From c8d7c0962582284a04ac29a7fb57a6c3ecb79716 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=98=8E=E5=A4=A9=E5=A5=BD=E5=83=8F=E6=B2=A1=E4=BB=80?= =?UTF-8?q?=E4=B9=88?= Date: Fri, 7 Nov 2025 21:01:45 +0800 Subject: [PATCH] ruff --- clean_embedding_data.py | 64 ++-- scripts/memory_profiler.py | 306 ++++++++------- src/chat/emoji_system/emoji_manager.py | 8 +- src/chat/express/expression_learner.py | 23 +- src/chat/express/expressor_model/model.py | 10 +- src/chat/express/style_learner.py | 52 +-- .../interest_system/bot_interest_manager.py | 169 +++++---- src/chat/message_manager/__init__.py | 2 +- src/chat/message_manager/context_manager.py | 8 +- src/chat/message_manager/message_manager.py | 12 +- .../message_manager/scheduler_dispatcher.py | 182 ++++----- src/chat/message_receive/bot.py | 2 +- src/chat/message_receive/message_processor.py | 2 +- src/chat/replyer/default_generator.py | 35 +- src/chat/utils/prompt.py | 2 +- src/chat/utils/utils.py | 17 +- src/common/cache_manager.py | 6 +- .../database/optimization/batch_scheduler.py | 15 +- .../database/optimization/cache_manager.py | 72 ++-- src/common/memory_utils.py | 73 ++-- src/config/config.py | 3 +- src/config/official_configs.py | 18 +- src/llm_models/utils_model.py | 2 +- src/memory_graph/storage/vector_store.py | 8 +- src/memory_graph/utils/embeddings.py | 6 +- src/plugin_system/apis/storage_api.py | 5 +- src/plugin_system/core/mcp_client_manager.py | 2 +- src/plugin_system/core/stream_tool_history.py | 34 +- src/plugin_system/core/tool_use.py | 11 +- .../core/affinity_interest_calculator.py | 38 +- .../affinity_flow_chatter/planner/__init__.py | 4 +- .../planner/plan_filter.py | 4 +- .../affinity_flow_chatter/planner/planner.py | 29 +- .../proactive/__init__.py | 4 +- .../proactive/proactive_thinking_executor.py | 1 - .../services/content_service.py | 3 +- .../services/qzone_service.py | 10 +- .../services/reply_tracker_service.py | 7 +- .../napcat_adapter_plugin/src/send_handler.py | 3 +- .../web_search_tool/engines/metaso_engine.py | 2 +- .../web_search_tool/engines/serper_engine.py | 3 +- .../built_in/web_search_tool/plugin.py | 2 +- .../web_search_tool/tools/web_search.py | 6 +- src/schedule/unified_scheduler.py | 8 +- src/utils/json_parser.py | 78 ++-- tools/memory_visualizer/run_visualizer.py | 6 +- .../run_visualizer_simple.py | 6 +- tools/memory_visualizer/visualizer_server.py | 5 +- tools/memory_visualizer/visualizer_simple.py | 358 +++++++++--------- 49 files changed, 854 insertions(+), 872 deletions(-) diff --git a/clean_embedding_data.py b/clean_embedding_data.py index 1cac5c870..c93a161c6 100644 --- a/clean_embedding_data.py +++ b/clean_embedding_data.py @@ -17,19 +17,19 @@ import argparse import json -from pathlib import Path -from typing import Dict, Any, List, Tuple import logging +from pathlib import Path +from typing import Any import orjson # 配置日志 logging.basicConfig( level=logging.INFO, - format='%(asctime)s - %(levelname)s - %(message)s', + format="%(asctime)s - %(levelname)s - %(message)s", handlers=[ logging.StreamHandler(), - logging.FileHandler('embedding_cleanup.log', encoding='utf-8') + logging.FileHandler("embedding_cleanup.log", encoding="utf-8") ] ) logger = logging.getLogger(__name__) @@ -49,13 +49,13 @@ class EmbeddingCleaner: self.cleaned_files = [] self.errors = [] self.stats = { - 'files_processed': 0, - 'embedings_removed': 0, - 'bytes_saved': 0, - 'nodes_processed': 0 + "files_processed": 0, + "embedings_removed": 0, + "bytes_saved": 0, + "nodes_processed": 0 } - def find_json_files(self) -> List[Path]: + def find_json_files(self) -> list[Path]: """查找可能包含向量数据的 JSON 文件""" json_files = [] @@ -65,7 +65,7 @@ class EmbeddingCleaner: json_files.append(memory_graph_file) # 测试数据文件 - test_dir = self.data_dir / "test_*" + self.data_dir / "test_*" for test_path in self.data_dir.glob("test_*/memory_graph.json"): if test_path.exists(): json_files.append(test_path) @@ -82,7 +82,7 @@ class EmbeddingCleaner: logger.info(f"找到 {len(json_files)} 个需要处理的 JSON 文件") return json_files - def analyze_embedding_in_data(self, data: Dict[str, Any]) -> int: + def analyze_embedding_in_data(self, data: dict[str, Any]) -> int: """ 分析数据中的 embedding 字段数量 @@ -97,7 +97,7 @@ class EmbeddingCleaner: def count_embeddings(obj): nonlocal embedding_count if isinstance(obj, dict): - if 'embedding' in obj: + if "embedding" in obj: embedding_count += 1 for value in obj.values(): count_embeddings(value) @@ -108,7 +108,7 @@ class EmbeddingCleaner: count_embeddings(data) return embedding_count - def clean_embedding_from_data(self, data: Dict[str, Any]) -> Tuple[Dict[str, Any], int]: + def clean_embedding_from_data(self, data: dict[str, Any]) -> tuple[dict[str, Any], int]: """ 从数据中移除 embedding 字段 @@ -123,8 +123,8 @@ class EmbeddingCleaner: def remove_embeddings(obj): nonlocal removed_count if isinstance(obj, dict): - if 'embedding' in obj: - del obj['embedding'] + if "embedding" in obj: + del obj["embedding"] removed_count += 1 for value in obj.values(): remove_embeddings(value) @@ -162,14 +162,14 @@ class EmbeddingCleaner: data = orjson.loads(original_content) except orjson.JSONDecodeError: # 回退到标准 json - with open(file_path, 'r', encoding='utf-8') as f: + with open(file_path, encoding="utf-8") as f: data = json.load(f) # 分析 embedding 数据 embedding_count = self.analyze_embedding_in_data(data) if embedding_count == 0: - logger.info(f" ✓ 文件中没有 embedding 数据,跳过") + logger.info(" ✓ 文件中没有 embedding 数据,跳过") return True logger.info(f" 发现 {embedding_count} 个 embedding 字段") @@ -193,30 +193,30 @@ class EmbeddingCleaner: cleaned_data, indent=2, ensure_ascii=False - ).encode('utf-8') + ).encode("utf-8") cleaned_size = len(cleaned_content) bytes_saved = original_size - cleaned_size # 原子写入 - temp_file = file_path.with_suffix('.tmp') + temp_file = file_path.with_suffix(".tmp") temp_file.write_bytes(cleaned_content) temp_file.replace(file_path) - logger.info(f" ✓ 清理完成:") + logger.info(" ✓ 清理完成:") logger.info(f" - 移除 embedding 字段: {removed_count}") logger.info(f" - 节省空间: {bytes_saved:,} 字节 ({bytes_saved/original_size*100:.1f}%)") logger.info(f" - 新文件大小: {cleaned_size:,} 字节") # 更新统计 - self.stats['embedings_removed'] += removed_count - self.stats['bytes_saved'] += bytes_saved + self.stats["embedings_removed"] += removed_count + self.stats["bytes_saved"] += bytes_saved else: logger.info(f" [试运行] 将移除 {embedding_count} 个 embedding 字段") - self.stats['embedings_removed'] += embedding_count + self.stats["embedings_removed"] += embedding_count - self.stats['files_processed'] += 1 + self.stats["files_processed"] += 1 self.cleaned_files.append(file_path) return True @@ -236,12 +236,12 @@ class EmbeddingCleaner: 节点数量 """ try: - with open(file_path, 'r', encoding='utf-8') as f: + with open(file_path, encoding="utf-8") as f: data = json.load(f) node_count = 0 - if 'nodes' in data and isinstance(data['nodes'], list): - node_count = len(data['nodes']) + if "nodes" in data and isinstance(data["nodes"], list): + node_count = len(data["nodes"]) return node_count @@ -268,7 +268,7 @@ class EmbeddingCleaner: # 统计总节点数 total_nodes = sum(self.analyze_nodes_in_file(f) for f in json_files) - self.stats['nodes_processed'] = total_nodes + self.stats["nodes_processed"] = total_nodes logger.info(f"总计 {len(json_files)} 个文件,{total_nodes} 个节点") @@ -295,8 +295,8 @@ class EmbeddingCleaner: if not dry_run: logger.info(f"节省空间: {self.stats['bytes_saved']:,} 字节") - if self.stats['bytes_saved'] > 0: - mb_saved = self.stats['bytes_saved'] / 1024 / 1024 + if self.stats["bytes_saved"] > 0: + mb_saved = self.stats["bytes_saved"] / 1024 / 1024 logger.info(f"节省空间: {mb_saved:.2f} MB") if self.errors: @@ -342,7 +342,7 @@ def main(): print(" 请确保向量数据库正在正常工作。") print() response = input("确认继续?