ruff
This commit is contained in:
@@ -17,19 +17,19 @@
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List, Tuple
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
|
||||
# 配置日志
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(levelname)s - %(message)s',
|
||||
format="%(asctime)s - %(levelname)s - %(message)s",
|
||||
handlers=[
|
||||
logging.StreamHandler(),
|
||||
logging.FileHandler('embedding_cleanup.log', encoding='utf-8')
|
||||
logging.FileHandler("embedding_cleanup.log", encoding="utf-8")
|
||||
]
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -49,13 +49,13 @@ class EmbeddingCleaner:
|
||||
self.cleaned_files = []
|
||||
self.errors = []
|
||||
self.stats = {
|
||||
'files_processed': 0,
|
||||
'embedings_removed': 0,
|
||||
'bytes_saved': 0,
|
||||
'nodes_processed': 0
|
||||
"files_processed": 0,
|
||||
"embedings_removed": 0,
|
||||
"bytes_saved": 0,
|
||||
"nodes_processed": 0
|
||||
}
|
||||
|
||||
def find_json_files(self) -> List[Path]:
|
||||
def find_json_files(self) -> list[Path]:
|
||||
"""查找可能包含向量数据的 JSON 文件"""
|
||||
json_files = []
|
||||
|
||||
@@ -65,7 +65,7 @@ class EmbeddingCleaner:
|
||||
json_files.append(memory_graph_file)
|
||||
|
||||
# 测试数据文件
|
||||
test_dir = self.data_dir / "test_*"
|
||||
self.data_dir / "test_*"
|
||||
for test_path in self.data_dir.glob("test_*/memory_graph.json"):
|
||||
if test_path.exists():
|
||||
json_files.append(test_path)
|
||||
@@ -82,7 +82,7 @@ class EmbeddingCleaner:
|
||||
logger.info(f"找到 {len(json_files)} 个需要处理的 JSON 文件")
|
||||
return json_files
|
||||
|
||||
def analyze_embedding_in_data(self, data: Dict[str, Any]) -> int:
|
||||
def analyze_embedding_in_data(self, data: dict[str, Any]) -> int:
|
||||
"""
|
||||
分析数据中的 embedding 字段数量
|
||||
|
||||
@@ -97,7 +97,7 @@ class EmbeddingCleaner:
|
||||
def count_embeddings(obj):
|
||||
nonlocal embedding_count
|
||||
if isinstance(obj, dict):
|
||||
if 'embedding' in obj:
|
||||
if "embedding" in obj:
|
||||
embedding_count += 1
|
||||
for value in obj.values():
|
||||
count_embeddings(value)
|
||||
@@ -108,7 +108,7 @@ class EmbeddingCleaner:
|
||||
count_embeddings(data)
|
||||
return embedding_count
|
||||
|
||||
def clean_embedding_from_data(self, data: Dict[str, Any]) -> Tuple[Dict[str, Any], int]:
|
||||
def clean_embedding_from_data(self, data: dict[str, Any]) -> tuple[dict[str, Any], int]:
|
||||
"""
|
||||
从数据中移除 embedding 字段
|
||||
|
||||
@@ -123,8 +123,8 @@ class EmbeddingCleaner:
|
||||
def remove_embeddings(obj):
|
||||
nonlocal removed_count
|
||||
if isinstance(obj, dict):
|
||||
if 'embedding' in obj:
|
||||
del obj['embedding']
|
||||
if "embedding" in obj:
|
||||
del obj["embedding"]
|
||||
removed_count += 1
|
||||
for value in obj.values():
|
||||
remove_embeddings(value)
|
||||
@@ -162,14 +162,14 @@ class EmbeddingCleaner:
|
||||
data = orjson.loads(original_content)
|
||||
except orjson.JSONDecodeError:
|
||||
# 回退到标准 json
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
with open(file_path, encoding="utf-8") as f:
|
||||
data = json.load(f)
|
||||
|
||||
# 分析 embedding 数据
|
||||
embedding_count = self.analyze_embedding_in_data(data)
|
||||
|
||||
if embedding_count == 0:
|
||||
logger.info(f" ✓ 文件中没有 embedding 数据,跳过")
|
||||
logger.info(" ✓ 文件中没有 embedding 数据,跳过")
|
||||
return True
|
||||
|
||||
logger.info(f" 发现 {embedding_count} 个 embedding 字段")
|
||||
@@ -193,30 +193,30 @@ class EmbeddingCleaner:
|
||||
cleaned_data,
|
||||
indent=2,
|
||||
ensure_ascii=False
|
||||
).encode('utf-8')
|
||||
).encode("utf-8")
|
||||
|
||||
cleaned_size = len(cleaned_content)
|
||||
bytes_saved = original_size - cleaned_size
|
||||
|
||||
# 原子写入
|
||||
temp_file = file_path.with_suffix('.tmp')
|
||||
temp_file = file_path.with_suffix(".tmp")
|
||||
temp_file.write_bytes(cleaned_content)
|
||||
temp_file.replace(file_path)
|
||||
|
||||
logger.info(f" ✓ 清理完成:")
|
||||
logger.info(" ✓ 清理完成:")
|
||||
logger.info(f" - 移除 embedding 字段: {removed_count}")
|
||||
logger.info(f" - 节省空间: {bytes_saved:,} 字节 ({bytes_saved/original_size*100:.1f}%)")
|
||||
logger.info(f" - 新文件大小: {cleaned_size:,} 字节")
|
||||
|
||||
# 更新统计
|
||||
self.stats['embedings_removed'] += removed_count
|
||||
self.stats['bytes_saved'] += bytes_saved
|
||||
self.stats["embedings_removed"] += removed_count
|
||||
self.stats["bytes_saved"] += bytes_saved
|
||||
|
||||
else:
|
||||
logger.info(f" [试运行] 将移除 {embedding_count} 个 embedding 字段")
|
||||
self.stats['embedings_removed'] += embedding_count
|
||||
self.stats["embedings_removed"] += embedding_count
|
||||
|
||||
self.stats['files_processed'] += 1
|
||||
self.stats["files_processed"] += 1
|
||||
self.cleaned_files.append(file_path)
|
||||
return True
|
||||
|
||||
@@ -236,12 +236,12 @@ class EmbeddingCleaner:
|
||||
节点数量
|
||||
"""
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
with open(file_path, encoding="utf-8") as f:
|
||||
data = json.load(f)
|
||||
|
||||
node_count = 0
|
||||
if 'nodes' in data and isinstance(data['nodes'], list):
|
||||
node_count = len(data['nodes'])
|
||||
if "nodes" in data and isinstance(data["nodes"], list):
|
||||
node_count = len(data["nodes"])
|
||||
|
||||
return node_count
|
||||
|
||||
@@ -268,7 +268,7 @@ class EmbeddingCleaner:
|
||||
|
||||
# 统计总节点数
|
||||
total_nodes = sum(self.analyze_nodes_in_file(f) for f in json_files)
|
||||
self.stats['nodes_processed'] = total_nodes
|
||||
self.stats["nodes_processed"] = total_nodes
|
||||
|
||||
logger.info(f"总计 {len(json_files)} 个文件,{total_nodes} 个节点")
|
||||
|
||||
@@ -295,8 +295,8 @@ class EmbeddingCleaner:
|
||||
|
||||
if not dry_run:
|
||||
logger.info(f"节省空间: {self.stats['bytes_saved']:,} 字节")
|
||||
if self.stats['bytes_saved'] > 0:
|
||||
mb_saved = self.stats['bytes_saved'] / 1024 / 1024
|
||||
if self.stats["bytes_saved"] > 0:
|
||||
mb_saved = self.stats["bytes_saved"] / 1024 / 1024
|
||||
logger.info(f"节省空间: {mb_saved:.2f} MB")
|
||||
|
||||
if self.errors:
|
||||
@@ -342,7 +342,7 @@ def main():
|
||||
print(" 请确保向量数据库正在正常工作。")
|
||||
print()
|
||||
response = input("确认继续?(yes/no): ")
|
||||
if response.lower() not in ['yes', 'y', '是']:
|
||||
if response.lower() not in ["yes", "y", "是"]:
|
||||
print("操作已取消")
|
||||
return
|
||||
|
||||
|
||||
@@ -22,7 +22,6 @@ import argparse
|
||||
import asyncio
|
||||
import gc
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import threading
|
||||
@@ -30,7 +29,6 @@ import time
|
||||
from collections import defaultdict
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import psutil
|
||||
|
||||
@@ -101,10 +99,10 @@ async def monitor_bot_process(bot_process: subprocess.Popen, interval: int = 5):
|
||||
if children:
|
||||
print(f" 子进程: {info['children_count']} 个")
|
||||
print(f" 子进程内存: {info['children_mem_mb']:.2f} MB")
|
||||
total_mem = info['rss_mb'] + info['children_mem_mb']
|
||||
total_mem = info["rss_mb"] + info["children_mem_mb"]
|
||||
print(f" 总内存: {total_mem:.2f} MB")
|
||||
|
||||
print(f"\n 📋 子进程详情:")
|
||||
print("\n 📋 子进程详情:")
|
||||
for idx, child in enumerate(children, 1):
|
||||
try:
|
||||
child_mem = child.memory_info().rss / 1024 / 1024
|
||||
@@ -119,13 +117,13 @@ async def monitor_bot_process(bot_process: subprocess.Popen, interval: int = 5):
|
||||
|
||||
if len(history) > 1:
|
||||
prev = history[-2]
|
||||
rss_diff = info['rss_mb'] - prev['rss_mb']
|
||||
print(f"\n变化:")
|
||||
rss_diff = info["rss_mb"] - prev["rss_mb"]
|
||||
print("\n变化:")
|
||||
print(f" RSS: {rss_diff:+.2f} MB")
|
||||
if rss_diff > 10:
|
||||
print(f" ⚠️ 内存增长较快!")
|
||||
if info['rss_mb'] > 1000:
|
||||
print(f" ⚠️ 内存使用超过 1GB!")
|
||||
print(" ⚠️ 内存增长较快!")
|
||||
if info["rss_mb"] > 1000:
|
||||
print(" ⚠️ 内存使用超过 1GB!")
