Merge branch 'dev' of https://github.com/MaiM-with-u/MaiBot into FPC-test

This commit is contained in:
Bakadax
2025-04-28 09:03:16 +08:00
5 changed files with 160 additions and 40 deletions

View File

@@ -1,45 +1,45 @@
# 0.6.3 版本发布前待办事项
- **统一化人格配置:**
- [0.6.3]**统一化人格配置:**
- 检查代码中是否存在硬编码的人格相关配置。
- 将所有硬编码的人格配置替换为使用 `individual` 模块进行管理。
- **在 Planner 中添加回复计数信息:**
- [0.6.3]**在 Planner 中添加回复计数信息:**
- 修改 `HeartFlowChatInstance``Plan` 阶段逻辑。
- 将当前周期的回复计数(或其他相关统计信息)作为输入提供给 Planner。
- 目的是为 Planner 提供负反馈,减少连续回复或不当回复的可能性。
- **恢复/检查被停止的功能:**
- [0.6.3]**恢复/检查被停止的功能:**
- 全面审查代码,特别是对比之前的版本或设计文档。
- 识别并重新启用那些暂时被禁用但应该恢复的功能。
- 确认没有核心功能意外丢失。
- **参数提取与配置化:**
- [0.6.3]**参数提取与配置化:**
- 识别代码中散落的各种可调参数例如概率阈值、时间间隔、次数限制、LLM 模型名称等)。
- 将这些参数统一提取到模块或类的顶部。
- 最终将这些参数移至外部配置文件(如 YAML 或 JSON 文件),方便用户自定义。
- **提供 HFC (HeartFlowChatInstance) 开启/关闭选项:**
- **[0.6.3]提供 HFC (HeartFlowChatInstance) 开启/关闭选项:**
- 增加一个全局或针对特定子心流的配置选项。
- 允许用户控制是否启用 `FOCUSED` 状态以及关联的 `HeartFlowChatInstance`
- 如果禁用 HFC子心流可能只会在 `ABSENT``CHAT` 状态间切换。
- **添加防破线机制 (针对接收消息):**
- [0.6.3]**添加防破线机制 (针对接收消息):**
- 在消息处理流程的早期阶段 (例如 `HeartHC_processor` 或类似模块),增加对接收到的消息文本长度的检查。
- 对超过预设长度阈值的*接收*消息进行截断处理。
- 目的是防止过长的输入(可能包含"破限"提示词影响后续的兴趣计算、LLM 回复生成等环节。
- **NormalChat 模式下的记忆与 Prompt 优化:**
- [0.6.3]**NormalChat 模式下的记忆与 Prompt 优化:**
- 重点审视 `NormalChatInstance` (闲聊/推理模式) 中记忆调用 (例如 `HippocampusManager` 的使用) 的方式。
- 评估在该模式下引入工具调用 (Tool Calling) 机制以更结构化访问记忆的必要性。
- 优化 `NormalChatInstance` 中与记忆检索、应用相关的 Prompt。
- **完善简易兴趣监控 GUI:**
- [0.6.3]**完善简易兴趣监控 GUI:**
- 改进现有的、用于监控聊天兴趣度 (`InterestChatting`?) 的简单 GUI 界面。
- 使其能更清晰地展示关键参数和状态,作为查看日志之外的更直观的监控方式。
- 作为完整外部 UI 开发完成前的临时替代方案。
- **修复/完善中期记忆 (Midterm Memory):**
- [0.6.3]**修复/完善中期记忆 (Midterm Memory):**
- 检查当前中期记忆模块的状态。
- 修复已知问题,使其能够稳定运行。
- (优先级视开发时间而定)