(yes/no): ") - if response.lower() not in ['yes', 'y', '是']: + if response.lower() not in ["yes", "y", "是"]: print("操作已取消") return @@ -352,4 +352,4 @@ def main(): if __name__ == "__main__": - main() \ No newline at end of file + main() diff --git a/scripts/memory_profiler.py b/scripts/memory_profiler.py index 13e0d102c..ae08e695c 100644 --- a/scripts/memory_profiler.py +++ b/scripts/memory_profiler.py @@ -10,10 +10,10 @@ 示例: # 进程监控(启动 bot 并监控) python scripts/memory_profiler.py --monitor --interval 10 - + # 对象分析(深度对象统计) python scripts/memory_profiler.py --objects --interval 10 --output memory_data.txt - + # 生成可视化图表 python scripts/memory_profiler.py --visualize --input memory_data.txt.jsonl --top 15 """ @@ -22,7 +22,6 @@ import argparse import asyncio import gc import json -import os import subprocess import sys import threading @@ -30,7 +29,6 @@ import time from collections import defaultdict from datetime import datetime from pathlib import Path -from typing import Dict, List, Optional import psutil @@ -56,29 +54,29 @@ async def monitor_bot_process(bot_process: subprocess.Popen, interval: int = 5): if bot_process.pid is None: print("❌ Bot 进程 PID 为空") return - + print(f"🔍 开始监控 Bot 内存(PID: {bot_process.pid})") print(f"监控间隔: {interval} 秒") print("按 Ctrl+C 停止监控和 Bot\n") - + try: process = psutil.Process(bot_process.pid) except psutil.NoSuchProcess: print("❌ 无法找到 Bot 进程") return - + history = [] iteration = 0 - + try: while bot_process.poll() is None: try: mem_info = process.memory_info() mem_percent = process.memory_percent() - + children = process.children(recursive=True) children_mem = sum(child.memory_info().rss for child in children) - + info = { "timestamp": time.strftime("%H:%M:%S"), "rss_mb": mem_info.rss / 1024 / 1024, @@ -87,24 +85,24 @@ async def monitor_bot_process(bot_process: subprocess.Popen, interval: int = 5): "children_count": len(children), "children_mem_mb": children_mem / 1024 / 1024, } - + history.append(info) iteration += 1 - + print(f"{'=' * 80}") print(f"检查点 #{iteration} - {info['timestamp']}") print(f"Bot 进程 (PID: {bot_process.pid})") print(f" RSS: {info['rss_mb']:.2f} MB") print(f" VMS: {info['vms_mb']:.2f} MB") print(f" 占比: {info['percent']:.2f}%") - + if children: print(f" 子进程: {info['children_count']} 个") print(f" 子进程内存: {info['children_mem_mb']:.2f} MB") - total_mem = info['rss_mb'] + info['children_mem_mb'] + total_mem = info["rss_mb"] + info["children_mem_mb"] print(f" 总内存: {total_mem:.2f} MB") - - print(f"\n 📋 子进程详情:") + + print("\n 📋 子进程详情:") for idx, child in enumerate(children, 1): try: child_mem = child.memory_info().rss / 1024 / 1024 @@ -116,30 +114,30 @@ async def monitor_bot_process(bot_process: subprocess.Popen, interval: int = 5): print(f" 命令: {child_cmdline}") except (psutil.NoSuchProcess, psutil.AccessDenied): print(f" [{idx}] 无法访问进程信息") - + if len(history) > 1: prev = history[-2] - rss_diff = info['rss_mb'] - prev['rss_mb'] - print(f"\n变化:") + rss_diff = info["rss_mb"] - prev["rss_mb"] + print("\n变化:") print(f" RSS: {rss_diff:+.2f} MB") if rss_diff > 10: - print(f" ⚠️ 内存增长较快!") - if info['rss_mb'] > 1000: - print(f" ⚠️ 内存使用超过 1GB!") - + print(" ⚠️ 内存增长较快!") + if info["rss_mb"] > 1000: + print(" ⚠️ 内存使用超过 1GB!") + print(f"{'=' * 80}\n") await asyncio.sleep(interval) - + except psutil.NoSuchProcess: print("\n❌ Bot 进程已结束") break except Exception as e: print(f"\n❌ 监控出错: {e}") break - + except KeyboardInterrupt: print("\n\n⚠️ 用户中断监控") - + finally: if history and bot_process.pid: save_process_history(history, bot_process.pid) @@ -149,25 +147,25 @@ def save_process_history(history: list, pid: int): """保存进程监控历史""" output_dir = Path("data/memory_diagnostics") output_dir.mkdir(parents=True, exist_ok=True) - + timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_file = output_dir / f"process_monitor_{timestamp}_pid{pid}.txt" - + with open(output_file, "w", encoding="utf-8") as f: f.write("Bot 进程内存监控历史记录\n") f.write("=" * 80 + "\n\n") f.write(f"Bot PID: {pid}\n\n") - + for info in history: f.write(f"时间: {info['timestamp']}\n") f.write(f"RSS: {info['rss_mb']:.2f} MB\n") f.write(f"VMS: {info['vms_mb']:.2f} MB\n") f.write(f"占比: {info['percent']:.2f}%\n") - if info['children_count'] > 0: + if info["children_count"] > 0: f.write(f"子进程: {info['children_count']} 个\n") f.write(f"子进程内存: {info['children_mem_mb']:.2f} MB\n") f.write("\n") - + print(f"\n✅ 监控历史已保存到: {output_file}") @@ -182,28 +180,28 @@ async def run_monitor_mode(interval: int): print(" 3. 显示子进程详细信息") print(" 4. 自动保存监控历史") print("=" * 80 + "\n") - + project_root = Path(__file__).parent.parent bot_file = project_root / "bot.py" - + if not bot_file.exists(): print(f"❌ 找不到 bot.py: {bot_file}") return 1 - + # 检测虚拟环境 venv_python = project_root / ".venv" / "Scripts" / "python.exe" if not venv_python.exists(): venv_python = project_root / ".venv" / "bin" / "python" - + if venv_python.exists(): python_exe = str(venv_python) print(f"🐍 使用虚拟环境: {venv_python}") else: python_exe = sys.executable print(f"⚠️ 未找到虚拟环境,使用当前 Python: {python_exe}") - + print(f"🤖 启动 Bot: {bot_file}") - + bot_process = subprocess.Popen( [python_exe, str(bot_file)], cwd=str(project_root), @@ -212,9 +210,9 @@ async def run_monitor_mode(interval: int): text=True, bufsize=1, ) - + await asyncio.sleep(2) - + if bot_process.poll() is not None: print("❌ Bot 启动失败") if bot_process.stdout: @@ -222,9 +220,9 @@ async def run_monitor_mode(interval: int): if output: print(f"\nBot 输出:\n{output}") return 1 - + print(f"✅ Bot 已启动 (PID: {bot_process.pid})\n") - + # 启动输出读取线程 def read_bot_output(): if bot_process.stdout: @@ -233,15 +231,15 @@ async def run_monitor_mode(interval: int): print(f"[Bot] {line}", end="") except Exception: pass - + output_thread = threading.Thread(target=read_bot_output, daemon=True) output_thread.start() - + try: await monitor_bot_process(bot_process, interval) except KeyboardInterrupt: print("\n\n⚠️ 用户中断") - + if bot_process.poll() is None: print("\n正在停止 Bot...") bot_process.terminate() @@ -251,9 +249,9 @@ async def run_monitor_mode(interval: int): print("⚠️ 强制终止 Bot...") bot_process.kill() bot_process.wait() - + print("✅ Bot 已停止") - + return 0 @@ -263,8 +261,8 @@ async def run_monitor_mode(interval: int): class ObjectMemoryProfiler: """对象级内存分析器""" - - def __init__(self, interval: int = 10, output_file: Optional[str] = None, object_limit: int = 20): + + def __init__(self, interval: int = 10, output_file: str | None = None, object_limit: int = 20): self.interval = interval self.output_file = output_file self.object_limit = object_limit @@ -273,23 +271,23 @@ class ObjectMemoryProfiler: if PYMPLER_AVAILABLE: self.tracker = tracker.SummaryTracker() self.iteration = 0 - - def get_object_stats(self) -> Dict: + + def get_object_stats(self) -> dict: """获取当前进程的对象统计(所有线程)""" if not PYMPLER_AVAILABLE: return {} - + try: gc.collect() all_objects = muppy.get_objects() sum_data = summary.summarize(all_objects) - + # 按总大小(第3个元素)降序排序 sorted_sum_data = sorted(sum_data, key=lambda x: x[2], reverse=True) - + # 按模块统计内存 module_stats = self._get_module_stats(all_objects) - + threads = threading.enumerate() thread_info = [ { @@ -299,13 +297,13 @@ class ObjectMemoryProfiler: } for t in threads ] - + gc_stats = { "collections": gc.get_count(), "garbage": len(gc.garbage), "tracked": len(gc.get_objects()), } - + return { "summary": sorted_sum_data[:self.object_limit], "module_stats": module_stats, @@ -316,52 +314,52 @@ class ObjectMemoryProfiler: except Exception as e: print(f"❌ 获取对象统计失败: {e}") return {} - - def _get_module_stats(self, all_objects: list) -> Dict: + + def _get_module_stats(self, all_objects: list) -> dict: """统计各模块的内存占用""" module_mem = defaultdict(lambda: {"count": 0, "size": 0}) - + for obj in all_objects: try: # 获取对象所属模块 obj_type = type(obj) module_name = obj_type.__module__ - + if module_name: # 获取顶级模块名(例如 src.chat.xxx -> src) - top_module = module_name.split('.')[0] - + top_module = module_name.split(".")[0] + obj_size = sys.getsizeof(obj) module_mem[top_module]["count"] += 1 module_mem[top_module]["size"] += obj_size except Exception: # 忽略无法获取大小的对象 continue - + # 转换为列表并按大小排序 sorted_modules = sorted( - [(mod, stats["count"], stats["size"]) + [(mod, stats["count"], stats["size"]) for mod, stats in module_mem.items()], key=lambda x: x[2], reverse=True ) - + return { "top_modules": sorted_modules[:20], # 前20个模块 "total_modules": len(module_mem) } - - def print_stats(self, stats: Dict, iteration: int): + + def print_stats(self, stats: dict, iteration: int): """打印统计信息""" print("\n" + "=" * 80) print(f"🔍 对象级内存分析 #{iteration} - {time.strftime('%H:%M:%S')}") print("=" * 80) - + if "summary" in stats: print(f"\n📦 对象统计 (前 {self.object_limit} 个类型):\n") print(f"{'类型':<50} {'数量':>12} {'总大小':>15}") print("-" * 80) - + for obj_type, obj_count, obj_size in stats["summary"]: if obj_size >= 1024 * 1024 * 1024: size_str = f"{obj_size / 1024 / 1024 / 1024:.2f} GB" @@ -371,14 +369,14 @@ class ObjectMemoryProfiler: size_str = f"{obj_size / 1024:.2f} KB" else: size_str = f"{obj_size} B" - + print(f"{obj_type:<50} {obj_count:>12,} {size_str:>15}") - - if "module_stats" in stats and stats["module_stats"]: - print(f"\n📚 模块内存占用 (前 20 个模块):\n") + + if stats.get("module_stats"): + print("\n📚 模块内存占用 (前 20 个模块):\n") print(f"{'模块名':<40} {'对象数':>12} {'总内存':>15}") print("-" * 80) - + for module_name, obj_count, obj_size in stats["module_stats"]["top_modules"]: if obj_size >= 1024 * 1024 * 1024: size_str = f"{obj_size / 1024 / 1024 / 1024:.2f} GB" @@ -388,46 +386,46 @@ class ObjectMemoryProfiler: size_str = f"{obj_size / 1024:.2f} KB" else: size_str = f"{obj_size} B" - + print(f"{module_name:<40} {obj_count:>12,} {size_str:>15}") - + print(f"\n 总模块数: {stats['module_stats']['total_modules']}") - + if "threads" in stats: print(f"\n🧵 线程信息 ({len(stats['threads'])} 个):") for idx, t in enumerate(stats["threads"], 1): status = "✓" if t["alive"] else "✗" daemon = "(守护)" if t["daemon"] else "" print(f" [{idx}] {status} {t['name']} {daemon}") - + if "gc_stats" in stats: gc_stats = stats["gc_stats"] - print(f"\n🗑️ 垃圾回收:") + print("\n🗑️ 垃圾回收:") print(f" 代 0: {gc_stats['collections'][0]:,} 次") print(f" 代 1: {gc_stats['collections'][1]:,} 次") print(f" 代 2: {gc_stats['collections'][2]:,} 次") print(f" 追踪对象: {gc_stats['tracked']:,}") - + if "total_objects" in stats: print(f"\n📊 总对象数: {stats['total_objects']:,}") - + print("=" * 80 + "\n") - + def print_diff(self): """打印对象变化""" if not PYMPLER_AVAILABLE or not self.tracker: return - + print("\n📈 对象变化分析:") print("-" * 80) self.tracker.print_diff() print("-" * 80) - - def save_to_file(self, stats: Dict): + + def save_to_file(self, stats: dict): """保存统计信息到文件""" if not self.output_file: return - + try: # 保存文本 with open(self.output_file, "a", encoding="utf-8") as f: @@ -435,91 +433,91 @@ class ObjectMemoryProfiler: f.write(f"时间: {time.strftime('%Y-%m-%d %H:%M:%S')}\n") f.write(f"迭代: #{self.iteration}\n") f.write(f"{'=' * 80}\n\n") - + if "summary" in stats: f.write("对象统计:\n") for obj_type, obj_count, obj_size in stats["summary"]: f.write(f" {obj_type}: {obj_count:,} 个, {obj_size:,} 字节\n") - - if "module_stats" in stats and stats["module_stats"]: + + if stats.get("module_stats"): f.write("\n模块统计 (前 20 个):\n") for module_name, obj_count, obj_size in stats["module_stats"]["top_modules"]: f.write(f" {module_name}: {obj_count:,} 个对象, {obj_size:,} 字节\n") - + f.write(f"\n总对象数: {stats.get('total_objects', 0):,}\n") f.write(f"线程数: {len(stats.get('threads', []))}\n") - + # 保存 JSONL jsonl_path = str(self.output_file) + ".jsonl" record = { - "timestamp": time.strftime('%Y-%m-%d %H:%M:%S'), + "timestamp": time.strftime("%Y-%m-%d %H:%M:%S"), "iteration": self.iteration, "total_objects": stats.get("total_objects", 0), "threads": stats.get("threads", []), "gc_stats": stats.get("gc_stats", {}), "summary": [ - {"type": t, "count": c, "size": s} + {"type": t, "count": c, "size": s} for (t, c, s) in stats.get("summary", []) ], "module_stats": stats.get("module_stats", {}), } - + with open(jsonl_path, "a", encoding="utf-8") as jf: jf.write(json.dumps(record, ensure_ascii=False) + "\n") - + if self.iteration == 1: print(f"💾 数据保存到: {self.output_file}") print(f"💾 结构化数据: {jsonl_path}") - + except Exception as e: print(f"⚠️ 保存文件失败: {e}") - + def start_monitoring(self): """启动监控线程""" self.running = True - + def monitor_loop(): - print(f"🚀 对象分析器已启动") + print("🚀 对象分析器已启动") print(f" 监控间隔: {self.interval} 秒") print(f" 对象类型限制: {self.object_limit}") print(f" 输出文件: {self.output_file or '无'}") print() - + while self.running: try: self.iteration += 1 stats = self.get_object_stats() self.print_stats(stats, self.iteration) - + if self.iteration % 3 == 0 and self.tracker: self.print_diff() - + if self.output_file: self.save_to_file(stats) - + time.sleep(self.interval) - + except Exception as e: print(f"❌ 监控出错: {e}") import traceback traceback.print_exc() - + monitor_thread = threading.Thread(target=monitor_loop, daemon=True) monitor_thread.start() - print(f"✓ 监控线程已启动\n") - + print("✓ 监控线程已启动\n") + def stop(self): """停止监控""" self.running = False -def run_objects_mode(interval: int, output: Optional[str], object_limit: int): +def run_objects_mode(interval: int, output: str | None, object_limit: int): """对象分析模式主函数""" if not PYMPLER_AVAILABLE: print("❌ pympler 未安装,无法使用对象分析模式") print(" 安装: pip install pympler") return 1 - + print("=" * 80) print("🔬 对象分析模式") print("=" * 80) @@ -529,38 +527,38 @@ def run_objects_mode(interval: int, output: Optional[str], object_limit: int): print(" 3. 显示对象变化(diff)") print(" 4. 保存 JSONL 数据用于可视化") print("=" * 80 + "\n") - + # 添加项目根目录到 Python 路径 project_root = Path(__file__).parent.parent if str(project_root) not in sys.path: sys.path.insert(0, str(project_root)) print(f"✓ 已添加项目根目录到 Python 路径: {project_root}\n") - + profiler = ObjectMemoryProfiler( interval=interval, output_file=output, object_limit=object_limit ) - + profiler.start_monitoring() - + print("🤖 正在启动 Bot...\n") - + try: import bot - - if hasattr(bot, 'main_async'): + + if hasattr(bot, "main_async"): asyncio.run(bot.main_async()) - elif hasattr(bot, 'main'): + elif hasattr(bot, "main"): bot.main() else: print("⚠️ bot.py 未找到 main_async() 或 main() 函数") print(" Bot 模块已导入,监控线程在后台运行") print(" 按 Ctrl+C 停止\n") - + while profiler.running: time.sleep(1) - + except KeyboardInterrupt: print("\n\n⚠️ 用户中断") except Exception as e: @@ -569,7 +567,7 @@ def run_objects_mode(interval: int, output: Optional[str], object_limit: int): traceback.print_exc() finally: profiler.stop() - + return 0 @@ -577,10 +575,10 @@ def run_objects_mode(interval: int, output: Optional[str], object_limit: int): # 可视化模式 # ============================================================================ -def load_jsonl(path: Path) -> List[Dict]: +def load_jsonl(path: Path) -> list[dict]: """加载 JSONL 文件""" snapshots = [] - with open(path, "r", encoding="utf-8") as f: + with open(path, encoding="utf-8") as f: for line in f: line = line.strip() if not line: @@ -592,7 +590,7 @@ def load_jsonl(path: Path) -> List[Dict]: return snapshots -def aggregate_top_types(snapshots: List[Dict], top_n: int = 10): +def aggregate_top_types(snapshots: list[dict], top_n: int = 10): """聚合前 N 个对象类型的时间序列""" type_max = defaultdict(int) for snap in snapshots: @@ -600,37 +598,37 @@ def aggregate_top_types(snapshots: List[Dict], top_n: int = 10): t = item.get("type") s = int(item.get("size", 0)) type_max[t] = max(type_max[t], s) - + top_types = sorted(type_max.items(), key=lambda kv: kv[1], reverse=True)[:top_n] top_names = [t for t, _ in top_types] - + times = [] series = {t: [] for t in top_names} - + for snap in snapshots: ts = snap.get("timestamp") try: times.append(datetime.strptime(ts, "%Y-%m-%d %H:%M:%S")) except Exception: times.append(None) - - summary = {item.get("type"): int(item.get("size", 0)) + + summary = {item.get("type"): int(item.get("size", 0)) for item in snap.get("summary", [])} for t in top_names: series[t].append(summary.get(t, 0) / 1024.0 / 1024.0) - + return times, series -def plot_series(times: List, series: Dict, output: Path, top_n: int): +def plot_series(times: list, series: dict, output: Path, top_n: int): """绘制时间序列图""" plt.figure(figsize=(14, 8)) - + for name, values in series.items(): if all(v == 0 for v in values): continue plt.plot(times, values, marker="o", label=name, linewidth=2) - + plt.xlabel("时间", fontsize=12) plt.ylabel("内存 (MB)", fontsize=12) plt.title(f"对象类型随时间的内存占用 (前 {top_n} 类型)", fontsize=14) @@ -647,31 +645,31 @@ def run_visualize_mode(input_file: str, output_file: str, top: int): print("❌ matplotlib 未安装,无法使用可视化模式") print(" 安装: pip install matplotlib") return 1 - + print("=" * 80) print("📊 可视化模式") print("=" * 80) - + path = Path(input_file) if not path.exists(): print(f"❌ 找不到输入文件: {path}") return 1 - + print(f"📂 读取数据: {path}") snaps = load_jsonl(path) - + if not snaps: print("❌ 未读取到任何快照数据") return 1 - + print(f"✓ 读取 {len(snaps)} 个快照") - + times, series = aggregate_top_types(snaps, top_n=top) print(f"✓ 提取前 {top} 个对象类型") - + output_path = Path(output_file) plot_series(times, series, output_path, top) - + return 0 @@ -693,10 +691,10 @@ def main(): 使用示例: # 进程监控(启动 bot 并监控) python scripts/memory_profiler.py --monitor --interval 10 - + # 对象分析(深度对象统计) python scripts/memory_profiler.py --objects --interval 10 --output memory_data.txt - + # 生成可视化图表 python scripts/memory_profiler.py --visualize --input memory_data.txt.jsonl --top 15 --output plot.png @@ -705,26 +703,26 @@ def main(): - 可视化模式需要: pip install matplotlib """, ) - + # 模式选择 mode_group = parser.add_mutually_exclusive_group(required=True) - mode_group.add_argument("--monitor", "-m", action="store_true", + mode_group.add_argument("--monitor", "-m", action="store_true", help="进程监控模式(外部监控 bot 进程)") - mode_group.add_argument("--objects", "-o", action="store_true", + mode_group.add_argument("--objects", "-o", action="store_true", help="对象分析模式(内部统计所有对象)") - mode_group.add_argument("--visualize", "-v", action="store_true", + mode_group.add_argument("--visualize", "-v", action="store_true", help="可视化模式(绘制 JSONL 数据)") - + # 通用参数 parser.add_argument("--interval", "-i", type=int, default=10, help="监控间隔(秒),默认 10") - + # 对象分析参数 parser.add_argument("--output", type=str, help="输出文件路径(对象分析模式)") parser.add_argument("--object-limit", "-l", type=int, default=20, help="对象类型显示数量,默认 