|
||||
|
||||
print(f"{'=' * 80}\n")
|
||||
await asyncio.sleep(interval)
|
||||
@@ -163,7 +161,7 @@ def save_process_history(history: list, pid: int):
|
||||
f.write(f"RSS: {info['rss_mb']:.2f} MB\n")
|
||||
f.write(f"VMS: {info['vms_mb']:.2f} MB\n")
|
||||
f.write(f"占比: {info['percent']:.2f}%\n")
|
||||
if info['children_count'] > 0:
|
||||
if info["children_count"] > 0:
|
||||
f.write(f"子进程: {info['children_count']} 个\n")
|
||||
f.write(f"子进程内存: {info['children_mem_mb']:.2f} MB\n")
|
||||
f.write("\n")
|
||||
@@ -264,7 +262,7 @@ async def run_monitor_mode(interval: int):
|
||||
class ObjectMemoryProfiler:
|
||||
"""对象级内存分析器"""
|
||||
|
||||
def __init__(self, interval: int = 10, output_file: Optional[str] = None, object_limit: int = 20):
|
||||
def __init__(self, interval: int = 10, output_file: str | None = None, object_limit: int = 20):
|
||||
self.interval = interval
|
||||
self.output_file = output_file
|
||||
self.object_limit = object_limit
|
||||
@@ -274,7 +272,7 @@ class ObjectMemoryProfiler:
|
||||
self.tracker = tracker.SummaryTracker()
|
||||
self.iteration = 0
|
||||
|
||||
def get_object_stats(self) -> Dict:
|
||||
def get_object_stats(self) -> dict:
|
||||
"""获取当前进程的对象统计(所有线程)"""
|
||||
if not PYMPLER_AVAILABLE:
|
||||
return {}
|
||||
@@ -317,7 +315,7 @@ class ObjectMemoryProfiler:
|
||||
print(f"❌ 获取对象统计失败: {e}")
|
||||
return {}
|
||||
|
||||
def _get_module_stats(self, all_objects: list) -> Dict:
|
||||
def _get_module_stats(self, all_objects: list) -> dict:
|
||||
"""统计各模块的内存占用"""
|
||||
module_mem = defaultdict(lambda: {"count": 0, "size": 0})
|
||||
|
||||
@@ -329,7 +327,7 @@ class ObjectMemoryProfiler:
|
||||
|
||||
if module_name:
|
||||
# 获取顶级模块名(例如 src.chat.xxx -> src)
|
||||
top_module = module_name.split('.')[0]
|
||||
top_module = module_name.split(".")[0]
|
||||
|
||||
obj_size = sys.getsizeof(obj)
|
||||
module_mem[top_module]["count"] += 1
|
||||
@@ -351,7 +349,7 @@ class ObjectMemoryProfiler:
|
||||
"total_modules": len(module_mem)
|
||||
}
|
||||
|
||||
def print_stats(self, stats: Dict, iteration: int):
|
||||
def print_stats(self, stats: dict, iteration: int):
|
||||
"""打印统计信息"""
|
||||
print("\n" + "=" * 80)
|
||||
print(f"🔍 对象级内存分析 #{iteration} - {time.strftime('%H:%M:%S')}")
|
||||
@@ -374,8 +372,8 @@ class ObjectMemoryProfiler:
|
||||
|
||||
print(f"{obj_type:<50} {obj_count:>12,} {size_str:>15}")
|
||||
|
||||
if "module_stats" in stats and stats["module_stats"]:
|
||||
print(f"\n📚 模块内存占用 (前 20 个模块):\n")
|
||||
if stats.get("module_stats"):
|
||||
print("\n📚 模块内存占用 (前 20 个模块):\n")
|
||||
print(f"{'模块名':<40} {'对象数':>12} {'总内存':>15}")
|
||||
print("-" * 80)
|
||||
|
||||
@@ -402,7 +400,7 @@ class ObjectMemoryProfiler:
|
||||
|
||||
if "gc_stats" in stats:
|
||||
gc_stats = stats["gc_stats"]
|
||||
print(f"\n🗑️ 垃圾回收:")
|
||||
print("\n🗑️ 垃圾回收:")
|
||||
print(f" 代 0: {gc_stats['collections'][0]:,} 次")
|
||||
print(f" 代 1: {gc_stats['collections'][1]:,} 次")
|
||||
print(f" 代 2: {gc_stats['collections'][2]:,} 次")
|
||||
@@ -423,7 +421,7 @@ class ObjectMemoryProfiler:
|
||||
self.tracker.print_diff()
|
||||
print("-" * 80)
|
||||
|
||||
def save_to_file(self, stats: Dict):
|
||||
def save_to_file(self, stats: dict):
|
||||
"""保存统计信息到文件"""
|
||||
if not self.output_file:
|
||||
return
|
||||
@@ -441,7 +439,7 @@ class ObjectMemoryProfiler:
|
||||
for obj_type, obj_count, obj_size in stats["summary"]:
|
||||
f.write(f" {obj_type}: {obj_count:,} 个, {obj_size:,} 字节\n")
|
||||
|
||||
if "module_stats" in stats and stats["module_stats"]:
|
||||
if stats.get("module_stats"):
|
||||
f.write("\n模块统计 (前 20 个):\n")
|
||||
for module_name, obj_count, obj_size in stats["module_stats"]["top_modules"]:
|
||||
f.write(f" {module_name}: {obj_count:,} 个对象, {obj_size:,} 字节\n")
|
||||
@@ -452,7 +450,7 @@ class ObjectMemoryProfiler:
|
||||
# 保存 JSONL
|
||||
jsonl_path = str(self.output_file) + ".jsonl"
|
||||
record = {
|
||||
"timestamp": time.strftime('%Y-%m-%d %H:%M:%S'),
|
||||
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
|
||||
"iteration": self.iteration,
|
||||
"total_objects": stats.get("total_objects", 0),
|
||||
"threads": stats.get("threads", []),
|
||||
@@ -479,7 +477,7 @@ class ObjectMemoryProfiler:
|
||||
self.running = True
|
||||
|
||||
def monitor_loop():
|
||||
print(f"🚀 对象分析器已启动")
|
||||
print("🚀 对象分析器已启动")
|
||||
print(f" 监控间隔: {self.interval} 秒")
|
||||
print(f" 对象类型限制: {self.object_limit}")
|
||||
print(f" 输出文件: {self.output_file or '无'}")
|
||||
@@ -506,14 +504,14 @@ class ObjectMemoryProfiler:
|
||||
|
||||
monitor_thread = threading.Thread(target=monitor_loop, daemon=True)
|
||||
monitor_thread.start()
|
||||
print(f"✓ 监控线程已启动\n")
|
||||
print("✓ 监控线程已启动\n")
|
||||
|
||||
def stop(self):
|
||||
"""停止监控"""
|
||||
self.running = False
|
||||
|
||||
|
||||
def run_objects_mode(interval: int, output: Optional[str], object_limit: int):
|
||||
def run_objects_mode(interval: int, output: str | None, object_limit: int):
|
||||
"""对象分析模式主函数"""
|
||||
if not PYMPLER_AVAILABLE:
|
||||
print("❌ pympler 未安装,无法使用对象分析模式")
|
||||
@@ -549,9 +547,9 @@ def run_objects_mode(interval: int, output: Optional[str], object_limit: int):
|
||||
try:
|
||||
import bot
|
||||
|
||||
if hasattr(bot, 'main_async'):
|
||||
if hasattr(bot, "main_async"):
|
||||
asyncio.run(bot.main_async())
|
||||
elif hasattr(bot, 'main'):
|
||||
elif hasattr(bot, "main"):
|
||||
bot.main()
|
||||
else:
|
||||
print("⚠️ bot.py 未找到 main_async() 或 main() 函数")
|
||||
@@ -577,10 +575,10 @@ def run_objects_mode(interval: int, output: Optional[str], object_limit: int):
|
||||
# 可视化模式
|
||||
# ============================================================================
|
||||
|
||||
def load_jsonl(path: Path) -> List[Dict]:
|
||||
def load_jsonl(path: Path) -> list[dict]:
|
||||
"""加载 JSONL 文件"""
|
||||
snapshots = []
|
||||
with open(path, "r", encoding="utf-8") as f:
|
||||
with open(path, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if not line:
|
||||
@@ -592,7 +590,7 @@ def load_jsonl(path: Path) -> List[Dict]:
|
||||
return snapshots
|
||||
|
||||
|
||||
def aggregate_top_types(snapshots: List[Dict], top_n: int = 10):
|
||||
def aggregate_top_types(snapshots: list[dict], top_n: int = 10):
|
||||
"""聚合前 N 个对象类型的时间序列"""
|
||||
type_max = defaultdict(int)
|
||||
for snap in snapshots:
|
||||
@@ -622,7 +620,7 @@ def aggregate_top_types(snapshots: List[Dict], top_n: int = 10):
|
||||
return times, series
|
||||
|
||||
|
||||
def plot_series(times: List, series: Dict, output: Path, top_n: int):
|
||||
def plot_series(times: list, series: dict, output: Path, top_n: int):
|
||||
"""绘制时间序列图"""
|
||||
plt.figure(figsize=(14, 8))
|
||||
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
@@ -127,7 +127,7 @@ class StyleLearner:
|
||||
|
||||
# 最后使用时间(越近越好)
|
||||
last_used = self.learning_stats["style_last_used"].get(style_id, 0)
|
||||
time_since_used = current_time - last_used if last_used > 0 else float('inf')
|
||||
time_since_used = current_time - last_used if last_used > 0 else float("inf")
|
||||
|
||||
# 综合分数:使用次数越多越好,距离上次使用时间越短越好
|
||||
# 使用对数来平滑使用次数的影响
|
||||
|
||||
@@ -8,7 +8,6 @@ from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import orjson
