feat: 增强聊天回复生成器,添加参与者信息和聊天历史处理逻辑
This commit is contained in:
@@ -553,18 +553,56 @@ class DefaultReplyer:
|
||||
if user_info_obj:
|
||||
sender_name = getattr(user_info_obj, "user_nickname", "") or getattr(user_info_obj, "user_cardname", "")
|
||||
|
||||
# 获取参与者信息
|
||||
participants = []
|
||||
try:
|
||||
# 尝试从聊天流中获取参与者信息
|
||||
if hasattr(stream, 'chat_history_manager'):
|
||||
history_manager = stream.chat_history_manager
|
||||
# 获取最近的参与者列表
|
||||
recent_records = history_manager.get_memory_chat_history(
|
||||
user_id=getattr(stream, "user_id", ""),
|
||||
count=10,
|
||||
memory_types=["chat_message", "system_message"]
|
||||
)
|
||||
# 提取唯一的参与者名称
|
||||
for record in recent_records[:5]: # 最近5条记录
|
||||
content = record.get("content", {})
|
||||
participant = content.get("participant_name")
|
||||
if participant and participant not in participants:
|
||||
participants.append(participant)
|
||||
|
||||
# 如果消息包含发送者信息,也添加到参与者列表
|
||||
if content.get("sender_name") and content.get("sender_name") not in participants:
|
||||
participants.append(content.get("sender_name"))
|
||||
except Exception as e:
|
||||
logger.debug(f"获取参与者信息失败: {e}")
|
||||
|
||||
# 如果发送者不在参与者列表中,添加进去
|
||||
if sender_name and sender_name not in participants:
|
||||
participants.insert(0, sender_name)
|
||||
|
||||
# 格式化聊天历史为更友好的格式
|
||||
formatted_history = ""
|
||||
if chat_history:
|
||||
# 移除过长的历史记录,只保留最近部分
|
||||
lines = chat_history.strip().split('\n')
|
||||
recent_lines = lines[-10:] if len(lines) > 10 else lines
|
||||
formatted_history = '\n'.join(recent_lines)
|
||||
|
||||
query_context = {
|
||||
"chat_history": chat_history if chat_history else "",
|
||||
"chat_history": formatted_history,
|
||||
"sender": sender_name,
|
||||
"participants": participants,
|
||||
}
|
||||
|
||||
# 使用记忆管理器的智能检索(自动优化查询)
|
||||
# 使用记忆管理器的智能检索(多查询策略)
|
||||
memories = await manager.search_memories(
|
||||
query=target,
|
||||
top_k=10,
|
||||
min_importance=0.3,
|
||||
include_forgotten=False,
|
||||
optimize_query=True,
|
||||
use_multi_query=True,
|
||||
context=query_context,
|
||||
)
|
||||
|
||||
|
||||
@@ -432,7 +432,6 @@ class MemoryManager:
|
||||
time_range: Optional[Tuple[datetime, datetime]] = None,
|
||||
min_importance: float = 0.0,
|
||||
include_forgotten: bool = False,
|
||||
optimize_query: bool = True,
|
||||
use_multi_query: bool = True,
|
||||
expand_depth: int = 1,
|
||||
context: Optional[Dict[str, Any]] = None,
|
||||
@@ -453,7 +452,6 @@ class MemoryManager:
|
||||
time_range: 时间范围过滤 (start, end)
|
||||
min_importance: 最小重要性
|
||||
include_forgotten: 是否包含已遗忘的记忆
|
||||
optimize_query: 是否使用小模型优化查询(已弃用,被 use_multi_query 替代)
|
||||