20") - + # 可视化参数 parser.add_argument("--input", type=str, help="输入 JSONL 文件(可视化模式)") @@ -732,24 +730,24 @@ def main(): help="展示前 N 个类型(可视化模式),默认 10") parser.add_argument("--plot-output", type=str, default="memory_analysis_plot.png", help="图表输出文件,默认 memory_analysis_plot.png") - + args = parser.parse_args() - + # 根据模式执行 if args.monitor: return asyncio.run(run_monitor_mode(args.interval)) - + elif args.objects: if not args.output: print("⚠️ 建议使用 --output 指定输出文件以保存数据") return run_objects_mode(args.interval, args.output, args.object_limit) - + elif args.visualize: if not args.input: print("❌ 可视化模式需要 --input 参数指定 JSONL 文件") return 1 return run_visualize_mode(args.input, args.plot_output, args.top) - + return 0 diff --git a/src/chat/emoji_system/emoji_manager.py b/src/chat/emoji_system/emoji_manager.py index 1e1b42f35..9a809a47b 100644 --- a/src/chat/emoji_system/emoji_manager.py +++ b/src/chat/emoji_system/emoji_manager.py @@ -680,9 +680,9 @@ class EmojiManager: try: # 🔧 使用 QueryBuilder 以启用数据库缓存 from src.common.database.api.query import QueryBuilder - + logger.debug("[数据库] 开始加载所有表情包记录 ...") - + emoji_instances = await QueryBuilder(Emoji).all() emoji_objects, load_errors = _to_emoji_objects(emoji_instances) @@ -802,7 +802,7 @@ class EmojiManager: # 如果内存中没有,从数据库查找(使用 QueryBuilder 启用数据库缓存) try: from src.common.database.api.query import QueryBuilder - + emoji_record = await QueryBuilder(Emoji).filter(emoji_hash=emoji_hash).first() if emoji_record and emoji_record.description: logger.info(f"[缓存命中] 从数据库获取表情包描述: {emoji_record.description[:50]}...") @@ -966,7 +966,7 @@ class EmojiManager: existing_description = None try: from src.common.database.api.query import QueryBuilder - + existing_image = await QueryBuilder(Images).filter(emoji_hash=image_hash, type="emoji").first() if existing_image and existing_image.description: existing_description = existing_image.description diff --git a/src/chat/express/expression_learner.py b/src/chat/express/expression_learner.py index e9b554322..e2d7dfc99 100644 --- a/src/chat/express/expression_learner.py +++ b/src/chat/express/expression_learner.py @@ -1,5 +1,4 @@ import os -import random import time from datetime import datetime from typing import Any @@ -135,20 +134,20 @@ class ExpressionLearner: async def cleanup_expired_expressions(self, expiration_days: int | None = None) -> int: """ 清理过期的表达方式 - + Args: expiration_days: 过期天数,超过此天数未激活的表达方式将被删除(不指定则从配置读取) - + Returns: int: 删除的表达方式数量 """ # 从配置读取过期天数 if expiration_days is None: expiration_days = global_config.expression.expiration_days - + current_time = time.time() expiration_threshold = current_time - (expiration_days * 24 * 3600) - + try: deleted_count = 0 async with get_db_session() as session: @@ -160,15 +159,15 @@ class ExpressionLearner: ) ) expired_expressions = list(query.scalars()) - + if expired_expressions: for expr in expired_expressions: await session.delete(expr) deleted_count += 1 - + await session.commit() logger.info(f"清理了 {deleted_count} 个过期表达方式(超过 {expiration_days} 天未使用)") - + # 清除缓存 from src.common.database.optimization.cache_manager import get_cache from src.common.database.utils.decorators import generate_cache_key @@ -176,7 +175,7 @@ class ExpressionLearner: await cache.delete(generate_cache_key("chat_expressions", self.chat_id)) else: logger.debug(f"没有发现过期的表达方式(阈值:{expiration_days} 天)") - + return deleted_count except Exception as e: logger.error(f"清理过期表达方式失败: {e}") @@ -460,7 +459,7 @@ class ExpressionLearner: ) ) same_situation_expr = query_same_situation.scalar() - + # 情况2:相同 chat_id + type + style(相同表达,不同情景) query_same_style = await session.execute( select(Expression).where( @@ -470,7 +469,7 @@ class ExpressionLearner: ) ) same_style_expr = query_same_style.scalar() - + # 情况3:完全相同(相同情景+相同表达) query_exact_match = await session.execute( select(Expression).where( @@ -481,7 +480,7 @@ class ExpressionLearner: ) ) exact_match_expr = query_exact_match.scalar() - + # 优先处理完全匹配的情况 if exact_match_expr: # 完全相同:增加count,更新时间 diff --git a/src/chat/express/expressor_model/model.py b/src/chat/express/expressor_model/model.py index 3aea17c3c..f4b5af163 100644 --- a/src/chat/express/expressor_model/model.py +++ b/src/chat/express/expressor_model/model.py @@ -72,21 +72,21 @@ class ExpressorModel: 是否删除成功 """ removed = False - + if cid in self._candidates: del self._candidates[cid] removed = True - + if cid in self._situations: del self._situations[cid] - + # 从nb模型中删除 if cid in self.nb.cls_counts: del self.nb.cls_counts[cid] - + if cid in self.nb.token_counts: del self.nb.token_counts[cid] - + return removed def predict(self, text: str, k: int | None = None) -> tuple[str | None, dict[str, float]]: diff --git a/src/chat/express/style_learner.py b/src/chat/express/style_learner.py index 3880df052..b7436265c 100644 --- a/src/chat/express/style_learner.py +++ b/src/chat/express/style_learner.py @@ -72,7 +72,7 @@ class StyleLearner: # 检查是否需要清理 current_count = len(self.style_to_id) cleanup_trigger = int(self.max_styles * self.cleanup_threshold) - + if current_count >= cleanup_trigger: if current_count >= self.max_styles: # 已经达到最大限制,必须清理 @@ -109,7 +109,7 @@ class StyleLearner: def _cleanup_styles(self): """ 清理低价值的风格,为新风格腾出空间 - + 清理策略: 1. 综合考虑使用次数和最后使用时间 2. 删除得分最低的风格 @@ -118,34 +118,34 @@ class StyleLearner: try: current_time = time.time() cleanup_count = max(1, int(len(self.style_to_id) * self.cleanup_ratio)) - + # 计算每个风格的价值分数 style_scores = [] for style_id in self.style_to_id.values(): # 使用次数 usage_count = self.learning_stats["style_counts"].get(style_id, 0) - + # 最后使用时间(越近越好) last_used = self.learning_stats["style_last_used"].get(style_id, 0) - time_since_used = current_time - last_used if last_used > 0 else float('inf') - + time_since_used = current_time - last_used if last_used > 0 else float("inf") + # 综合分数:使用次数越多越好,距离上次使用时间越短越好 # 使用对数来平滑使用次数的影响 import math usage_score = math.log1p(usage_count) # log(1 + count) - + # 时间分数:转换为天数,使用指数衰减 days_unused = time_since_used / 86400 # 转换为天 time_score = math.exp(-days_unused / 30) # 30天衰减因子 - + # 综合分数:80%使用频率 + 20%时间新鲜度 total_score = 0.8 * usage_score + 0.2 * time_score - + style_scores.append((style_id, total_score, usage_count, days_unused)) - + # 按分数排序,分数低的先删除 style_scores.sort(key=lambda x: x[1]) - + # 删除分数最低的风格 deleted_styles = [] for style_id, score, usage, days in style_scores[:cleanup_count]: @@ -156,27 +156,27 @@ class StyleLearner: del self.id_to_style[style_id] if style_id in self.id_to_situation: del self.id_to_situation[style_id] - + # 从统计中删除 if style_id in self.learning_stats["style_counts"]: del self.learning_stats["style_counts"][style_id] if style_id in self.learning_stats["style_last_used"]: del self.learning_stats["style_last_used"][style_id] - + # 从expressor模型中删除 self.expressor.remove_candidate(style_id) - + deleted_styles.append((style_text[:30], usage, f"{days:.1f}天")) - + logger.info( f"风格清理完成: 删除了 {len(deleted_styles)}/{len(style_scores)} 个风格," f"剩余 {len(self.style_to_id)} 个风格" ) - + # 记录前5个被删除的风格(用于调试) if deleted_styles: logger.debug(f"被删除的风格样例(前5): {deleted_styles[:5]}") - + except Exception as e: logger.error(f"清理风格失败: {e}", exc_info=True) @@ -303,10 +303,10 @@ class StyleLearner: def cleanup_old_styles(self, ratio: float | None = None) -> int: """ 手动清理旧风格 - + Args: ratio: 清理比例,如果为None则使用默认的cleanup_ratio - + Returns: 清理的风格数量 """ @@ -318,7 +318,7 @@ class StyleLearner: self.cleanup_ratio = old_cleanup_ratio else: self._cleanup_styles() - + new_count = len(self.style_to_id) cleaned = old_count - new_count logger.info(f"手动清理完成: chat_id={self.chat_id}, 清理了 {cleaned} 个风格") @@ -357,11 +357,11 @@ class StyleLearner: import pickle meta_path = os.path.join(save_dir, "meta.pkl") - + # 确保 learning_stats 包含所有必要字段 if "style_last_used" not in self.learning_stats: self.learning_stats["style_last_used"] = {} - + meta_data = { "style_to_id": self.style_to_id, "id_to_style": self.id_to_style, @@ -416,7 +416,7 @@ class StyleLearner: self.id_to_situation = meta_data["id_to_situation"] self.next_style_id = meta_data["next_style_id"] self.learning_stats = meta_data["learning_stats"] - + # 确保旧数据兼容:如果没有 style_last_used 字段,添加它 if "style_last_used" not in self.learning_stats: self.learning_stats["style_last_used"] = {} @@ -526,10 +526,10 @@ class StyleLearnerManager: def cleanup_all_old_styles(self, ratio: float | None = None) -> dict[str, int]: """ 对所有学习器清理旧风格 - + Args: ratio: 清理比例 - + Returns: {chat_id: 清理数量} """ @@ -538,7 +538,7 @@ class StyleLearnerManager: cleaned = learner.cleanup_old_styles(ratio) if cleaned > 0: cleanup_results[chat_id] = cleaned - + total_cleaned = sum(cleanup_results.values()) logger.info(f"清理所有StyleLearner完成: 总共清理了 {total_cleaned} 