|
||||
from sqlalchemy import select
|
||||
|
||||
from src.common.config_helpers import resolve_embedding_dimension
|
||||
@@ -605,7 +604,7 @@ class BotInterestManager:
|
||||
)
|
||||
|
||||
# 如果有新生成的扩展embedding,保存到缓存文件
|
||||
if hasattr(self, '_new_expanded_embeddings_generated') and self._new_expanded_embeddings_generated:
|
||||
if hasattr(self, "_new_expanded_embeddings_generated") and self._new_expanded_embeddings_generated:
|
||||
await self._save_embedding_cache_to_file(self.current_interests.personality_id)
|
||||
self._new_expanded_embeddings_generated = False
|
||||
logger.debug("💾 已保存新生成的扩展embedding到缓存文件")
|
||||
@@ -670,59 +669,59 @@ class BotInterestManager:
|
||||
tag_lower = tag_name.lower()
|
||||
|
||||
# 技术编程类标签(具体化描述)
|
||||
if any(word in tag_lower for word in ['python', 'java', 'code', '代码', '编程', '脚本', '算法', '开发']):
|
||||
if 'python' in tag_lower:
|
||||
return f"讨论Python编程语言、写Python代码、Python脚本开发、Python技术问题"
|
||||
elif '算法' in tag_lower:
|
||||
return f"讨论算法题目、数据结构、编程竞赛、刷LeetCode题目、代码优化"
|
||||
elif '代码' in tag_lower or '被窝' in tag_lower:
|
||||
return f"讨论写代码、编程开发、代码实现、技术方案、编程技巧"
|
||||
if any(word in tag_lower for word in ["python", "java", "code", "代码", "编程", "脚本", "算法", "开发"]):
|
||||
if "python" in tag_lower:
|
||||
return "讨论Python编程语言、写Python代码、Python脚本开发、Python技术问题"
|
||||
elif "算法" in tag_lower:
|
||||
return "讨论算法题目、数据结构、编程竞赛、刷LeetCode题目、代码优化"
|
||||
elif "代码" in tag_lower or "被窝" in tag_lower:
|
||||
return "讨论写代码、编程开发、代码实现、技术方案、编程技巧"
|
||||
else:
|
||||
return f"讨论编程开发、软件技术、代码编写、技术实现"
|
||||
return "讨论编程开发、软件技术、代码编写、技术实现"
|
||||
|
||||
# 情感表达类标签(具体化为真实对话场景)
|
||||
elif any(word in tag_lower for word in ['治愈', '撒娇', '安慰', '呼噜', '蹭', '卖萌']):
|
||||
return f"想要获得安慰、寻求温暖关怀、撒娇卖萌、表达亲昵、求抱抱求陪伴的对话"
|
||||
elif any(word in tag_lower for word in ["治愈", "撒娇", "安慰", "呼噜", "蹭", "卖萌"]):
|
||||
return "想要获得安慰、寻求温暖关怀、撒娇卖萌、表达亲昵、求抱抱求陪伴的对话"
|
||||
|
||||
# 游戏娱乐类标签(具体游戏场景)
|
||||
elif any(word in tag_lower for word in ['游戏', '网游', 'mmo', '游', '玩']):
|
||||
return f"讨论网络游戏、MMO游戏、游戏玩法、组队打副本、游戏攻略心得"
|
||||
elif any(word in tag_lower for word in ["游戏", "网游", "mmo", "游", "玩"]):
|
||||
return "讨论网络游戏、MMO游戏、游戏玩法、组队打副本、游戏攻略心得"
|
||||
|
||||
# 动漫影视类标签(具体观看行为)
|
||||
elif any(word in tag_lower for word in ['番', '动漫', '视频', 'b站', '弹幕', '追番', '云新番']):
|
||||
elif any(word in tag_lower for word in ["番", "动漫", "视频", "b站", "弹幕", "追番", "云新番"]):
|
||||
# 特别处理"云新番" - 它的意思是在网上看新动漫,不是泛泛的"新东西"
|
||||
if '云' in tag_lower or '新番' in tag_lower:
|
||||
return f"讨论正在播出的新动漫、新番剧集、动漫剧情、追番心得、动漫角色"
|
||||
if "云" in tag_lower or "新番" in tag_lower:
|
||||
return "讨论正在播出的新动漫、新番剧集、动漫剧情、追番心得、动漫角色"
|
||||
else:
|
||||
return f"讨论动漫番剧内容、B站视频、弹幕文化、追番体验"
|
||||
return "讨论动漫番剧内容、B站视频、弹幕文化、追番体验"
|
||||
|
||||
# 社交平台类标签(具体平台行为)
|
||||
elif any(word in tag_lower for word in ['小红书', '贴吧', '论坛', '社区', '吃瓜', '八卦']):
|
||||
if '吃瓜' in tag_lower:
|
||||
return f"聊八卦爆料、吃瓜看热闹、网络热点事件、社交平台热议话题"
|
||||
elif any(word in tag_lower for word in ["小红书", "贴吧", "论坛", "社区", "吃瓜", "八卦"]):
|
||||
if "吃瓜" in tag_lower:
|
||||
return "聊八卦爆料、吃瓜看热闹、网络热点事件、社交平台热议话题"
|
||||
else:
|
||||
return f"讨论社交平台内容、网络社区话题、论坛讨论、分享生活"
|
||||
return "讨论社交平台内容、网络社区话题、论坛讨论、分享生活"
|
||||
|
||||
# 生活日常类标签(具体萌宠场景)
|
||||
elif any(word in tag_lower for word in ['猫', '宠物', '尾巴', '耳朵', '毛绒']):
|
||||
return f"讨论猫咪宠物、晒猫分享、萌宠日常、可爱猫猫、养猫心得"
|
||||
elif any(word in tag_lower for word in ["猫", "宠物", "尾巴", "耳朵", "毛绒"]):
|
||||
return "讨论猫咪宠物、晒猫分享、萌宠日常、可爱猫猫、养猫心得"
|
||||
|
||||
# 状态心情类标签(具体情绪状态)
|
||||
elif any(word in tag_lower for word in ['社恐', '隐身', '流浪', '深夜', '被窝']):
|
||||
if '社恐' in tag_lower:
|
||||
return f"表达社交焦虑、不想见人、想躲起来、害怕社交的心情"
|
||||
elif '深夜' in tag_lower:
|
||||
return f"深夜睡不着、熬夜、夜猫子、深夜思考人生的对话"
|
||||
elif any(word in tag_lower for word in ["社恐", "隐身", "流浪", "深夜", "被窝"]):
|
||||
if "社恐" in tag_lower:
|
||||
return "表达社交焦虑、不想见人、想躲起来、害怕社交的心情"
|
||||
elif "深夜" in tag_lower:
|
||||
return "深夜睡不着、熬夜、夜猫子、深夜思考人生的对话"
|
||||
else:
|
||||
return f"表达当前心情状态、个人感受、生活状态"
|
||||
return "表达当前心情状态、个人感受、生活状态"
|
||||
|
||||
# 物品装备类标签(具体使用场景)
|
||||
elif any(word in tag_lower for word in ['键盘', '耳机', '装备', '设备']):
|
||||
return f"讨论键盘耳机装备、数码产品、使用体验、装备推荐评测"
|
||||
elif any(word in tag_lower for word in ["键盘", "耳机", "装备", "设备"]):
|
||||
return "讨论键盘耳机装备、数码产品、使用体验、装备推荐评测"
|
||||
|
||||
# 互动关系类标签
|
||||
elif any(word in tag_lower for word in ['拾风', '互怼', '互动']):
|
||||
return f"聊天互动、开玩笑、友好互怼、日常对话交流"
|
||||
elif any(word in tag_lower for word in ["拾风", "互怼", "互动"]):
|
||||
return "聊天互动、开玩笑、友好互怼、日常对话交流"
|
||||
|
||||
# 默认:尽量具体化
|
||||
else:
|
||||
@@ -1011,9 +1010,10 @@ class BotInterestManager:
|
||||
async def _load_embedding_cache_from_file(self, personality_id: str) -> dict[str, list[float]] | None:
|
||||
"""从文件加载embedding缓存"""
|
||||
try:
|
||||
import orjson
|
||||
from pathlib import Path
|
||||
|
||||
import orjson
|
||||
|
||||
cache_dir = Path("data/embedding")
|
||||
cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
cache_file = cache_dir / f"{personality_id}_embeddings.json"
|
||||
@@ -1053,9 +1053,10 @@ class BotInterestManager:
|
||||
async def _save_embedding_cache_to_file(self, personality_id: str):
|
||||
"""保存embedding缓存到文件(包括扩展标签的embedding)"""
|
||||
try:
|
||||
import orjson
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import orjson
|
||||
|
||||
cache_dir = Path("data/embedding")
|
||||
cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@@ -9,8 +9,8 @@ from .scheduler_dispatcher import SchedulerDispatcher, scheduler_dispatcher
|
||||
|
||||
__all__ = [
|
||||
"MessageManager",
|
||||
"SingleStreamContextManager",
|
||||
"SchedulerDispatcher",
|
||||
"SingleStreamContextManager",
|
||||
"message_manager",
|
||||
"scheduler_dispatcher",
|
||||
]
|
||||
|
||||
@@ -73,7 +73,7 @@ class SingleStreamContextManager:
|
||||
cache_enabled = global_config.chat.enable_message_cache
|
||||
use_cache_system = message_manager.is_running and cache_enabled
|
||||
if not cache_enabled:
|
||||
logger.debug(f"消息缓存系统已在配置中禁用")
|
||||
logger.debug("消息缓存系统已在配置中禁用")
|
||||
except Exception as e:
|
||||
logger.debug(f"MessageManager不可用,使用直接添加: {e}")
|
||||
use_cache_system = False
|
||||
|
||||
@@ -4,13 +4,11 @@
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import random
|
||||
import time
|
||||
from collections import defaultdict, deque
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from src.chat.chatter_manager import ChatterManager
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.planner_actions.action_manager import ChatterActionManager
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.data_models.message_manager_data_model import MessageManagerStats, StreamStats
|
||||
|
||||
@@ -367,7 +367,7 @@ class ChatBot:
|
||||
message_segment = message_data.get("message_segment")
|
||||
if message_segment and isinstance(message_segment, dict):
|
||||
if message_segment.get("type") == "adapter_response":
|
||||
logger.info(f"[DEBUG bot.py message_process] 检测到adapter_response,立即处理")
|
||||
logger.info("[DEBUG bot.py message_process] 检测到adapter_response,立即处理")
|
||||
await self._handle_adapter_response_from_dict(message_segment.get("data"))
|
||||
return
