以上的消息是你获取到的消息,或许可以帮助你更好地回复。
|
||||
""", "info_from_tools")
|
||||
|
||||
# Planner提示词
|
||||
Prompt(
|
||||
@@ -47,13 +52,9 @@ def init_prompt():
|
||||
看了以上内容,你产生的内心想法是:
|
||||
{current_mind_block}
|
||||
请结合你的内心想法和观察到的聊天内容,分析情况并使用 'decide_reply_action' 工具来决定你的最终行动。
|
||||
决策依据:
|
||||
注意你必须参考以下决策依据来选择工具:
|
||||
1. 如果聊天内容无聊、与你无关、或者你的内心想法认为不适合回复(例如在讨论你不懂或不感兴趣的话题),选择 'no_reply'。
|
||||
2. 如果聊天内容值得回应,且适合用文字表达(参考你的内心想法),选择 'text_reply'。如果你有情绪想表达,想在文字后追加一个表达情绪的表情,请同时提供 'emoji_query' (每个标签用一个词组表示,格式如下:
|
||||
幽默的讽刺
|
||||
悲伤的无奈
|
||||
愤怒的抗议
|
||||
愤怒的讽刺)。
|
||||
2. 如果聊天内容值得回应,且适合用文字表达(参考你的内心想法),选择 'text_reply'。如果你有情绪想表达,想在文字后追加一个表达情绪的表情,请同时提供 'emoji_query' (每个标签用一个词组表示,格式例如:幽默的讽刺,单纯的开心,愤怒的抗议)。
|
||||
3. 如果聊天内容或你的内心想法适合用一个表情来回应,选择 'emoji_reply' 并提供表情主题 'emoji_query'。
|
||||
4. 如果最后一条消息是你自己发的,观察到的内容只有你自己的发言,并且之后没有人回复你,通常选择 'no_reply',除非有特殊原因需要追问。
|
||||
5. 如果聊天记录中最新的消息是你自己发送的,并且你还想继续回复,你应该紧紧衔接你发送的消息,进行话题的深入,补充,或追问等等;。
|
||||
@@ -152,7 +153,7 @@ class PromptBuilder:
|
||||
message_list_before_now,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="relative",
|
||||
timestamp_mode="normal",
|
||||
read_mark=0.0,
|
||||
)
|
||||
|
||||
@@ -162,12 +163,19 @@ class PromptBuilder:
|
||||
prompt_ger += "你喜欢用倒装句"
|
||||
if random.random() < 0.02:
|
||||
prompt_ger += "你喜欢用反问句"
|
||||
|
||||
if structured_info:
|
||||
structured_info_prompt = await global_prompt_manager.format_prompt(
|
||||
"info_from_tools",
|
||||
structured_info = structured_info)
|
||||
else:
|
||||
structured_info_prompt = ""
|
||||
|
||||
logger.debug("开始构建prompt")
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"heart_flow_prompt",
|
||||
structured_info=structured_info,
|
||||
info_from_tools=structured_info_prompt,
|
||||
chat_target=await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||||
if chat_in_group
|
||||
else await global_prompt_manager.get_prompt_async("chat_target_private1"),
|
||||
|
||||
@@ -256,7 +256,7 @@ class MoodManager:
|
||||
def print_mood_status(self) -> None:
|
||||
"""打印当前情绪状态"""
|
||||
logger.info(
|
||||
f"[情绪状态]愉悦度: {self.current_mood.valence:.2f}, "
|
||||
f"愉悦度: {self.current_mood.valence:.2f}, "
|
||||
f"唤醒度: {self.current_mood.arousal:.2f}, "
|
||||
f"心情: {self.current_mood.text}"
|
||||
)
|
||||
|
||||
@@ -304,7 +304,7 @@ async def build_readable_messages(
|
||||
|
||||
readable_read_mark = translate_timestamp_to_human_readable(read_mark, mode=timestamp_mode)
|
||||
read_mark_line = (
|
||||
f"\n\n--- 以上消息已读 (标记时间: {readable_read_mark}) ---\n--- 请关注你上次思考之后以下的新消息---\n"
|
||||
f"\n\n--- 以上消息已读 (标记时间: {readable_read_mark}) ---\n--- 以下新消息未读---\n"
|
||||
)
|
||||
|
||||
# 组合结果,确保空部分不引入多余的标记或换行
|
||||
|
||||
Reference in New Issue
Block a user