个风格") return cleanup_results diff --git a/src/chat/interest_system/bot_interest_manager.py b/src/chat/interest_system/bot_interest_manager.py index 4dadeb702..66965c421 100644 --- a/src/chat/interest_system/bot_interest_manager.py +++ b/src/chat/interest_system/bot_interest_manager.py @@ -8,7 +8,6 @@ from datetime import datetime from typing import Any import numpy as np -import orjson from sqlalchemy import select from src.common.config_helpers import resolve_embedding_dimension @@ -124,7 +123,7 @@ class BotInterestManager: tags_info = [f" - '{tag.tag_name}' (权重: {tag.weight:.2f})" for tag in loaded_interests.get_active_tags()] tags_str = "\n".join(tags_info) logger.info(f"当前兴趣标签:\n{tags_str}") - + # 为加载的标签生成embedding(数据库不存储embedding,启动时动态生成) logger.info("🧠 为加载的标签生成embedding向量...") await self._generate_embeddings_for_tags(loaded_interests) @@ -326,13 +325,13 @@ class BotInterestManager: raise RuntimeError("❌ Embedding客户端未初始化,无法生成embedding") total_tags = len(interests.interest_tags) - + # 尝试从文件加载缓存 file_cache = await self._load_embedding_cache_from_file(interests.personality_id) if file_cache: logger.info(f"📂 从文件加载 {len(file_cache)} 个embedding缓存") self.embedding_cache.update(file_cache) - + logger.info(f"🧠 开始为 {total_tags} 个兴趣标签生成embedding向量...") memory_cached_count = 0 @@ -477,14 +476,14 @@ class BotInterestManager: self, message_text: str, keywords: list[str] | None = None ) -> InterestMatchResult: """计算消息与机器人兴趣的匹配度(优化版 - 标签扩展策略) - + 核心优化:将短标签扩展为完整的描述性句子,解决语义粒度不匹配问题 - + 原问题: - 消息: "今天天气不错" (完整句子) - - 标签: "蹭人治愈" (2-4字短语) + - 标签: "蹭人治愈" (2-4字短语) - 结果: 误匹配,因为短标签的 embedding 过于抽象 - + 解决方案: - 标签扩展: "蹭人治愈" -> "表达亲近、寻求安慰、撒娇的内容" - 现在是: 句子 vs 句子,匹配更准确 @@ -527,18 +526,18 @@ class BotInterestManager: if tag.embedding: # 🔧 优化:获取扩展标签的 embedding(带缓存) expanded_embedding = await self._get_expanded_tag_embedding(tag.tag_name) - + if expanded_embedding: # 使用扩展标签的 embedding 进行匹配 similarity = self._calculate_cosine_similarity(message_embedding, expanded_embedding) - + # 同时计算原始标签的相似度作为参考 original_similarity = self._calculate_cosine_similarity(message_embedding, tag.embedding) - + # 混合策略:扩展标签权重更高(70%),原始标签作为补充(30%) # 这样可以兼顾准确性(扩展)和灵活性(原始) final_similarity = similarity * 0.7 + original_similarity * 0.3 - + logger.debug(f"标签'{tag.tag_name}': 原始={original_similarity:.3f}, 扩展={similarity:.3f}, 最终={final_similarity:.3f}") else: # 如果扩展 embedding 获取失败,使用原始 embedding @@ -603,27 +602,27 @@ class BotInterestManager: logger.debug( f"最终结果: 总分={result.overall_score:.3f}, 置信度={result.confidence:.3f}, 匹配标签数={len(result.matched_tags)}" ) - + # 如果有新生成的扩展embedding,保存到缓存文件 - if hasattr(self, '_new_expanded_embeddings_generated') and self._new_expanded_embeddings_generated: + if hasattr(self, "_new_expanded_embeddings_generated") and self._new_expanded_embeddings_generated: await self._save_embedding_cache_to_file(self.current_interests.personality_id) self._new_expanded_embeddings_generated = False logger.debug("💾 已保存新生成的扩展embedding到缓存文件") - + return result async def _get_expanded_tag_embedding(self, tag_name: str) -> list[float] | None: """获取扩展标签的 embedding(带缓存) - + 优先使用缓存,如果没有则生成并缓存 """ # 检查缓存 if tag_name in self.expanded_embedding_cache: return self.expanded_embedding_cache[tag_name] - + # 扩展标签 expanded_tag = self._expand_tag_for_matching(tag_name) - + # 生成 embedding try: embedding = await self._get_embedding(expanded_tag) @@ -636,19 +635,19 @@ class BotInterestManager: return embedding except Exception as e: logger.warning(f"为标签'{tag_name}'生成扩展embedding失败: {e}") - + return None def _expand_tag_for_matching(self, tag_name: str) -> str: """将短标签扩展为完整的描述性句子 - + 这是解决"标签太短导致误匹配"的核心方法 - + 策略: 1. 优先使用 LLM 生成的 expanded 字段(最准确) 2. 如果没有,使用基于规则的回退方案 3. 最后使用通用模板 - + 示例: - "Python" + expanded -> "讨论Python编程语言、写Python代码、Python脚本开发、Python技术问题" - "蹭人治愈" + expanded -> "想要获得安慰、寻求温暖关怀、撒娇卖萌、表达亲昵、求抱抱求陪伴的对话" @@ -656,7 +655,7 @@ class BotInterestManager: # 使用缓存 if tag_name in self.expanded_tag_cache: return self.expanded_tag_cache[tag_name] - + # 🎯 优先策略:使用 LLM 生成的 expanded 字段 if self.current_interests: for tag in self.current_interests.interest_tags: @@ -664,66 +663,66 @@ class BotInterestManager: logger.debug(f"✅ 使用LLM生成的扩展描述: {tag_name} -> {tag.expanded[:50]}...") self.expanded_tag_cache[tag_name] = tag.expanded return tag.expanded - + # 🔧 回退策略:基于规则的扩展(用于兼容旧数据或LLM未生成扩展的情况) logger.debug(f"⚠️ 标签'{tag_name}'没有LLM扩展描述,使用规则回退方案") tag_lower = tag_name.lower() - + # 技术编程类标签(具体化描述) - if any(word in tag_lower for word in ['python', 'java', 'code', '代码', '编程', '脚本', '算法', '开发']): - if 'python' in tag_lower: - return f"讨论Python编程语言、写Python代码、Python脚本开发、Python技术问题" - elif '算法' in tag_lower: - return f"讨论算法题目、数据结构、编程竞赛、刷LeetCode题目、代码优化" - elif '代码' in tag_lower or '被窝' in tag_lower: - return f"讨论写代码、编程开发、代码实现、技术方案、编程技巧" + if any(word in tag_lower for word in ["python", "java", "code", "代码", "编程", "脚本", "算法", "开发"]): + if "python" in tag_lower: + return "讨论Python编程语言、写Python代码、Python脚本开发、Python技术问题" + elif "算法" in tag_lower: + return "讨论算法题目、数据结构、编程竞赛、刷LeetCode题目、代码优化" + elif "代码" in tag_lower or "被窝" in tag_lower: + return "讨论写代码、编程开发、代码实现、技术方案、编程技巧" else: - return f"讨论编程开发、软件技术、代码编写、技术实现" - + return "讨论编程开发、软件技术、代码编写、技术实现" + # 情感表达类标签(具体化为真实对话场景) - elif any(word in tag_lower for word in ['治愈', '撒娇', '安慰', '呼噜', '蹭', '卖萌']): - return f"想要获得安慰、寻求温暖关怀、撒娇卖萌、表达亲昵、求抱抱求陪伴的对话" - + elif any(word in tag_lower for word in ["治愈", "撒娇", "安慰", "呼噜", "蹭", "卖萌"]): + return "想要获得安慰、寻求温暖关怀、撒娇卖萌、表达亲昵、求抱抱求陪伴的对话" + # 游戏娱乐类标签(具体游戏场景) - elif any(word in tag_lower for word in ['游戏', '网游', 'mmo', '游', '玩']): - return f"讨论网络游戏、MMO游戏、游戏玩法、组队打副本、游戏攻略心得" - + elif any(word in tag_lower for word in ["游戏", "网游", "mmo", "游", "玩"]): + return "讨论网络游戏、MMO游戏、游戏玩法、组队打副本、游戏攻略心得" + # 动漫影视类标签(具体观看行为) - elif any(word in tag_lower for word in ['番', '动漫', '视频', 'b站', '弹幕', '追番', '云新番']): + elif any(word in tag_lower for word in ["番", "动漫", "视频", "b站", "弹幕", "追番", "云新番"]): # 特别处理"云新番" - 它的意思是在网上看新动漫,不是泛泛的"新东西" - if '云' in tag_lower or '新番' in tag_lower: - return f"讨论正在播出的新动漫、新番剧集、动漫剧情、追番心得、动漫角色" + if "云" in tag_lower or "新番" in tag_lower: + return "讨论正在播出的新动漫、新番剧集、动漫剧情、追番心得、动漫角色" else: - return f"讨论动漫番剧内容、B站视频、弹幕文化、追番体验" - + return "讨论动漫番剧内容、B站视频、弹幕文化、追番体验" + # 社交平台类标签(具体平台行为) - elif any(word in tag_lower for word in ['小红书', '贴吧', '论坛', '社区', '吃瓜', '八卦']): - if '吃瓜' in tag_lower: - return f"聊八卦爆料、吃瓜看热闹、网络热点事件、社交平台热议话题" + elif any(word in tag_lower for word in ["小红书", "贴吧", "论坛", "社区", "吃瓜", "八卦"]): + if "吃瓜" in tag_lower: + return "聊八卦爆料、吃瓜看热闹、网络热点事件、社交平台热议话题" else: - return f"讨论社交平台内容、网络社区话题、论坛讨论、分享生活" - + return "讨论社交平台内容、网络社区话题、论坛讨论、分享生活" + # 生活日常类标签(具体萌宠场景) - elif any(word in tag_lower for word in ['猫', '宠物', '尾巴', '耳朵', '毛绒']): - return f"讨论猫咪宠物、晒猫分享、萌宠日常、可爱猫猫、养猫心得" - + elif any(word in tag_lower for word in ["猫", "宠物", "尾巴", "耳朵", "毛绒"]): + return "讨论猫咪宠物、晒猫分享、萌宠日常、可爱猫猫、养猫心得" + # 状态心情类标签(具体情绪状态) - elif any(word in tag_lower for word in ['社恐', '隐身', '流浪', '深夜', '被窝']): - if '社恐' in tag_lower: - return f"表达社交焦虑、不想见人、想躲起来、害怕社交的心情" - elif '深夜' in tag_lower: - return f"深夜睡不着、熬夜、夜猫子、深夜思考人生的对话" + elif any(word in tag_lower for word in ["社恐", "隐身", "流浪", "深夜", "被窝"]): + if "社恐" in tag_lower: + return "表达社交焦虑、不想见人、想躲起来、害怕社交的心情" + elif "深夜" in tag_lower: + return "深夜睡不着、熬夜、夜猫子、深夜思考人生的对话" else: - return f"表达当前心情状态、个人感受、生活状态" - + return "表达当前心情状态、个人感受、生活状态" + # 物品装备类标签(具体使用场景) - elif any(word in tag_lower for word in ['键盘', '耳机', '装备', '设备']): - return f"讨论键盘耳机装备、数码产品、使用体验、装备推荐评测" - + elif any(word in tag_lower for word in ["键盘", "耳机", "装备", "设备"]): + return "讨论键盘耳机装备、数码产品、使用体验、装备推荐评测" + # 互动关系类标签 - elif any(word in tag_lower for word in ['拾风', '互怼', '互动']): - return f"聊天互动、开玩笑、友好互怼、日常对话交流" - + elif any(word in tag_lower for word in ["拾风", "互怼", "互动"]): + return "聊天互动、开玩笑、友好互怼、日常对话交流" + # 默认:尽量具体化 else: return f"明确讨论{tag_name}这个特定主题的具体内容和相关话题" @@ -1011,56 +1010,58 @@ class BotInterestManager: async def _load_embedding_cache_from_file(self, personality_id: str) -> dict[str, list[float]] | None: """从文件加载embedding缓存""" try: - import orjson from pathlib import Path - + + import orjson + cache_dir = Path("data/embedding") cache_dir.mkdir(parents=True, exist_ok=True) cache_file = cache_dir / f"{personality_id}_embeddings.json" - + if not cache_file.exists(): logger.debug(f"📂 Embedding缓存文件不存在: {cache_file}") return None - + # 读取缓存文件 with open(cache_file, "rb") as f: cache_data = orjson.loads(f.read()) - + # 验证缓存版本和embedding模型 cache_version = cache_data.get("version", 1) cache_embedding_model = cache_data.get("embedding_model", "") current_embedding_model = self.embedding_config.model_list[0] if hasattr(self.embedding_config, "model_list") else "" - + if cache_embedding_model != current_embedding_model: logger.warning(f"⚠️ Embedding模型已变更 ({cache_embedding_model} → {current_embedding_model}),忽略旧缓存") return None - + embeddings = cache_data.get("embeddings", {}) - + # 同时加载扩展标签的embedding缓存 expanded_embeddings = cache_data.get("expanded_embeddings", {}) if expanded_embeddings: self.expanded_embedding_cache.update(expanded_embeddings) logger.info(f"📂 加载 {len(expanded_embeddings)} 个扩展标签embedding缓存") - + logger.info(f"✅ 成功从文件加载 {len(embeddings)} 个标签embedding缓存 (版本: {cache_version}, 模型: {cache_embedding_model})") return embeddings - + except Exception as e: logger.warning(f"⚠️ 加载embedding缓存文件失败: {e}") return None - + async def _save_embedding_cache_to_file(self, personality_id: str): """保存embedding缓存到文件(包括扩展标签的embedding)""" try: - import orjson - from pathlib import Path from datetime import datetime - + from pathlib import Path + + import orjson + cache_dir = Path("data/embedding") cache_dir.mkdir(parents=True, exist_ok=True) cache_file = cache_dir / f"{personality_id}_embeddings.json" - + # 准备缓存数据 current_embedding_model = self.embedding_config.model_list[0] if hasattr(self.embedding_config, "model_list") and self.embedding_config.model_list else "" cache_data = { @@ -1071,13 +1072,13 @@ class BotInterestManager: "embeddings": self.embedding_cache, "expanded_embeddings": self.expanded_embedding_cache, # 同时保存扩展标签的embedding } - + # 写入文件 with open(cache_file, "wb") as f: f.write(orjson.dumps(cache_data, option=orjson.OPT_INDENT_2)) - + logger.debug(f"💾 已保存 {len(self.embedding_cache)} 个标签embedding和 {len(self.expanded_embedding_cache)} 个扩展embedding到缓存文件: {cache_file}") - + except Exception as e: logger.warning(f"⚠️ 保存embedding缓存文件失败: {e}") diff --git a/src/chat/message_manager/__init__.py b/src/chat/message_manager/__init__.py index 0edf5d1d3..92453eafd 100644 --- a/src/chat/message_manager/__init__.py +++ b/src/chat/message_manager/__init__.py @@ -9,8 +9,8 @@ from .scheduler_dispatcher import SchedulerDispatcher, scheduler_dispatcher __all__ = [ "MessageManager", - "SingleStreamContextManager", "SchedulerDispatcher", + "SingleStreamContextManager", "message_manager", "scheduler_dispatcher", ] diff --git a/src/chat/message_manager/context_manager.py b/src/chat/message_manager/context_manager.py index c4992b634..ce5aeb876 100644 --- a/src/chat/message_manager/context_manager.py +++ b/src/chat/message_manager/context_manager.py @@ -73,7 +73,7 @@ class SingleStreamContextManager: cache_enabled = global_config.chat.enable_message_cache use_cache_system = message_manager.is_running and cache_enabled if not cache_enabled: - logger.debug(f"消息缓存系统已在配置中禁用") + logger.debug("消息缓存系统已在配置中禁用") except Exception as e: logger.debug(f"MessageManager不可用,使用直接添加: {e}") use_cache_system = False @@ -129,13 +129,13 @@ class SingleStreamContextManager: await self._calculate_message_interest(message) self.total_messages += 1 self.last_access_time = time.time() - + logger.debug(f"添加消息{message.processed_plain_text}到单流上下文: {self.stream_id}") return True - + # 不应该到达这里,但为了类型检查添加返回值 return True - + except Exception as e: logger.error(f"添加消息到单流上下文失败 {self.stream_id}: {e}", exc_info=True) return False diff --git a/src/chat/message_manager/message_manager.py b/src/chat/message_manager/message_manager.py index d7f0a83b6..df6186fa2 100644 --- a/src/chat/message_manager/message_manager.py +++ b/src/chat/message_manager/message_manager.py @@ -4,13 +4,11 @@ """ import asyncio -import random import time from collections import defaultdict, deque from typing import TYPE_CHECKING, Any from src.chat.chatter_manager import ChatterManager -from src.chat.message_receive.chat_stream import ChatStream from src.chat.planner_actions.action_manager import ChatterActionManager from src.common.data_models.database_data_model import DatabaseMessages from src.common.data_models.message_manager_data_model import MessageManagerStats, StreamStats @@ -77,7 +75,7 @@ class MessageManager: # 启动基于 scheduler 的消息分发器 await scheduler_dispatcher.start() scheduler_dispatcher.set_chatter_manager(self.chatter_manager) - + # 保留旧的流循环管理器(暂时)以便平滑过渡 # TODO: 在确认新机制稳定后移除 # await stream_loop_manager.start() @@ -108,7 +106,7 @@ class MessageManager: # 停止基于 scheduler 的消息分发器 await scheduler_dispatcher.stop() - + # 停止旧的流循环管理器(如果启用) # await stream_loop_manager.stop() @@ -116,7 +114,7 @@ class MessageManager: async def add_message(self, stream_id: str, message: DatabaseMessages): """添加消息到指定聊天流 - + 新的流程: 1. 检查 notice 消息 2. 将消息添加到上下文(缓存) @@ -149,10 +147,10 @@ class MessageManager: if not chat_stream: logger.warning(f"MessageManager.add_message: 聊天流 {stream_id} 不存在") return - + # 将消息添加到上下文 await chat_stream.context_manager.add_message(message) - + # 通知 scheduler_dispatcher 处理消息接收事件 # dispatcher 会检查是否需要打断、创建或更新 schedule await scheduler_dispatcher.on_message_received(stream_id) diff --git a/src/chat/message_manager/scheduler_dispatcher.py b/src/chat/message_manager/scheduler_dispatcher.py index a13008e26..7ae6dc0ec 100644 --- a/src/chat/message_manager/scheduler_dispatcher.py +++ b/src/chat/message_manager/scheduler_dispatcher.py @@ -20,7 +20,7 @@ logger = get_logger("scheduler_dispatcher") class SchedulerDispatcher: """基于 scheduler 的消息分发器 - + 工作流程: 1. 接收消息时,将消息添加到聊天流上下文 2. 检查是否有活跃的 schedule,如果没有则创建 @@ -32,13 +32,13 @@ class SchedulerDispatcher: def __init__(self): # 追踪每个流的 schedule_id self.stream_schedules: dict[str, str] = {} # stream_id -> schedule_id - + # 用于保护 schedule 创建/删除的锁,避免竞态条件 self.schedule_locks: dict[str, asyncio.Lock] = {} # stream_id -> Lock - + # Chatter 管理器 self.chatter_manager: ChatterManager | None = None - + # 统计信息 self.stats = { "total_schedules_created": 0, @@ -48,9 +48,9 @@ class SchedulerDispatcher: "total_failures": 0, "start_time": time.time(), } - + self.is_running = False - + logger.info("基于 Scheduler 的消息分发器初始化完成") async def start(self) -> None: @@ -58,7 +58,7 @@ class SchedulerDispatcher: if self.is_running: logger.warning("分发器已在运行") return - + self.is_running = True logger.info("基于 Scheduler 的消息分发器已启动") @@ -66,9 +66,9 @@ class SchedulerDispatcher: """停止分发器""" if not self.is_running: return - + self.is_running = False - + # 取消所有活跃的 schedule schedule_ids = list(self.stream_schedules.values()) for schedule_id in schedule_ids: @@ -76,7 +76,7 @@ class SchedulerDispatcher: await unified_scheduler.remove_schedule(schedule_id) except Exception as e: logger.error(f"移除 schedule {schedule_id} 失败: {e}") - + self.stream_schedules.clear() logger.info("基于 Scheduler 的消息分发器已停止") @@ -84,7 +84,7 @@ class SchedulerDispatcher: """设置 Chatter 管理器""" self.chatter_manager = chatter_manager logger.debug(f"设置 Chatter 管理器: {chatter_manager.__class__.__name__}") - + def _get_schedule_lock(self, stream_id: str) -> asyncio.Lock: """获取流的 schedule 锁""" if stream_id not in self.schedule_locks: @@ -93,40 +93,40 @@ class SchedulerDispatcher: async def on_message_received(self, stream_id: str) -> None: """消息接收时的处理逻辑 - + Args: stream_id: 聊天流ID """ if not self.is_running: logger.warning("分发器未运行,忽略消息") return - + try: # 1. 获取流上下文 context = await self._get_stream_context(stream_id) if not context: logger.warning(f"无法获取流上下文: {stream_id}") return - + # 2. 检查是否有活跃的 schedule has_active_schedule = stream_id in self.stream_schedules - + if not has_active_schedule: # 4. 创建新的 schedule(在锁内,避免重复创建) await self._create_schedule(stream_id, context) return - + # 3. 检查打断判定 if has_active_schedule: should_interrupt = await self._check_interruption(stream_id, context) - + if should_interrupt: # 移除旧 schedule 并创建新的(内部有锁保护) await self._cancel_and_recreate_schedule(stream_id, context) logger.debug(f"⚡ 打断成功: 流={stream_id[:8]}..., 已重新创建 schedule") else: logger.debug(f"打断判定失败,保持原有 schedule: 流={stream_id[:8]}...") - + except Exception as e: logger.error(f"处理消息接收事件失败 {stream_id}: {e}", exc_info=True) @@ -144,18 +144,18 @@ class SchedulerDispatcher: async def _check_interruption(self, stream_id: str, context: StreamContext) -> bool: """检查是否应该打断当前处理 - + Args: stream_id: 流ID context: 流上下文 - + Returns: bool: 是否应该打断 """ # 检查是否启用打断 if not global_config.chat.interruption_enabled: return False - + # 检查是否正在回复,以及是否允许在回复时打断 if context.is_replying: if not global_config.chat.allow_reply_interruption: @@ -163,49 +163,49 @@ class SchedulerDispatcher: return False else: logger.debug(f"聊天流 {stream_id} 正在回复中,但配置允许回复时打断") - + # 只有当 Chatter 真正在处理时才检查打断 if not context.is_chatter_processing: logger.debug(f"聊天流 {stream_id} Chatter 未在处理,无需打断") return False - + # 检查最后一条消息 last_message = context.get_last_message() if not last_message: return False - + # 检查是否为表情包消息 if last_message.is_picid or last_message.is_emoji: logger.info(f"消息 {last_message.message_id} 是表情包或Emoji,跳过打断检查") return False - + # 检查触发用户ID triggering_user_id = context.triggering_user_id