|
||||
|
||||
|
||||
@@ -557,7 +557,7 @@ class DefaultReplyer:
|
||||
participants = []
|
||||
try:
|
||||
# 尝试从聊天流中获取参与者信息
|
||||
if hasattr(stream, 'chat_history_manager'):
|
||||
if hasattr(stream, "chat_history_manager"):
|
||||
history_manager = stream.chat_history_manager
|
||||
# 获取最近的参与者列表
|
||||
recent_records = history_manager.get_memory_chat_history(
|
||||
@@ -586,9 +586,9 @@ class DefaultReplyer:
|
||||
formatted_history = ""
|
||||
if chat_history:
|
||||
# 移除过长的历史记录,只保留最近部分
|
||||
lines = chat_history.strip().split('\n')
|
||||
lines = chat_history.strip().split("\n")
|
||||
recent_lines = lines[-10:] if len(lines) > 10 else lines
|
||||
formatted_history = '\n'.join(recent_lines)
|
||||
formatted_history = "\n".join(recent_lines)
|
||||
|
||||
query_context = {
|
||||
"chat_history": formatted_history,
|
||||
@@ -725,7 +725,7 @@ class DefaultReplyer:
|
||||
for tool_result in tool_results:
|
||||
tool_name = tool_result.get("tool_name", "unknown")
|
||||
content = tool_result.get("content", "")
|
||||
result_type = tool_result.get("type", "tool_result")
|
||||
tool_result.get("type", "tool_result")
|
||||
|
||||
# 不进行截断,让工具自己处理结果长度
|
||||
current_results_parts.append(f"- **{tool_name}**: {content}")
|
||||
@@ -1913,7 +1913,6 @@ class DefaultReplyer:
|
||||
return
|
||||
|
||||
# 使用统一记忆系统存储记忆
|
||||
from src.chat.memory_system import get_memory_system
|
||||
|
||||
stream = self.chat_stream
|
||||
user_info_obj = getattr(stream, "user_info", None)
|
||||
@@ -2036,7 +2035,7 @@ class DefaultReplyer:
|
||||
timestamp=time.time(),
|
||||
limit=int(global_config.chat.max_context_size),
|
||||
)
|
||||
chat_history = await build_readable_messages(
|
||||
await build_readable_messages(
|
||||
message_list_before_short,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
|
||||
@@ -91,13 +91,11 @@ def is_mentioned_bot_in_message(message) -> tuple[bool, float]:
|
||||
# 1. 判断是否为私聊(强提及)
|
||||
group_info = getattr(message, "group_info", None)
|
||||
if not group_info or not getattr(group_info, "group_id", None):
|
||||
is_private = True
|
||||
mention_type = 2
|
||||
logger.debug("检测到私聊消息 - 强提及")
|
||||
|
||||
# 2. 判断是否被@(强提及)
|
||||
if re.search(rf"@<(.+?):{global_config.bot.qq_account}>", processed_text):
|
||||
is_at = True
|
||||
mention_type = 2
|
||||
logger.debug("检测到@提及 - 强提及")
|
||||
|
||||
@@ -108,7 +106,6 @@ def is_mentioned_bot_in_message(message) -> tuple[bool, float]:
|
||||
rf"\[回复<(.+?)(?=:{global_config.bot.qq_account!s}>)\:{global_config.bot.qq_account!s}>:(.+?)\],说:",
|
||||
processed_text,
|
||||
):
|
||||
is_replied = True
|
||||
mention_type = 2
|
||||
logger.debug("检测到回复消息 - 强提及")
|
||||
|
||||
@@ -122,14 +119,12 @@ def is_mentioned_bot_in_message(message) -> tuple[bool, float]:
|
||||
|
||||
# 检查bot主名字
|
||||
if global_config.bot.nickname in message_content:
|
||||
is_text_mentioned = True
|
||||
mention_type = 1
|
||||
logger.debug(f"检测到文本提及bot主名字 '{global_config.bot.nickname}' - 弱提及")
|
||||
# 如果主名字没匹配,再检查别名
|
||||
elif nicknames:
|
||||
for alias_name in nicknames:
|
||||
if alias_name in message_content:
|
||||
is_text_mentioned = True
|
||||
mention_type = 1
|
||||
logger.debug(f"检测到文本提及bot别名 '{alias_name}' - 弱提及")
|
||||
break
|
||||
|
||||
@@ -374,7 +374,7 @@ class CacheManager:
|
||||
# 简化的健康统计,不包含内存监控(因为相关属性未定义)
|
||||
return {
|
||||
"l1_count": len(self.l1_kv_cache),
|
||||
"l1_vector_count": self.l1_vector_index.ntotal if hasattr(self.l1_vector_index, 'ntotal') else 0,
|
||||
"l1_vector_count": self.l1_vector_index.ntotal if hasattr(self.l1_vector_index, "ntotal") else 0,
|
||||
"tool_stats": {
|
||||
"total_tool_calls": self.tool_stats.get("total_tool_calls", 0),
|
||||
"tracked_tools": len(self.tool_stats.get("most_used_tools", {})),
|
||||
@@ -397,7 +397,7 @@ class CacheManager:
|
||||
warnings.append(f"⚠️ L1缓存条目数较多: {l1_size}")
|
||||
|
||||
# 检查向量索引大小
|
||||
vector_count = self.l1_vector_index.ntotal if hasattr(self.l1_vector_index, 'ntotal') else 0
|
||||
vector_count = self.l1_vector_index.ntotal if hasattr(self.l1_vector_index, "ntotal") else 0
|
||||
if isinstance(vector_count, int) and vector_count > 500:
|
||||
warnings.append(f"⚠️ 向量索引条目数较多: {vector_count}")
|
||||
|
||||
|
||||
@@ -539,7 +539,6 @@ class AdaptiveBatchScheduler:
|
||||
|
||||
def _set_cache(self, cache_key: str, result: Any) -> None:
|
||||
"""设置缓存(改进版,带大小限制和内存统计)"""
|
||||
import sys
|
||||
|
||||
# 🔧 检查缓存大小限制
|
||||
if len(self._result_cache) >= self._cache_max_size:
|
||||
|
||||
@@ -4,9 +4,10 @@
|
||||
提供比 sys.getsizeof() 更准确的内存占用估算方法
|
||||
"""
|
||||
|
||||
import sys
|
||||
import pickle
|
||||
import sys
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@@ -44,15 +45,15 @@ def get_accurate_size(obj: Any, seen: set | None = None) -> int:
|
||||
for k, v in obj.items())
|
||||
|
||||
# 列表、元组、集合:递归计算所有元素
|
||||
elif isinstance(obj, (list, tuple, set, frozenset)):
|
||||
elif isinstance(obj, list | tuple | set | frozenset):
|
||||
size += sum(get_accurate_size(item, seen) for item in obj)
|
||||
|
||||
# 有 __dict__ 的对象:递归计算属性
|
||||
elif hasattr(obj, '__dict__'):
|
||||
elif hasattr(obj, "__dict__"):
|
||||
size += get_accurate_size(obj.__dict__, seen)
|
||||
|
||||
# 其他可迭代对象
|
||||
elif hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes, bytearray)):
|
||||
elif hasattr(obj, "__iter__") and not isinstance(obj, str | bytes | bytearray):
|
||||
try:
|
||||
size += sum(get_accurate_size(item, seen) for item in obj)
|
||||
except:
|
||||
@@ -116,7 +117,7 @@ def _estimate_recursive(obj: Any, depth: int, seen: set, sample_large: bool) ->
|
||||
size = sys.getsizeof(obj)
|
||||
|
||||
# 简单类型直接返回
|
||||
if isinstance(obj, (int, float, bool, type(None), str, bytes, bytearray)):
|
||||
if isinstance(obj, int | float | bool | type(None) | str | bytes | bytearray):
|
||||
return size
|
||||
|
||||
# NumPy 数组特殊处理
|
||||
@@ -144,7 +145,7 @@ def _estimate_recursive(obj: Any, depth: int, seen: set, sample_large: bool) ->
|
||||
return size
|
||||
|
||||
# 列表、元组、集合递归
|
||||
if isinstance(obj, (list, tuple, set, frozenset)):
|
||||
if isinstance(obj, list | tuple | set | frozenset):
|
||||
items = list(obj)
|
||||
if sample_large and len(items) > 100:
|
||||
# 大容器采样:前50 + 中间50 + 最后50
|
||||
@@ -162,7 +163,7 @@ def _estimate_recursive(obj: Any, depth: int, seen: set, sample_large: bool) ->
|
||||
return size
|
||||
|
||||
# 有 __dict__ 的对象
|
||||
if hasattr(obj, '__dict__'):
|
||||
if hasattr(obj, "__dict__"):
|
||||
size += _estimate_recursive(obj.__dict__, depth - 1, seen, sample_large)
|
||||
|
||||
return size
|
||||
|
||||
@@ -2,7 +2,6 @@ import os
|
||||
import shutil
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import tomlkit
|
||||
from pydantic import Field
|
||||
@@ -381,7 +380,7 @@ class Config(ValidatedConfigBase):
|
||||
notice: NoticeConfig = Field(..., description="Notice消息配置")
|
||||
emoji: EmojiConfig = Field(..., description="表情配置")
|
||||
expression: ExpressionConfig = Field(..., description="表达配置")
|
||||
memory: Optional[MemoryConfig] = Field(default=None, description="记忆配置")
|
||||
memory: MemoryConfig | None = Field(default=None, description="记忆配置")
|
||||