View File

@@ -22,6 +22,7 @@ def init_prompt():
prompt += "{extra_info}\n"
prompt += "{prompt_personality}\n"
prompt += "{last_loop_prompt}\n"
prompt += "{cycle_info_block}\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容\n{chat_observe_info}\n"
prompt += "\n你现在{mood_info}\n"
prompt += (
@@ -66,7 +67,7 @@ class SubMind:
self.past_mind = []
self.structured_info = {}
async def do_thinking_before_reply(self, last_cycle: CycleInfo = None):
async def do_thinking_before_reply(self, history_cycle: list[CycleInfo] = None):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
@@ -130,6 +131,7 @@ class SubMind:
("进行深入思考", 0.2),
]
last_cycle = history_cycle[-1] if history_cycle else None
# 上一次决策信息
if last_cycle != None:
last_action = last_cycle.action_type
@@ -151,6 +153,49 @@ class SubMind:
else:
last_loop_prompt = ""
# 准备循环信息块 (分析最近的活动循环)
recent_active_cycles = []
for cycle in reversed(history_cycle):
# 只关心实际执行了动作的循环
if cycle.action_taken:
recent_active_cycles.append(cycle)
# 最多找最近的3个活动循环
if len(recent_active_cycles) == 3:
break
cycle_info_block = ""
consecutive_text_replies = 0
responses_for_prompt = []
# 检查这最近的活动循环中有多少是连续的文本回复 (从最近的开始看)
for cycle in recent_active_cycles:
if cycle.action_type == "text_reply":
consecutive_text_replies += 1
# 获取回复内容,如果不存在则返回'[空回复]'
response_text = cycle.response_info.get("response_text", [])
# 使用简单的 join 来格式化回复内容列表
formatted_response = "[空回复]" if not response_text else " ".join(response_text)
responses_for_prompt.append(formatted_response)
else:
# 一旦遇到非文本回复,连续性中断
break
# 根据连续文本回复的数量构建提示信息
# 注意: responses_for_prompt 列表是从最近到最远排序的
if consecutive_text_replies >= 3: # 如果最近的三个活动都是文本回复
cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意'
elif consecutive_text_replies == 2: # 如果最近的两个活动是文本回复
cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意'
elif consecutive_text_replies == 1: # 如果最近的一个活动是文本回复
cycle_info_block = f'你刚刚已经回复一条消息(内容: "{responses_for_prompt[0]}"'
# 包装提示块,增加可读性,即使没有连续回复也给个标记
if cycle_info_block:
cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n"
else:
# 如果最近的活动循环不是文本回复,或者没有活动循环
cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n"
# 加权随机选择思考指导
hf_do_next = local_random.choices(
[option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1
@@ -167,6 +212,7 @@ class SubMind:
mood_info=mood_info,
hf_do_next=hf_do_next,
last_loop_prompt=last_loop_prompt,
cycle_info_block=cycle_info_block,
)
# logger.debug(f"[{self.subheartflow_id}] 心流思考提示词构建完成")