if triggering_user_id and last_message.user_info.user_id != triggering_user_id: logger.info(f"消息来自非触发用户 {last_message.user_info.user_id},实际触发用户为 {triggering_user_id},跳过打断检查") return False - + # 检查是否已达到最大打断次数 if context.interruption_count >= global_config.chat.interruption_max_limit: logger.debug( f"聊天流 {stream_id} 已达到最大打断次数 {context.interruption_count}/{global_config.chat.interruption_max_limit}" ) return False - + # 计算打断概率 interruption_probability = context.calculate_interruption_probability( global_config.chat.interruption_max_limit ) - + # 根据概率决定是否打断 import random if random.random() < interruption_probability: logger.debug(f"聊天流 {stream_id} 触发消息打断,打断概率: {interruption_probability:.2f}") - + # 增加打断计数 await context.increment_interruption_count() self.stats["total_interruptions"] += 1 - + # 检查是否已达到最大次数 if context.interruption_count >= global_config.chat.interruption_max_limit: logger.warning( @@ -215,7 +215,7 @@ class SchedulerDispatcher: logger.info( f"聊天流 {stream_id} 已打断,当前打断次数: {context.interruption_count}/{global_config.chat.interruption_max_limit}" ) - + return True else: logger.debug(f"聊天流 {stream_id} 未触发打断,打断概率: {interruption_probability:.2f}") @@ -223,7 +223,7 @@ class SchedulerDispatcher: async def _cancel_and_recreate_schedule(self, stream_id: str, context: StreamContext) -> None: """取消旧的 schedule 并创建新的(打断模式,使用极短延迟) - + Args: stream_id: 流ID context: 流上下文 @@ -244,13 +244,13 @@ class SchedulerDispatcher: ) # 移除失败,不创建新 schedule,避免重复 return - + # 创建新的 schedule,使用即时处理模式(极短延迟) await self._create_schedule(stream_id, context, immediate_mode=True) async def _create_schedule(self, stream_id: str, context: StreamContext, immediate_mode: bool = False) -> None: """为聊天流创建新的 schedule - + Args: stream_id: 流ID context: 流上下文 @@ -266,7 +266,7 @@ class SchedulerDispatcher: ) await unified_scheduler.remove_schedule(old_schedule_id) del self.stream_schedules[stream_id] - + # 如果是即时处理模式(打断时),使用固定的1秒延迟立即重新处理 if immediate_mode: delay = 1.0 # 硬编码1秒延迟,确保打断后能快速重新处理 @@ -277,10 +277,10 @@ class SchedulerDispatcher: else: # 常规模式:计算初始延迟 delay = await self._calculate_initial_delay(stream_id, context) - + # 获取未读消息数量用于日志 unread_count = len(context.unread_messages) if context.unread_messages else 0 - + # 创建 schedule schedule_id = await unified_scheduler.create_schedule( callback=self._on_schedule_triggered, @@ -290,41 +290,41 @@ class SchedulerDispatcher: task_name=f"dispatch_{stream_id[:8]}", callback_args=(stream_id,), ) - + # 追踪 schedule self.stream_schedules[stream_id] = schedule_id self.stats["total_schedules_created"] += 1 - + mode_indicator = "⚡打断" if immediate_mode else "📅常规" - + logger.info( f"{mode_indicator} 创建 schedule: 流={stream_id[:8]}..., " f"延迟={delay:.3f}s, 未读={unread_count}, " f"ID={schedule_id[:8]}..." ) - + except Exception as e: logger.error(f"创建 schedule 失败 {stream_id}: {e}", exc_info=True) async def _calculate_initial_delay(self, stream_id: str, context: StreamContext) -> float: """计算初始延迟时间 - + Args: stream_id: 流ID context: 流上下文 - + Returns: float: 延迟时间(秒) """ # 基础间隔 base_interval = getattr(global_config.chat, "distribution_interval", 5.0) - + # 检查是否有未读消息 unread_count = len(context.unread_messages) if context.unread_messages else 0 - + # 强制分发阈值 force_dispatch_threshold = getattr(global_config.chat, "force_dispatch_unread_threshold", 20) - + # 如果未读消息过多,使用最小间隔 if force_dispatch_threshold and unread_count > force_dispatch_threshold: min_interval = getattr(global_config.chat, "force_dispatch_min_interval", 0.1) @@ -334,24 +334,24 @@ class SchedulerDispatcher: f"使用最小间隔={min_interval}s" ) return min_interval - + # 尝试使用能量管理器计算间隔 try: # 更新能量值 await self._update_stream_energy(stream_id, context) - + # 获取当前 focus_energy focus_energy = energy_manager.energy_cache.get(stream_id, (0.5, 0))[0] - + # 使用能量管理器计算间隔 interval = energy_manager.get_distribution_interval(focus_energy) - + logger.info( f"📊 动态间隔计算: 流={stream_id[:8]}..., " f"能量={focus_energy:.3f}, 间隔={interval:.2f}s" ) return interval - + except Exception as e: logger.info( f"📊 使用默认间隔: 流={stream_id[:8]}..., " @@ -361,96 +361,96 @@ class SchedulerDispatcher: async def _update_stream_energy(self, stream_id: str, context: StreamContext) -> None: """更新流的能量值 - + Args: stream_id: 流ID context: 流上下文 """ try: from src.chat.message_receive.chat_stream import get_chat_manager - + # 获取聊天流 chat_manager = get_chat_manager() chat_stream = await chat_manager.get_stream(stream_id) - + if not chat_stream: logger.debug(f"无法找到聊天流 {stream_id},跳过能量更新") return - + # 合并未读消息和历史消息 all_messages = [] - + # 添加历史消息 history_messages = context.get_history_messages(limit=global_config.chat.max_context_size) all_messages.extend(history_messages) - + # 添加未读消息 unread_messages = context.get_unread_messages() all_messages.extend(unread_messages) - + # 按时间排序并限制数量 all_messages.sort(key=lambda m: m.time) messages = all_messages[-global_config.chat.max_context_size:] - + # 获取用户ID user_id = context.triggering_user_id - + # 使用能量管理器计算并缓存能量值 energy = await energy_manager.calculate_focus_energy( stream_id=stream_id, messages=messages, user_id=user_id ) - + # 同步更新到 ChatStream chat_stream._focus_energy = energy - + logger.debug(f"已更新流 {stream_id} 的能量值: {energy:.3f}") - + except Exception as e: logger.warning(f"更新流能量失败 {stream_id}: {e}", exc_info=False) async def _on_schedule_triggered(self, stream_id: str) -> None: """schedule 触发时的回调 - + Args: stream_id: 流ID """ try: old_schedule_id = self.stream_schedules.get(stream_id) - + logger.info( f"⏰ Schedule 触发: 流={stream_id[:8]}..., " f"ID={old_schedule_id[:8] if old_schedule_id else 'None'}..., " f"开始处理消息" ) - + # 获取流上下文 context = await self._get_stream_context(stream_id) if not context: logger.warning(f"Schedule 触发时无法获取流上下文: {stream_id}") return - + # 检查是否有未读消息 if not context.unread_messages: logger.debug(f"流 {stream_id} 没有未读消息,跳过处理") return - + # 激活 chatter 处理(不需要锁,允许并发处理) success = await self._process_stream(stream_id, context) - + # 更新统计 self.stats["total_process_cycles"] += 1 if not success: self.stats["total_failures"] += 1 - + self.stream_schedules.pop(stream_id, None) - + # 检查缓存中是否有待处理的消息 from src.chat.message_manager.message_manager import message_manager - + has_cached = message_manager.has_cached_messages(stream_id) - + if has_cached: # 有缓存消息,立即创建新 schedule 继续处理 logger.info( @@ -464,60 +464,60 @@ class SchedulerDispatcher: f"✅ 处理完成且无缓存消息: 流={stream_id[:8]}..., " f"等待新消息到达" ) - + except Exception as e: logger.error(f"Schedule 回调执行失败 {stream_id}: {e}", exc_info=True) async def _process_stream(self, stream_id: str, context: StreamContext) -> bool: """处理流消息 - + Args: stream_id: 流ID context: 流上下文 - + Returns: bool: 是否处理成功 """ if not self.chatter_manager: logger.warning(f"Chatter 管理器未设置: {stream_id}") return False - + # 设置处理状态 self._set_stream_processing_status(stream_id, True) - + try: start_time = time.time() - + # 设置触发用户ID last_message = context.get_last_message() if last_message: context.triggering_user_id = last_message.user_info.user_id - + # 创建异步任务刷新能量(不阻塞主流程) energy_task = asyncio.create_task(self._refresh_focus_energy(stream_id)) - + # 设置 Chatter 正在处理的标志 context.is_chatter_processing = True logger.debug(f"设置 Chatter 处理标志: {stream_id}") - + try: # 调用 chatter_manager 处理流上下文 results = await self.chatter_manager.process_stream_context(stream_id, context) success = results.get("success", False) - + if success: process_time = time.time() - start_time logger.debug(f"流处理成功: {stream_id} (耗时: {process_time:.2f}s)") else: logger.warning(f"流处理失败: {stream_id} - {results.get('error_message', '未知错误')}") - + return success - + finally: # 清除 Chatter 处理标志 context.is_chatter_processing = False logger.debug(f"清除 Chatter 处理标志: {stream_id}") - + # 等待能量刷新任务完成 try: await asyncio.wait_for(energy_task, timeout=5.0) @@ -525,11 +525,11 @@ class SchedulerDispatcher: logger.warning(f"等待能量刷新超时: {stream_id}") except Exception as e: logger.debug(f"能量刷新任务异常: {e}") - + except Exception as e: logger.error(f"流处理异常: {stream_id} - {e}", exc_info=True) return False - + finally: # 设置处理状态为未处理 self._set_stream_processing_status(stream_id, False) @@ -538,11 +538,11 @@ class SchedulerDispatcher: """设置流的处理状态""" try: from src.chat.message_manager.message_manager import message_manager - + if message_manager.is_running: message_manager.set_stream_processing_status(stream_id, is_processing) logger.debug(f"设置流处理状态: stream={stream_id}, processing={is_processing}") - + except ImportError: logger.debug("MessageManager 不可用,跳过状态设置") except Exception as e: @@ -556,7 +556,7 @@ class SchedulerDispatcher: if not chat_stream: logger.debug(f"刷新能量时未找到聊天流: {stream_id}") return - + await chat_stream.context_manager.refresh_focus_energy_from_history() logger.debug(f"已刷新聊天流 {stream_id} 的聚焦能量") except