mood: MoodConfig = Field(..., description="情绪配置")
|
||||
reaction: ReactionConfig = Field(default_factory=ReactionConfig, description="反应规则配置")
|
||||
chinese_typo: ChineseTypoConfig = Field(..., description="中文错别字配置")
|
||||
|
||||
@@ -534,7 +534,7 @@ class _RequestExecutor:
|
||||
model_name = model_info.name
|
||||
retry_interval = api_provider.retry_interval
|
||||
|
||||
if isinstance(e, (NetworkConnectionError, ReqAbortException)):
|
||||
if isinstance(e, NetworkConnectionError | ReqAbortException):
|
||||
return await self._check_retry(remain_try, retry_interval, "连接异常", model_name)
|
||||
elif isinstance(e, RespNotOkException):
|
||||
return await self._handle_resp_not_ok(e, model_info, api_provider, remain_try, messages_info)
|
||||
|
||||
@@ -100,10 +100,10 @@ class VectorStore:
|
||||
|
||||
# 处理额外的元数据,将 list 转换为 JSON 字符串
|
||||
for key, value in node.metadata.items():
|
||||
if isinstance(value, (list, dict)):
|
||||
if isinstance(value, list | dict):
|
||||
import orjson
|
||||
metadata[key] = orjson.dumps(value, option=orjson.OPT_NON_STR_KEYS).decode("utf-8")
|
||||
elif isinstance(value, (str, int, float, bool)) or value is None:
|
||||
elif isinstance(value, str | int | float | bool) or value is None:
|
||||
metadata[key] = value
|
||||
else:
|
||||
metadata[key] = str(value)
|
||||
@@ -149,9 +149,9 @@ class VectorStore:
|
||||
"created_at": n.created_at.isoformat(),
|
||||
}
|
||||
for key, value in n.metadata.items():
|
||||
if isinstance(value, (list, dict)):
|
||||
if isinstance(value, list | dict):
|
||||
metadata[key] = orjson.dumps(value, option=orjson.OPT_NON_STR_KEYS).decode("utf-8")
|
||||
elif isinstance(value, (str, int, float, bool)) or value is None:
|
||||
elif isinstance(value, str | int | float | bool) or value is None:
|
||||
metadata[key] = value # type: ignore
|
||||
else:
|
||||
metadata[key] = str(value)
|
||||
|
||||
@@ -4,8 +4,6 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
|
||||
import numpy as np
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
@@ -7,11 +7,12 @@
|
||||
"""
|
||||
|
||||
import atexit
|
||||
import orjson
|
||||
import os
|
||||
import threading
|
||||
from typing import Any, ClassVar
|
||||
|
||||
import orjson
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
# 获取日志记录器
|
||||
@@ -125,7 +126,7 @@ class PluginStorage:
|
||||
|
||||
try:
|
||||
with open(self.file_path, "w", encoding="utf-8") as f:
|
||||
f.write(orjson.dumps(self._data, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS).decode('utf-8'))
|
||||
f.write(orjson.dumps(self._data, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS).decode("utf-8"))
|
||||
self._dirty = False # 保存后重置标志
|
||||
logger.debug(f"插件 '{self.name}' 的数据已成功保存到磁盘。")
|
||||
except Exception as e:
|
||||
|
||||
@@ -5,12 +5,12 @@ MCP Client Manager
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import orjson
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import mcp.types
|
||||
import orjson
|
||||
from fastmcp.client import Client, StdioTransport, StreamableHttpTransport
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
@@ -4,11 +4,13 @@
|
||||
"""
|
||||
|
||||
import time
|
||||
from typing import Any, Optional
|
||||
from dataclasses import dataclass, asdict, field
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
from src.common.logger import get_logger
|
||||
|
||||
from src.common.cache_manager import tool_cache
|
||||
from src.common.logger import get_logger
|
||||
|
||||
logger = get_logger("stream_tool_history")
|
||||
|
||||
@@ -18,10 +20,10 @@ class ToolCallRecord:
|
||||
"""工具调用记录"""
|
||||
tool_name: str
|
||||
args: dict[str, Any]
|
||||
result: Optional[dict[str, Any]] = None
|
||||
result: dict[str, Any] | None = None
|
||||
status: str = "success" # success, error, pending
|
||||
timestamp: float = field(default_factory=time.time)
|
||||
execution_time: Optional[float] = None # 执行耗时(秒)
|
||||
execution_time: float | None = None # 执行耗时(秒)
|
||||
cache_hit: bool = False # 是否命中缓存
|
||||
result_preview: str = "" # 结果预览
|
||||
error_message: str = "" # 错误信息
|
||||
@@ -32,9 +34,9 @@ class ToolCallRecord:
|
||||
content = self.result.get("content", "")
|
||||
if isinstance(content, str):
|
||||
self.result_preview = content[:500] + ("..." if len(content) > 500 else "")
|
||||
elif isinstance(content, (list, dict)):
|
||||
elif isinstance(content, list | dict):
|
||||
try:
|
||||
self.result_preview = orjson.dumps(content, option=orjson.OPT_NON_STR_KEYS).decode('utf-8')[:500] + "..."
|
||||
self.result_preview = orjson.dumps(content, option=orjson.OPT_NON_STR_KEYS).decode("utf-8")[:500] + "..."
|
||||
except Exception:
|
||||
self.result_preview = str(content)[:500] + "..."
|
||||
else:
|
||||
@@ -105,7 +107,7 @@ class StreamToolHistoryManager:
|
||||
|
||||
logger.debug(f"[{self.chat_id}] 添加工具调用记录: {record.tool_name}, 缓存命中: {record.cache_hit}")
|
||||
|
||||
async def get_cached_result(self, tool_name: str, args: dict[str, Any]) -> Optional[dict[str, Any]]:
|
||||
async def get_cached_result(self, tool_name: str, args: dict[str, Any]) -> dict[str, Any] | None:
|
||||
"""从缓存或历史记录中获取结果
|
||||
|
||||
Args:
|
||||
@@ -160,9 +162,9 @@ class StreamToolHistoryManager:
|
||||
return None
|
||||
|
||||
async def cache_result(self, tool_name: str, args: dict[str, Any], result: dict[str, Any],
|
||||
execution_time: Optional[float] = None,
|
||||
tool_file_path: Optional[str] = None,
|
||||
ttl: Optional[int] = None) -> None:
|
||||
execution_time: float | None = None,
|
||||
tool_file_path: str | None = None,
|
||||
ttl: int | None = None) -> None:
|
||||
"""缓存工具调用结果
|
||||
|
||||
Args:
|
||||
@@ -207,7 +209,7 @@ class StreamToolHistoryManager:
|
||||
except Exception as e:
|
||||
logger.warning(f"[{self.chat_id}] 缓存设置失败: {e}")
|
||||
|
||||
async def get_recent_history(self, count: int = 5, status_filter: Optional[str] = None) -> list[ToolCallRecord]:
|
||||
async def get_recent_history(self, count: int = 5, status_filter: str | None = None) -> list[ToolCallRecord]:
|
||||
"""获取最近的历史记录
|
||||
|
||||
Args:
|
||||
@@ -295,7 +297,7 @@ class StreamToolHistoryManager:
|
||||
self._history.clear()
|
||||
logger.info(f"[{self.chat_id}] 工具历史记录已清除")
|
||||
|
||||
def _search_memory_cache(self, tool_name: str, args: dict[str, Any]) -> Optional[dict[str, Any]]:
|
||||
def _search_memory_cache(self, tool_name: str, args: dict[str, Any]) -> dict[str, Any] | None:
|
||||
"""在内存历史记录中搜索缓存
|
||||
|
||||
Args:
|
||||
@@ -333,7 +335,7 @@ class StreamToolHistoryManager:
|
||||
|
||||
return tool_path_mapping.get(tool_name, f"src/plugins/tools/{tool_name}.py")
|
||||
|
||||
def _extract_semantic_query(self, tool_name: str, args: dict[str, Any]) -> Optional[str]:
|
||||
def _extract_semantic_query(self, tool_name: str, args: dict[str, Any]) -> str | None:
|
||||
"""提取语义查询参数
|
||||
|
||||
Args:
|
||||
@@ -370,7 +372,7 @@ class StreamToolHistoryManager:
|
||||
return ""
|
||||
|
||||
try:
|
||||
args_str = orjson.dumps(args, option=orjson.OPT_SORT_KEYS).decode('utf-8')
|
||||
args_str = orjson.dumps(args, option=orjson.OPT_SORT_KEYS).decode("utf-8")
|
||||
if len(args_str) > max_length:
|
||||
args_str = args_str[:max_length] + "..."