use_multi_query: 是否使用多查询策略(推荐,默认True)
|
||||
expand_depth: 图扩展深度(0=禁用, 1=推荐, 2-3=深度探索)
|
||||
context: 查询上下文(用于优化)
|
||||
|
||||
@@ -629,27 +629,55 @@ class MemoryTools:
|
||||
try:
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import model_config
|
||||
|
||||
|
||||
llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.utils_small,
|
||||
request_type="memory.multi_query"
|
||||
)
|
||||
|
||||
participants = context.get("participants", []) if context else []
|
||||
prompt = f"""为查询生成3-5个不同角度的搜索语句(JSON格式)。
|
||||
|
||||
**查询:** {query}
|
||||
# 获取上下文信息
|
||||
participants = context.get("participants", []) if context else []
|
||||
chat_history = context.get("chat_history", "") if context else ""
|
||||
sender = context.get("sender", "") if context else ""
|
||||
|
||||
# 处理聊天历史,提取最近5条左右的对话
|
||||
recent_chat = ""
|
||||
if chat_history:
|
||||
lines = chat_history.strip().split('\n')
|
||||
# 取最近5条消息
|
||||
recent_lines = lines[-5:] if len(lines) > 5 else lines
|
||||
recent_chat = '\n'.join(recent_lines)
|
||||
|
||||
prompt = f"""基于聊天上下文为查询生成3-5个不同角度的搜索语句(JSON格式)。
|
||||
|
||||
**当前查询:** {query}
|
||||
**发送者:** {sender if sender else '未知'}
|
||||
**参与者:** {', '.join(participants) if participants else '无'}
|
||||
|
||||
**原则:** 对复杂查询(如"杰瑞喵如何评价新的记忆系统"),应生成:
|
||||
1. 完整查询(权重1.0)
|
||||
2. 每个关键概念独立查询(权重0.8)- 重要!
|
||||
3. 主体+动作(权重0.6)
|
||||
**最近聊天记录(最近5条):**
|
||||
{recent_chat if recent_chat else '无聊天历史'}
|
||||
|
||||
**输出JSON:**
|
||||
**分析原则:**
|
||||
1. **上下文理解**:根据聊天历史理解查询的真实意图
|
||||
2. **指代消解**:识别并代换"他"、"她"、"它"、"那个"等指代词
|
||||
3. **话题关联**:结合最近讨论的话题生成更精准的查询
|
||||
4. **查询分解**:对复杂查询分解为多个子查询
|
||||
|
||||
**生成策略:**
|
||||
1. **完整查询**(权重1.0):结合上下文的完整查询,包含指代消解
|
||||
2. **关键概念查询**(权重0.8):查询中的核心概念,特别是聊天中提到的实体
|
||||
3. **话题扩展查询**(权重0.7):基于最近聊天话题的相关查询
|
||||
4. **动作/情感查询**(权重0.6):如果涉及情感或动作,生成相关查询
|
||||
|
||||
**输出JSON格式:**
|
||||
```json
|
||||
{{"queries": [{{"text": "查询1", "weight": 1.0}}, {{"text": "查询2", "weight": 0.8}}]}}
|
||||
```"""
|
||||
{{"queries": [{{"text": "查询语句", "weight": 1.0}}, {{"text": "查询语句", "weight": 0.8}}]}}
|
||||
```
|
||||
|
||||
**示例:**
|
||||
- 查询:"他怎么样了?" + 聊天中提到"小明生病了" → "小明身体恢复情况"
|
||||
- 查询:"那个项目" + 聊天中讨论"记忆系统开发" → "记忆系统项目进展"
|
||||
"""
|
||||
|
||||
response, _ = await llm.generate_response_async(prompt, temperature=0.3, max_tokens=250)
|
||||
|
||||
|
||||
@@ -652,7 +652,7 @@ class ChatterPlanFilter:
|
||||
enhanced_memories = await memory_manager.search_memories(
|
||||
query=query,
|
||||
top_k=5,
|
||||
optimize_query=False, # 直接使用关键词查询
|
||||
use_multi_query=False, # 直接使用关键词查询
|
||||
)
|
||||
|
||||
if not enhanced_memories:
|
||||
|
||||
Reference in New Issue
Block a user