View File

@@ -408,7 +408,7 @@ class HeartFChatting:
# 在获取规划结果后检查新消息
if await self._check_new_messages(planner_start_db_time):
if random.random() < 0.3:
if random.random() < 0.2:
logger.info(f"{self.log_prefix} 看到了新消息,麦麦决定重新观察和规划...")
# 重新规划
with Timer("重新决策", cycle_timers):
@@ -705,12 +705,14 @@ class HeartFChatting:
await observation.observe()
# 获取上一个循环的信息
last_cycle = self._cycle_history[-1] if self._cycle_history else None
# last_cycle = self._cycle_history[-1] if self._cycle_history else None
with Timer("思考", cycle_timers):
# 获取上一个循环的动作
# 传递上一个循环的信息给 do_thinking_before_reply
current_mind, _past_mind = await self.sub_mind.do_thinking_before_reply(last_cycle=last_cycle)
current_mind, _past_mind = await self.sub_mind.do_thinking_before_reply(
history_cycle=self._cycle_history
)
return current_mind
except Exception as e:
logger.error(f"{self.log_prefix}[SubMind] 思考失败: {e}")
@@ -762,9 +764,15 @@ class HeartFChatting:
# 执行LLM请求
try:
print("prompt")
print("prompt")
print("prompt")
print(payload)
print(prompt)
response = await self.planner_llm._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
)
print(response)
except Exception as req_e:
logger.error(f"{self.log_prefix}[Planner] LLM请求执行失败: {req_e}")
return {
@@ -779,6 +787,9 @@ class HeartFChatting:
# 处理LLM响应
with Timer("使用工具", cycle_timers):
# 使用辅助函数处理工具调用响应
print(1111122222222222)
print(response)
success, arguments, error_msg = process_llm_tool_response(
response, expected_tool_name="decide_reply_action", log_prefix=f"{self.log_prefix}[Planner] "
)
@@ -968,38 +979,87 @@ class HeartFChatting:
replan_prompt: str,
) -> str:
"""构建 Planner LLM 的提示词"""
try:
# 准备结构化信息块
structured_info_block = ""
if structured_info:
structured_info_block = f"以下是一些额外的信息:\n{structured_info}\n"
# 准备结构化信息
structured_info_block = ""
if structured_info:
structured_info_block = f"以下是一些额外的信息:\n{structured_info}\n"
# 准备聊天内容
chat_content_block = ""
if observed_messages_str:
chat_content_block = "观察到的最新聊天内容如下:\n---\n"
chat_content_block += observed_messages_str
chat_content_block += "\n---"
else:
chat_content_block = "当前没有观察到新的聊天内容。\n"
# 准备聊天内容
chat_content_block = ""
if observed_messages_str:
chat_content_block = "观察到的最新聊天内容如下:\n---\n"
chat_content_block += observed_messages_str
chat_content_block += "\n---"
else:
chat_content_block = "当前没有观察到新的聊天内容。\n"
# 准备当前思维
current_mind_block = ""
if current_mind:
current_mind_block = f"{current_mind}"
else:
current_mind_block = "[没有特别的想法]"
# 准备当前思维块
current_mind_block = ""
if current_mind:
current_mind_block = f"{current_mind}"
else:
current_mind_block = "[没有特别的想法]"
# 准备循环信息块 (分析最近的活动循环)
recent_active_cycles = []
for cycle in reversed(self._cycle_history):
# 只关心实际执行了动作的循环
if cycle.action_taken:
recent_active_cycles.append(cycle)
# 最多找最近的3个活动循环
if len(recent_active_cycles) == 3:
break
# 获取提示词模板并填充数据
prompt = (await global_prompt_manager.get_prompt_async("planner_prompt")).format(
bot_name=global_config.BOT_NICKNAME,
structured_info_block=structured_info_block,
chat_content_block=chat_content_block,
current_mind_block=current_mind_block,
replan=replan_prompt,
)
cycle_info_block = ""
consecutive_text_replies = 0
responses_for_prompt = []
return prompt
# 检查这最近的活动循环中有多少是连续的文本回复 (从最近的开始看)
for cycle in recent_active_cycles:
if cycle.action_type == "text_reply":
consecutive_text_replies += 1
# 获取回复内容,如果不存在则返回'[空回复]'
response_text = cycle.response_info.get("response_text", [])
# 使用简单的 join 来格式化回复内容列表
formatted_response = "[空回复]" if not response_text else " ".join(response_text)
responses_for_prompt.append(formatted_response)
else:
# 一旦遇到非文本回复,连续性中断
break
# 根据连续文本回复的数量构建提示信息
# 注意: responses_for_prompt 列表是从最近到最远排序的
if consecutive_text_replies >= 3: # 如果最近的三个活动都是文本回复
cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意'
elif consecutive_text_replies == 2: # 如果最近的两个活动是文本回复
cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意'
elif consecutive_text_replies == 1: # 如果最近的一个活动是文本回复
cycle_info_block = f'你刚刚已经回复一条消息(内容: "{responses_for_prompt[0]}"'
# 包装提示块,增加可读性,即使没有连续回复也给个标记
if cycle_info_block:
cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n"
else:
# 如果最近的活动循环不是文本回复,或者没有活动循环
cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n"
# 获取提示词模板并填充数据
prompt = (await global_prompt_manager.get_prompt_async("planner_prompt")).format(
bot_name=global_config.BOT_NICKNAME,
structured_info_block=structured_info_block,
chat_content_block=chat_content_block,
current_mind_block=current_mind_block,
replan=replan_prompt,
cycle_info_block=cycle_info_block,
)
return prompt
except Exception as e:
logger.error(f"{self.log_prefix}[Planner] 构建提示词时出错: {e}")
logger.error(traceback.format_exc())
return ""
# --- 回复器 (Replier) 的定义 --- #
async def _replier_work(

View File

@@ -55,6 +55,7 @@ def init_prompt():
你的内心想法:
{current_mind_block}
{replan}
{cycle_info_block}
请综合分析聊天内容和你看到的新消息,参考内心想法,使用'decide_reply_action'工具做出决策。决策时请注意:

View File

@@ -213,6 +213,9 @@ def process_llm_tool_calls(response: List[Any], log_prefix: str = "") -> Tuple[b
元组 (成功标志, 工具调用列表, 错误消息)
"""
# 确保响应格式正确
print(response)
print(11111111111111111)
if len(response) != 3:
return False, [], f"LLM响应元素数量不正确: 预期3个元素实际{len(response)}"
@@ -274,7 +277,17 @@ def process_llm_tool_response(
if not success:
return False, {}, error_msg
# 新增检查:确保响应包含预期的工具调用部分
if len(normalized_response) != 3:
# 如果长度不为3说明LLM响应不包含工具调用部分这在期望工具调用的上下文中是错误的
error_msg = (
f"LLM响应未包含预期的工具调用部分: 元素数量{len(normalized_response)},响应内容:{normalized_response}"
)
logger.warning(f"{log_prefix}{error_msg}")
return False, {}, error_msg
# 使用新的工具调用处理函数
# 此时已知 normalized_response 长度必定为 3
success, valid_tool_calls, error_msg = process_llm_tool_calls(normalized_response, log_prefix)
if not success:
return False, {}, error_msg