|
||||
return args_str
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import inspect
|
||||
import time
|
||||
from dataclasses import asdict
|
||||
from typing import Any
|
||||
|
||||
from src.chat.utils.prompt import Prompt, global_prompt_manager
|
||||
@@ -10,8 +11,7 @@ from src.llm_models.utils_model import LLMRequest
|
||||
from src.plugin_system.apis.tool_api import get_llm_available_tool_definitions, get_tool_instance
|
||||
from src.plugin_system.base.base_tool import BaseTool
|
||||
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
|
||||
from src.plugin_system.core.stream_tool_history import get_stream_tool_history_manager, ToolCallRecord
|
||||
from dataclasses import asdict
|
||||
from src.plugin_system.core.stream_tool_history import ToolCallRecord, get_stream_tool_history_manager
|
||||
|
||||
logger = get_logger("tool_use")
|
||||
|
||||
@@ -338,9 +338,8 @@ class ToolExecutor:
|
||||
if tool_instance and result and tool_instance.enable_cache:
|
||||
try:
|
||||
tool_file_path = inspect.getfile(tool_instance.__class__)
|
||||
semantic_query = None
|
||||
if tool_instance.semantic_cache_query_key:
|
||||
semantic_query = function_args.get(tool_instance.semantic_cache_query_key)
|
||||
function_args.get(tool_instance.semantic_cache_query_key)
|
||||
|
||||
await self.history_manager.cache_result(
|
||||
tool_name=tool_call.func_name,
|
||||
|
||||
@@ -217,7 +217,7 @@ class AffinityInterestCalculator(BaseInterestCalculator):
|
||||
return 0.0
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(f"⏱️ 兴趣匹配计算超时(>1.5秒),返回默认分值0.5以保留其他分数")
|
||||
logger.warning("⏱️ 兴趣匹配计算超时(>1.5秒),返回默认分值0.5以保留其他分数")
|
||||
return 0.5 # 超时时返回默认分值,避免丢失提及分和关系分
|
||||
except Exception as e:
|
||||
logger.warning(f"智能兴趣匹配失败: {e}")
|
||||
|
||||
@@ -4,10 +4,10 @@ AffinityFlow Chatter 规划器模块
|
||||
包含计划生成、过滤、执行等规划相关功能
|
||||
"""
|
||||
|
||||
from . import planner_prompts
|
||||
from .plan_executor import ChatterPlanExecutor
|
||||
from .plan_filter import ChatterPlanFilter
|
||||
from .plan_generator import ChatterPlanGenerator
|
||||
from .planner import ChatterActionPlanner
|
||||
from . import planner_prompts
|
||||
|
||||
__all__ = ["ChatterActionPlanner", "planner_prompts", "ChatterPlanGenerator", "ChatterPlanFilter", "ChatterPlanExecutor"]
|
||||
__all__ = ["ChatterActionPlanner", "ChatterPlanExecutor", "ChatterPlanFilter", "ChatterPlanGenerator", "planner_prompts"]
|
||||
|
||||
@@ -14,9 +14,7 @@ from json_repair import repair_json
|
||||
# 旧的Hippocampus系统已被移除,现在使用增强记忆系统
|
||||
# from src.chat.memory_system.enhanced_memory_manager import enhanced_memory_manager
|
||||
from src.chat.utils.chat_message_builder import (
|
||||
build_readable_actions,
|
||||
build_readable_messages_with_id,
|
||||
get_actions_by_timestamp_with_chat,
|
||||
)
|
||||
from src.chat.utils.prompt import global_prompt_manager
|
||||
from src.common.data_models.info_data_model import ActionPlannerInfo, Plan
|
||||
|
||||
@@ -21,7 +21,6 @@ if TYPE_CHECKING:
|
||||
from src.common.data_models.message_manager_data_model import StreamContext
|
||||
|
||||
# 导入提示词模块以确保其被初始化
|
||||
from src.plugins.built_in.affinity_flow_chatter.planner import planner_prompts
|
||||
|
||||
logger = get_logger("planner")
|
||||
|
||||
|
||||
@@ -9,9 +9,9 @@ from .proactive_thinking_executor import execute_proactive_thinking
|
||||
from .proactive_thinking_scheduler import ProactiveThinkingScheduler, proactive_thinking_scheduler
|
||||
|
||||
__all__ = [
|
||||
"ProactiveThinkingReplyHandler",
|
||||
"ProactiveThinkingMessageHandler",
|
||||
"execute_proactive_thinking",
|
||||
"ProactiveThinkingReplyHandler",
|
||||
"ProactiveThinkingScheduler",
|
||||
"execute_proactive_thinking",
|
||||
"proactive_thinking_scheduler",
|
||||
]
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
当定时任务触发时,负责搜集信息、调用LLM决策、并根据决策生成回复
|
||||
"""
|
||||
|
||||
import orjson
|
||||
from datetime import datetime
|
||||
from typing import Any, Literal
|
||||
|
||||
|
||||
@@ -14,7 +14,6 @@ from maim_message import UserInfo
|
||||
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
from src.common.logger import get_logger
|
||||
from src.config.api_ada_configs import TaskConfig
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.plugin_system.apis import config_api, generator_api, llm_api
|
||||
|
||||
|
||||
@@ -136,10 +136,10 @@ class QZoneService:
|
||||
logger.info(f"[DEBUG] 准备获取API客户端,qq_account={qq_account}")
|
||||
api_client = await self._get_api_client(qq_account, stream_id)
|
||||
if not api_client:
|
||||
logger.error(f"[DEBUG] API客户端获取失败,返回错误")
|
||||
logger.error("[DEBUG] API客户端获取失败,返回错误")
|
||||
return {"success": False, "message": "获取QZone API客户端失败"}
|
||||
|
||||
logger.info(f"[DEBUG] API客户端获取成功,准备读取说说")
|
||||
logger.info("[DEBUG] API客户端获取成功,准备读取说说")
|
||||
num_to_read = self.get_config("read.read_number", 5)
|
||||
|
||||
# 尝试执行,如果Cookie失效则自动重试一次
|
||||
@@ -186,7 +186,7 @@ class QZoneService:
|
||||
|
||||
# 检查是否是Cookie失效(-3000错误)
|
||||
if "错误码: -3000" in error_msg and retry_count == 0:
|
||||
logger.warning(f"检测到Cookie失效(-3000错误),准备删除缓存并重试...")
|
||||
logger.warning("检测到Cookie失效(-3000错误),准备删除缓存并重试...")
|
||||
|
||||
# 删除Cookie缓存文件
|
||||
cookie_file = self.cookie_service._get_cookie_file_path(qq_account)
|
||||
@@ -623,7 +623,7 @@ class QZoneService:
|
||||
logger.error(f"获取API客户端失败:Cookie中缺少关键的 'p_skey'。Cookie内容: {cookies}")
|
||||
return None
|
||||
|
||||
logger.info(f"[DEBUG] p_skey获取成功")
|
||||
logger.info("[DEBUG] p_skey获取成功")
|
||||
|
||||
gtk = self._generate_gtk(p_skey)
|
||||
uin = cookies.get("uin", "").lstrip("o")
|
||||
@@ -1230,7 +1230,7 @@ class QZoneService:
|
||||
logger.error(f"监控好友动态失败: {e}", exc_info=True)
|
||||
return []
|
||||
|
||||
logger.info(f"[DEBUG] API客户端构造完成,返回包含6个方法的字典")
|
||||
logger.info("[DEBUG] API客户端构造完成,返回包含6个方法的字典")
|
||||
return {
|
||||
"publish": _publish,
|
||||
"list_feeds": _list_feeds,
|
||||
|
||||
@@ -3,11 +3,12 @@
|
||||
负责记录和管理已回复过的评论ID,避免重复回复
|
||||
"""
|
||||
|
||||
import orjson
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
logger = get_logger("MaiZone.ReplyTrackerService")
|
||||
@@ -117,8 +118,8 @@ class ReplyTrackerService:
|
||||
temp_file = self.reply_record_file.with_suffix(".tmp")
|
||||
|
||||
# 先写入临时文件
|
||||
with open(temp_file, "w", encoding="utf-8") as f:
|
||||
orjson.dumps(self.replied_comments, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS).decode('utf-8')
|
||||
with open(temp_file, "w", encoding="utf-8"):
|
||||
orjson.dumps(self.replied_comments, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS).decode("utf-8")
|
||||
|
||||
# 如果写入成功,重命名为正式文件
|
||||
if temp_file.stat().st_size > 0: # 确保写入成功
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import orjson
|
||||
import random
|
||||
import time
|
||||
import random
|
||||
import websockets as Server
|
||||
import uuid
|
||||
from maim_message import (
|
||||
@@ -205,7 +204,7 @@ class SendHandler:
|
||||
# 发送响应回MoFox-Bot
|
||||
logger.debug(f"[DEBUG handle_adapter_command] 即将调用send_adapter_command_response, request_id={request_id}")
|
||||
await self.send_adapter_command_response(raw_message_base, response, request_id)
|
||||
logger.debug(f"[DEBUG handle_adapter_command] send_adapter_command_response调用完成")
|
||||
logger.debug("[DEBUG handle_adapter_command] send_adapter_command_response调用完成")
|
||||
|
||||
if response.get("status") == "ok":
|
||||
logger.info(f"适配器命令 {action} 执行成功")
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
"""
|
||||
Metaso Search Engine (Chat Completions Mode)
|
||||
"""
|
||||
import orjson
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
import orjson
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system.apis import config_api
|
||||
|
||||
@@ -3,9 +3,10 @@ Serper search engine implementation
|
||||
Google Search via Serper.dev API
|
||||
"""
|
||||
|
||||
import aiohttp
|
||||
from typing import Any
|
||||
|
||||
import aiohttp
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system.apis import config_api
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ Web Search Tool Plugin
|
||||
"""
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system import BasePlugin, ComponentInfo, ConfigField, PythonDependency, register_plugin
|
||||
from src.plugin_system import BasePlugin, ComponentInfo, ConfigField, register_plugin
|
||||
from src.plugin_system.apis import config_api
|
||||
|
||||
from .tools.url_parser import URLParserTool
|
||||
|
||||
@@ -113,7 +113,7 @@ class WebSurfingTool(BaseTool):
|
||||
custom_args["num_results"] = custom_args.get("num_results", 5)
|
||||
|
||||
# 如果启用了answer模式且是Exa引擎,使用answer_search方法
|
||||
if answer_mode and engine_name == "exa" and hasattr(engine, 'answer_search'):
|
||||
if answer_mode and engine_name == "exa" and hasattr(engine, "answer_search"):
|
||||
search_tasks.append(engine.answer_search(custom_args))
|
||||
else:
|
||||
search_tasks.append(engine.search(custom_args))
|
||||
@@ -162,7 +162,7 @@ class WebSurfingTool(BaseTool):
|
||||
custom_args["num_results"] = custom_args.get("num_results", 5)
|
||||
|
||||
# 如果启用了answer模式且是Exa引擎,使用answer_search方法
|
||||
if answer_mode and engine_name == "exa" and hasattr(engine, 'answer_search'):
|
||||
if answer_mode and engine_name == "exa" and hasattr(engine, "answer_search"):
|
||||
logger.info("使用Exa答案模式进行搜索(fallback策略)")
|
||||
results = await engine.answer_search(custom_args)
|
||||
else:
|
||||
@@ -195,7 +195,7 @@ class WebSurfingTool(BaseTool):
|
||||
custom_args["num_results"] = custom_args.get("num_results", 5)
|
||||
|
||||
# 如果启用了answer模式且是Exa引擎,使用answer_search方法
|
||||
if answer_mode and engine_name == "exa" and hasattr(engine, 'answer_search'):
|
||||
if answer_mode and engine_name == "exa" and hasattr(engine, "answer_search"):
|
||||
logger.info("使用Exa答案模式进行搜索")
|
||||
results = await engine.answer_search(custom_args)
|
||||
else:
|
||||
|
||||
@@ -14,7 +14,7 @@ sys.path.insert(0, str(project_root))
|
||||
|
||||
from tools.memory_visualizer.visualizer_server import run_server
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
print("=" * 60)
|
||||
print("🦊 MoFox Bot - 记忆图可视化工具")
|
||||
print("=" * 60)
|
||||
@@ -27,7 +27,7 @@ if __name__ == '__main__':
|
||||
|
||||
try:
|
||||
run_server(
|
||||
host='127.0.0.1',
|
||||
host="127.0.0.1",
|
||||
port=5000,
|
||||
debug=True
|
||||
)
|
||||
|
||||
@@ -15,7 +15,7 @@ from pathlib import Path
|
||||
project_root = Path(__file__).parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
print("=" * 70)
|
||||
print("🦊 MoFox Bot - 记忆图可视化工具 (独立版)")
|
||||
print("=" * 70)
|
||||
@@ -29,7 +29,7 @@ if __name__ == '__main__':
|
||||
|
||||
try:
|
||||
from tools.memory_visualizer.visualizer_simple import run_server
|
||||
run_server(host='127.0.0.1', port=5001, debug=True)
|
||||
run_server(host="127.0.0.1", port=5001, debug=True)
|
||||
except KeyboardInterrupt:
|
||||
print("\n\n👋 服务器已停止")
|
||||
except Exception as e:
|
||||
|
||||
@@ -11,7 +11,6 @@ import logging
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from flask import Flask, jsonify, render_template, request
|
||||
from flask_cors import CORS
|
||||
@@ -28,7 +27,7 @@ app = Flask(__name__)
|
||||
CORS(app) # 允许跨域请求
|
||||
|
||||
# 全局记忆管理器
|
||||
memory_manager: Optional[MemoryManager] = None
|
||||
memory_manager: MemoryManager | None = None
|
||||
|
||||
|
||||
def init_memory_manager():
|
||||
@@ -189,7 +188,7 @@ def search_memories():
|
||||
init_memory_manager()
|
||||
|
||||
query = request.args.get("q", "")
|
||||
memory_type = request.args.get("type", None)
|
||||
request.args.get("type", None)
|
||||
limit = int(request.args.get("limit", 50))
|
||||
|
||||
loop = asyncio.new_event_loop()
|
||||
|
||||
@@ -4,20 +4,18 @@
|
||||
直接从存储的数据文件生成可视化,无需启动完整的记忆管理器
|
||||
"""
|
||||
|
||||
import orjson
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Set
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Set
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
|
||||
# 添加项目根目录
|
||||
project_root = Path(__file__).parent.parent.parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
from flask import Flask, jsonify, render_template_string, request, send_from_directory
|
||||
from flask import Flask, jsonify, render_template_string, request
|
||||
from flask_cors import CORS
|
||||
|
||||
app = Flask(__name__)
|
||||
@@ -29,7 +27,7 @@ data_dir = project_root / "data" / "memory_graph"
|
||||
current_data_file = None # 当前选择的数据文件
|
||||
|
||||
|
||||
def find_available_data_files() -> List[Path]:
|
||||
def find_available_data_files() -> list[Path]:
|
||||
"""查找所有可用的记忆图数据文件"""
|
||||
files = []
|
||||
|
||||
@@ -74,7 +72,7 @@ def find_available_data_files() -> List[Path]:
|
||||
return sorted(files, key=lambda f: f.stat().st_mtime, reverse=True)
|
||||
|
||||
|
||||
def load_graph_data(file_path: Optional[Path] = None) -> Dict[str, Any]:
|
||||
def load_graph_data(file_path: Path | None = None) -> dict[str, Any]:
|
||||
"""从磁盘加载图数据"""
|
||||
global graph_data_cache, current_data_file
|
||||
|
||||
@@ -94,7 +92,7 @@ def load_graph_data(file_path: Optional[Path] = None) -> Dict[str, Any]:
|
||||
# 尝试查找可用的数据文件
|
||||
available_files = find_available_data_files()
|
||||
if not available_files:
|
||||
print(f"⚠️ 未找到任何图数据文件")
|
||||
print("⚠️ 未找到任何图数据文件")
|
||||
print(f"📂 搜索目录: {data_dir}")
|
||||
return {
|
||||
"nodes": [],
|
||||
@@ -121,7 +119,7 @@ def load_graph_data(file_path: Optional[Path] = None) -> Dict[str, Any]:
|
||||
}
|
||||
|
||||
print(f"📂 加载图数据: {graph_file}")
|
||||
with open(graph_file, 'r', encoding='utf-8') as f:
|
||||
with open(graph_file, encoding="utf-8") as f:
|
||||
data = orjson.loads(f.read())
|
||||
|
||||
# 解析数据
|
||||
@@ -139,64 +137,64 @@ def load_graph_data(file_path: Optional[Path] = None) -> Dict[str, Any]:
|
||||
|
||||
# 处理节点
|
||||
for node in nodes:
|
||||
node_id = node.get('id', '')
|
||||
node_id = node.get("id", "")
|
||||
if node_id and node_id not in nodes_dict:
|
||||
memory_ids = node.get('metadata', {}).get('memory_ids', [])
|
||||
memory_ids = node.get("metadata", {}).get("memory_ids", [])
|
||||
nodes_dict[node_id] = {
|
||||
'id': node_id,
|
||||
'label': node.get('content', ''),
|
||||
'type': node.get('node_type', ''),
|
||||
'group': extract_group_from_type(node.get('node_type', '')),
|
||||
'title': f"{node.get('node_type', '')}: {node.get('content', '')}",
|
||||
'metadata': node.get('metadata', {}),
|
||||
'created_at': node.get('created_at', ''),
|
||||
'memory_ids': memory_ids,
|
||||
"id": node_id,
|
||||
"label": node.get("content", ""),
|
||||
"type": node.get("node_type", ""),
|
||||
"group": extract_group_from_type(node.get("node_type", "")),
|
||||
"title": f"{node.get('node_type', '')}: {node.get('content', '')}",
|
||||
"metadata": node.get("metadata", {}),
|
||||
"created_at": node.get("created_at", ""),
|
||||
"memory_ids": memory_ids,
|
||||
}
|
||||
|
||||
# 处理边 - 使用集合去重,避免重复的边ID
|
||||
existing_edge_ids = set()
|
||||
for edge in edges:
|
||||
# 边的ID字段可能是 'id' 或 'edge_id'
|
||||
edge_id = edge.get('edge_id') or edge.get('id', '')
|
||||
edge_id = edge.get("edge_id") or edge.get("id", "")
|
||||
# 如果ID为空或已存在,跳过这条边
|
||||
if not edge_id or edge_id in existing_edge_ids:
|
||||
continue
|
||||
|
||||
existing_edge_ids.add(edge_id)
|
||||
memory_id = edge.get('metadata', {}).get('memory_id', '')
|
||||
memory_id = edge.get("metadata", {}).get("memory_id", "")
|
||||
|
||||
# 注意: GraphStore 保存的格式使用 'source'/'target', 不是 'source_id'/'target_id'
|
||||
edges_list.append({
|
||||
'id': edge_id,
|
||||
'from': edge.get('source', edge.get('source_id', '')),
|
||||
'to': edge.get('target', edge.get('target_id', '')),
|
||||
'label': edge.get('relation', ''),
|
||||
'type': edge.get('edge_type', ''),
|
||||
'importance': edge.get('importance', 0.5),
|
||||
'title': f"{edge.get('edge_type', '')}: {edge.get('relation', '')}",
|
||||
'arrows': 'to',
|
||||
'memory_id': memory_id,
|
||||
"id": edge_id,
|
||||
"from": edge.get("source", edge.get("source_id", "")),
|
||||
"to": edge.get("target", edge.get("target_id", "")),
|
||||
"label": edge.get("relation", ""),
|
||||
"type": edge.get("edge_type", ""),
|
||||
"importance": edge.get("importance", 0.5),
|
||||
"title": f"{edge.get('edge_type', '')}: {edge.get('relation', '')}",
|
||||
"arrows": "to",
|
||||
"memory_id": memory_id,
|
||||
})
|
||||
|
||||
# 从元数据中获取统计信息
|
||||
stats = metadata.get('statistics', {})
|
||||
total_memories = stats.get('total_memories', 0)
|
||||
stats = metadata.get("statistics", {})
|
||||
total_memories = stats.get("total_memories", 0)
|
||||
|
||||
# TODO: 如果需要记忆详细信息,需要从其他地方加载
|
||||
# 目前只有节点和边的数据
|
||||
|
||||
graph_data_cache = {
|
||||
'nodes': list(nodes_dict.values()),
|
||||
'edges': edges_list,
|
||||
'memories': memory_info, # 空列表,因为文件中没有记忆详情
|
||||
'stats': {
|
||||
'total_nodes': len(nodes_dict),
|
||||
'total_edges': len(edges_list),
|
||||
'total_memories': total_memories,
|
||||
"nodes": list(nodes_dict.values()),
|
||||
"edges": edges_list,
|
||||
"memories": memory_info, # 空列表,因为文件中没有记忆详情
|
||||
"stats": {
|
||||
"total_nodes": len(nodes_dict),
|
||||
"total_edges": len(edges_list),
|
||||
"total_memories": total_memories,
|
||||
},
|
||||
'current_file': str(graph_file),
|
||||
'file_size': graph_file.stat().st_size,
|
||||
'file_modified': datetime.fromtimestamp(graph_file.stat().st_mtime).isoformat(),
|
||||
"current_file": str(graph_file),
|
||||
"file_size": graph_file.stat().st_size,
|
||||
"file_modified": datetime.fromtimestamp(graph_file.stat().st_mtime).isoformat(),
|
||||
}
|
||||
|
||||
print(f"📊 统计: {len(nodes_dict)} 个节点, {len(edges_list)} 条边, {total_memories} 条记忆")
|
||||
@@ -214,38 +212,38 @@ def extract_group_from_type(node_type: str) -> str:
|
||||
"""从节点类型提取分组名"""
|
||||
# 假设类型格式为 "主体" 或 "SUBJECT"
|
||||
type_mapping = {
|
||||
'主体': 'SUBJECT',
|
||||
'主题': 'TOPIC',
|
||||
'客体': 'OBJECT',
|
||||
'属性': 'ATTRIBUTE',
|
||||
'值': 'VALUE',
|
||||
"主体": "SUBJECT",
|
||||
"主题": "TOPIC",
|
||||
"客体": "OBJECT",
|
||||
"属性": "ATTRIBUTE",
|
||||
"值": "VALUE",
|
||||
}
|
||||
return type_mapping.get(node_type, node_type)
|
||||
|
||||
|
||||
def generate_memory_text(memory: Dict[str, Any]) -> str:
|
||||
def generate_memory_text(memory: dict[str, Any]) -> str:
|
||||
"""生成记忆的文本描述"""
|
||||
try:
|
||||
nodes = {n['id']: n for n in memory.get('nodes', [])}
|
||||
edges = memory.get('edges', [])
|
||||
nodes = {n["id"]: n for n in memory.get("nodes", [])}
|
||||
edges = memory.get("edges", [])
|
||||
|
||||
subject_id = memory.get('subject_id', '')
|
||||
subject_id = memory.get("subject_id", "")
|
||||
if not subject_id or subject_id not in nodes:
|
||||
return f"[记忆 {memory.get('id', '')[:8]}]"
|
||||
|
||||
parts = [nodes[subject_id]['content']]
|
||||
parts = [nodes[subject_id]["content"]]
|
||||
|
||||
# 找主题节点
|
||||
for edge in edges:
|
||||
if edge.get('edge_type') == '记忆类型' and edge.get('source_id') == subject_id:
|
||||
topic_id = edge.get('target_id', '')
|
||||
if edge.get("edge_type") == "记忆类型" and edge.get("source_id") == subject_id:
|
||||
topic_id = edge.get("target_id", "")
|
||||
if topic_id in nodes:
|
||||
parts.append(nodes[topic_id]['content'])
|
||||
parts.append(nodes[topic_id]["content"])
|
||||
|
||||
# 找客体
|
||||
for e2 in edges:
|
||||
if e2.get('edge_type') == '核心关系' and e2.get('source_id') == topic_id:
|
||||
obj_id = e2.get('target_id', '')
|
||||
if e2.get("edge_type") == "核心关系" and e2.get("source_id") == topic_id:
|
||||
obj_id = e2.get("target_id", "")
|
||||
if obj_id in nodes:
|
||||
parts.append(f"{e2.get('relation', '')} {nodes[obj_id]['content']}")
|
||||
break
|
||||
@@ -257,86 +255,86 @@ def generate_memory_text(memory: Dict[str, Any]) -> str:
|
||||
|
||||
|
||||
# 使用内嵌的HTML模板(与之前相同)
|
||||
HTML_TEMPLATE = open(project_root / "tools" / "memory_visualizer" / "templates" / "visualizer.html", 'r', encoding='utf-8').read()
|
||||
HTML_TEMPLATE = open(project_root / "tools" / "memory_visualizer" / "templates" / "visualizer.html", encoding="utf-8").read()
|
||||
|
||||
|
||||
@app.route('/')
|
||||
@app.route("/")
|
||||
def index():
|
||||
"""主页面"""
|
||||
return render_template_string(HTML_TEMPLATE)
|
||||
|
||||
|
||||
@app.route('/api/graph/full')
|
||||
@app.route("/api/graph/full")
|
||||
def get_full_graph():
|
||||
"""获取完整记忆图数据"""
|
||||
try:
|
||||
data = load_graph_data()
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'data': data
|
||||
"success": True,
|
||||
"data": data
|
||||
})
|
||||
except Exception as e:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
"success": False,
|
||||
"error": str(e)
|
||||
}), 500
|
||||
|
||||
|
||||
@app.route('/api/memory/<memory_id>')
|
||||
@app.route("/api/memory/<memory_id>")
|
||||
def get_memory_detail(memory_id: str):
|
||||
"""获取记忆详情"""
|
||||
try:
|
||||
data = load_graph_data()
|
||||
memory = next((m for m in data['memories'] if m['id'] == memory_id), None)
|
||||
memory = next((m for m in data["memories"] if m["id"] == memory_id), None)
|
||||
|
||||
if memory is None:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': '记忆不存在'
|
||||
"success": False,
|
||||
"error": "记忆不存在"
|
||||
}), 404
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'data': memory
|
||||
"success": True,
|
||||
"data": memory
|
||||
})
|
||||
except Exception as e:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
"success": False,
|
||||
"error": str(e)
|
||||
}), 500
|
||||
|
||||
|
||||
@app.route('/api/search')
|
||||
@app.route("/api/search")
|
||||
def search_memories():
|
||||
"""搜索记忆"""
|
||||
try:
|
||||
query = request.args.get('q', '').lower()
|
||||
limit = int(request.args.get('limit', 50))
|
||||
query = request.args.get("q", "").lower()
|
||||
limit = int(request.args.get("limit", 50))
|
||||
|
||||
data = load_graph_data()
|
||||
|
||||
# 简单的文本匹配搜索
|
||||
results = []
|
||||
for memory in data['memories']:
|
||||
text = memory.get('text', '').lower()
|
||||
for memory in data["memories"]:
|
||||
text = memory.get("text", "").lower()
|
||||
if query in text:
|
||||
results.append(memory)
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'data': {
|
||||
'results': results[:limit],
|
||||
'count': len(results),
|
||||
"success": True,
|
||||
"data": {
|
||||
"results": results[:limit],
|
||||
"count": len(results),
|
||||
}
|
||||
})
|
||||
except Exception as e:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
"success": False,
|
||||
"error": str(e)
|
||||
}), 500
|
||||
|
||||
|
||||
@app.route('/api/stats')
|
||||
@app.route("/api/stats")
|
||||
def get_statistics():
|
||||
"""获取统计信息"""
|
||||
try:
|
||||
@@ -346,43 +344,43 @@ def get_statistics():
|
||||
node_types = {}
|
||||
memory_types = {}
|
||||
|
||||
for node in data['nodes']:
|
||||
node_type = node.get('type', 'Unknown')
|
||||
for node in data["nodes"]:
|
||||
node_type = node.get("type", "Unknown")
|
||||
node_types[node_type] = node_types.get(node_type, 0) + 1
|
||||
|
||||
for memory in data['memories']:
|
||||
mem_type = memory.get('type', 'Unknown')
|
||||
for memory in data["memories"]:
|
||||
mem_type = memory.get("type", "Unknown")
|
||||
memory_types[mem_type] = memory_types.get(mem_type, 0) + 1
|
||||
|
||||
stats = data.get('stats', {})
|
||||
stats['node_types'] = node_types
|
||||
stats['memory_types'] = memory_types
|
||||
stats = data.get("stats", {})
|
||||
stats["node_types"] = node_types
|
||||
stats["memory_types"] = memory_types
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'data': stats
|
||||
"success": True,
|
||||
"data": stats
|
||||
})
|
||||
except Exception as e:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
"success": False,
|
||||
"error": str(e)
|
||||
}), 500
|
||||
|
||||
|
||||
@app.route('/api/reload')
|
||||
@app.route("/api/reload")
|
||||
def reload_data():
|
||||
"""重新加载数据"""
|
||||
global graph_data_cache
|
||||
graph_data_cache = None
|
||||
data = load_graph_data()
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'message': '数据已重新加载',
|
||||
'stats': data.get('stats', {})
|
||||
"success": True,
|
||||
"message": "数据已重新加载",
|
||||
"stats": data.get("stats", {})
|
||||
})
|
||||
|
||||
|
||||
@app.route('/api/files')
|
||||
@app.route("/api/files")
|
||||
def list_files():
|
||||
"""列出所有可用的数据文件"""
|
||||
try:
|
||||
@@ -392,48 +390,48 @@ def list_files():
|
||||
for f in files:
|
||||
stat = f.stat()
|
||||
file_list.append({
|
||||
'path': str(f),
|
||||
'name': f.name,
|
||||
'size': stat.st_size,
|
||||
'size_kb': round(stat.st_size / 1024, 2),
|
||||
'modified': datetime.fromtimestamp(stat.st_mtime).isoformat(),
|
||||
'modified_readable': datetime.fromtimestamp(stat.st_mtime).strftime('%Y-%m-%d %H:%M:%S'),
|
||||
'is_current': str(f) == str(current_data_file) if current_data_file else False
|
||||
"path": str(f),
|
||||
"name": f.name,
|
||||
"size": stat.st_size,
|
||||
"size_kb": round(stat.st_size / 1024, 2),
|
||||
"modified": datetime.fromtimestamp(stat.st_mtime).isoformat(),
|
||||
"modified_readable": datetime.fromtimestamp(stat.st_mtime).strftime("%Y-%m-%d %H:%M:%S"),
|
||||
"is_current": str(f) == str(current_data_file) if current_data_file else False
|
||||
})
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'files': file_list,
|
||||
'count': len(file_list),
|
||||
'current_file': str(current_data_file) if current_data_file else None
|
||||
"success": True,
|
||||
"files": file_list,
|
||||
"count": len(file_list),
|
||||
"current_file": str(current_data_file) if current_data_file else None
|
||||
})
|
||||
except Exception as e:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
"success": False,
|
||||
"error": str(e)
|
||||
}), 500
|
||||
|
||||
|
||||
@app.route('/api/select_file', methods=['POST'])
|
||||
@app.route("/api/select_file", methods=["POST"])
|
||||
def select_file():
|
||||
"""选择要加载的数据文件"""
|
||||
global graph_data_cache, current_data_file
|
||||
|
||||
try:
|
||||
data = request.get_json()
|
||||
file_path = data.get('file_path')
|
||||
file_path = data.get("file_path")
|
||||
|
||||
if not file_path:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': '未提供文件路径'
|
||||
"success": False,
|
||||
"error": "未提供文件路径"
|
||||
}), 400
|
||||
|
||||
file_path = Path(file_path)
|
||||
if not file_path.exists():
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': f'文件不存在: {file_path}'
|
||||
"success": False,
|
||||
"error": f"文件不存在: {file_path}"
|
||||
}), 404
|
||||
|
||||
# 清除缓存并加载新文件
|
||||
@@ -442,18 +440,18 @@ def select_file():
|
||||
graph_data = load_graph_data(file_path)
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'message': f'已切换到文件: {file_path.name}',
|
||||
'stats': graph_data.get('stats', {})
|
||||
"success": True,
|
||||
"message": f"已切换到文件: {file_path.name}",
|
||||
"stats": graph_data.get("stats", {})
|
||||
})
|
||||
except Exception as e:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
"success": False,
|
||||
"error": str(e)
|
||||
}), 500
|
||||
|
||||
|
||||
def run_server(host: str = '127.0.0.1', port: int = 5001, debug: bool = False):
|
||||
def run_server(host: str = "127.0.0.1", port: int = 5001, debug: bool = False):
|
||||
"""启动服务器"""
|
||||
print("=" * 60)
|
||||
print("🦊 MoFox Bot - 记忆图可视化工具 (独立版)")
|
||||
@@ -470,7 +468,7 @@ def run_server(host: str = '127.0.0.1', port: int = 5001, debug: bool = False):
|
||||
app.run(host=host, port=port, debug=debug)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
run_server(debug=True)
|
||||
except KeyboardInterrupt:
|
||||
|
||||
Reference in New Issue
Block a user