Exception as e: diff --git a/src/chat/message_receive/bot.py b/src/chat/message_receive/bot.py index b5aa54269..5ba253862 100644 --- a/src/chat/message_receive/bot.py +++ b/src/chat/message_receive/bot.py @@ -367,7 +367,7 @@ class ChatBot: message_segment = message_data.get("message_segment") if message_segment and isinstance(message_segment, dict): if message_segment.get("type") == "adapter_response": - logger.info(f"[DEBUG bot.py message_process] 检测到adapter_response,立即处理") + logger.info("[DEBUG bot.py message_process] 检测到adapter_response,立即处理") await self._handle_adapter_response_from_dict(message_segment.get("data")) return diff --git a/src/chat/message_receive/message_processor.py b/src/chat/message_receive/message_processor.py index 4b24a804e..0c9e89951 100644 --- a/src/chat/message_receive/message_processor.py +++ b/src/chat/message_receive/message_processor.py @@ -205,7 +205,7 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM return result else: logger.warning(f"[at处理] 无法解析格式: '{segment.data}'") - return f"@{segment.data}" + return f"@{segment.data}" logger.warning(f"[at处理] 数据类型异常: {type(segment.data)}") return f"@{segment.data}" if isinstance(segment.data, str) else "@未知用户" diff --git a/src/chat/replyer/default_generator.py b/src/chat/replyer/default_generator.py index a3d9e5a5c..194f37c13 100644 --- a/src/chat/replyer/default_generator.py +++ b/src/chat/replyer/default_generator.py @@ -542,7 +542,7 @@ class DefaultReplyer: all_memories = [] try: from src.memory_graph.manager_singleton import get_memory_manager, is_initialized - + if is_initialized(): manager = get_memory_manager() if manager: @@ -552,12 +552,12 @@ class DefaultReplyer: sender_name = "" if user_info_obj: sender_name = getattr(user_info_obj, "user_nickname", "") or getattr(user_info_obj, "user_cardname", "") - + # 获取参与者信息 participants = [] try: # 尝试从聊天流中获取参与者信息 - if hasattr(stream, 'chat_history_manager'): + if hasattr(stream, "chat_history_manager"): history_manager = stream.chat_history_manager # 获取最近的参与者列表 recent_records = history_manager.get_memory_chat_history( @@ -586,16 +586,16 @@ class DefaultReplyer: formatted_history = "" if chat_history: # 移除过长的历史记录,只保留最近部分 - lines = chat_history.strip().split('\n') + lines = chat_history.strip().split("\n") recent_lines = lines[-10:] if len(lines) > 10 else lines - formatted_history = '\n'.join(recent_lines) + formatted_history = "\n".join(recent_lines) query_context = { "chat_history": formatted_history, "sender": sender_name, "participants": participants, } - + # 使用记忆管理器的智能检索(多查询策略) memories = await manager.search_memories( query=target, @@ -605,23 +605,23 @@ class DefaultReplyer: use_multi_query=True, context=query_context, ) - + if memories: logger.info(f"[记忆图] 检索到 {len(memories)} 条相关记忆") - + # 使用新的格式化工具构建完整的记忆描述 from src.memory_graph.utils.memory_formatter import ( format_memory_for_prompt, get_memory_type_label, ) - + for memory in memories: # 使用格式化工具生成完整的主谓宾描述 content = format_memory_for_prompt(memory, include_metadata=False) - + # 获取记忆类型 mem_type = memory.memory_type.value if memory.memory_type else "未知" - + if content: all_memories.append({ "content": content, @@ -636,7 +636,7 @@ class DefaultReplyer: except Exception as e: logger.debug(f"[记忆图] 检索失败: {e}") all_memories = [] - + # 构建记忆字符串,使用方括号格式 memory_str = "" has_any_memory = False @@ -725,7 +725,7 @@ class DefaultReplyer: for tool_result in tool_results: tool_name = tool_result.get("tool_name", "unknown") content = tool_result.get("content", "") - result_type = tool_result.get("type", "tool_result") + tool_result.get("type", "tool_result") # 不进行截断,让工具自己处理结果长度 current_results_parts.append(f"- **{tool_name}**: {content}") @@ -744,7 +744,7 @@ class DefaultReplyer: logger.error(f"工具信息获取失败: {e}") return "" - + def _parse_reply_target(self, target_message: str) -> tuple[str, str]: """解析回复目标消息 - 使用共享工具""" from src.chat.utils.prompt import Prompt @@ -1897,7 +1897,7 @@ class DefaultReplyer: async def _store_chat_memory_async(self, reply_to: str, reply_message: DatabaseMessages | dict[str, Any] | None = None): """ [已废弃] 异步存储聊天记忆(从build_memory_block迁移而来) - + 此函数已被记忆图系统的工具调用方式替代。 记忆现在由LLM在对话过程中通过CreateMemoryTool主动创建。 @@ -1906,14 +1906,13 @@ class DefaultReplyer: reply_message: 回复的原始消息 """ return # 已禁用,保留函数签名以防其他地方有引用 - + # 以下代码已废弃,不再执行 try: if not global_config.memory.enable_memory: return # 使用统一记忆系统存储记忆 - from src.chat.memory_system import get_memory_system stream = self.chat_stream user_info_obj = getattr(stream, "user_info", None) @@ -2036,7 +2035,7 @@ class DefaultReplyer: timestamp=time.time(), limit=int(global_config.chat.max_context_size), ) - chat_history = await build_readable_messages( + await build_readable_messages( message_list_before_short, replace_bot_name=True, merge_messages=False, diff --git a/src/chat/utils/prompt.py b/src/chat/utils/prompt.py index dfc3a87f7..5cb437819 100644 --- a/src/chat/utils/prompt.py +++ b/src/chat/utils/prompt.py @@ -400,7 +400,7 @@ class Prompt: # 初始化预构建参数字典 pre_built_params = {} - + try: # --- 步骤 1: 准备构建任务 --- tasks = [] diff --git a/src/chat/utils/utils.py b/src/chat/utils/utils.py index b7a32e329..0459d8e1a 100644 --- a/src/chat/utils/utils.py +++ b/src/chat/utils/utils.py @@ -87,20 +87,18 @@ def is_mentioned_bot_in_message(message) -> tuple[bool, float]: ) processed_text = message.processed_plain_text or "" - + # 1. 判断是否为私聊(强提及) group_info = getattr(message, "group_info", None) if not group_info or not getattr(group_info, "group_id", None): - is_private = True mention_type = 2 logger.debug("检测到私聊消息 - 强提及") - + # 2. 判断是否被@(强提及) if re.search(rf"@<(.+?):{global_config.bot.qq_account}>", processed_text): - is_at = True mention_type = 2 logger.debug("检测到@提及 - 强提及") - + # 3. 判断是否被回复(强提及) if re.match( rf"\[回复 (.+?)\({global_config.bot.qq_account!s}\):(.+?)\],说:", processed_text @@ -108,10 +106,9 @@ def is_mentioned_bot_in_message(message) -> tuple[bool, float]: rf"\[回复<(.+?)(?=:{global_config.bot.qq_account!s}>)\:{global_config.bot.qq_account!s}>:(.+?)\],说:", processed_text, ): - is_replied = True mention_type = 2 logger.debug("检测到回复消息 - 强提及") - + # 4. 判断文本中是否提及bot名字或别名(弱提及) if mention_type == 0: # 只有在没有强提及时才检查弱提及 # 移除@和回复标记后再检查 @@ -119,21 +116,19 @@ def is_mentioned_bot_in_message(message) -> tuple[bool, float]: message_content = re.sub(r"@<(.+?)(?=:(\d+))\:(\d+)>", "", message_content) message_content = re.sub(r"\[回复 (.+?)\(((\d+)|未知id)\):(.+?)\],说:", "", message_content) message_content = re.sub(r"\[回复<(.+?)(?=:(\d+))\:(\d+)>:(.+?)\],说:", "", message_content) - + # 检查bot主名字 if global_config.bot.nickname in message_content: - is_text_mentioned = True mention_type = 1 logger.debug(f"检测到文本提及bot主名字 '{global_config.bot.nickname}' - 弱提及") # 如果主名字没匹配,再检查别名 elif nicknames: for alias_name in nicknames: if alias_name in message_content: - is_text_mentioned = True mention_type = 1 logger.debug(f"检测到文本提及bot别名 '{alias_name}' - 弱提及") break - + # 返回结果 is_mentioned = mention_type > 0 return is_mentioned, float(mention_type) diff --git a/src/common/cache_manager.py b/src/common/cache_manager.py index 7a4f6eda6..6edb72169 100644 --- a/src/common/cache_manager.py +++ b/src/common/cache_manager.py @@ -368,13 +368,13 @@ class CacheManager: if expired_keys: logger.info(f"清理了 {len(expired_keys)} 个过期的L1缓存条目") - + def get_health_stats(self) -> dict[str, Any]: """获取缓存健康统计信息""" # 简化的健康统计,不包含内存监控(因为相关属性未定义) return { "l1_count": len(self.l1_kv_cache), - "l1_vector_count": self.l1_vector_index.ntotal if hasattr(self.l1_vector_index, 'ntotal') else 0, + "l1_vector_count": self.l1_vector_index.ntotal if hasattr(self.l1_vector_index, "ntotal") else 0, "tool_stats": { "total_tool_calls": self.tool_stats.get("total_tool_calls", 0), "tracked_tools": len(self.tool_stats.get("most_used_tools", {})), @@ -397,7 +397,7 @@ class CacheManager: warnings.append(f"⚠️ L1缓存条目数较多: {l1_size}") # 检查向量索引大小 - vector_count = self.l1_vector_index.ntotal if hasattr(self.l1_vector_index, 'ntotal') else 0 + vector_count = self.l1_vector_index.ntotal if hasattr(self.l1_vector_index, "ntotal") else 0 if isinstance(vector_count, int) and vector_count > 500: warnings.append(f"⚠️ 向量索引条目数较多: {vector_count}") diff --git a/src/common/database/optimization/batch_scheduler.py b/src/common/database/optimization/batch_scheduler.py index d6dcbcdd6..bfa1ffe23 100644 --- a/src/common/database/optimization/batch_scheduler.py +++ b/src/common/database/optimization/batch_scheduler.py @@ -66,7 +66,7 @@ class BatchStats: last_batch_duration: float = 0.0 last_batch_size: int = 0 congestion_score: float = 0.0 # 拥塞评分 (0-1) - + # 🔧 新增:缓存统计 cache_size: int = 0 # 缓存条目数 cache_memory_mb: float = 0.0 # 缓存内存占用(MB) @@ -539,8 +539,7 @@ class AdaptiveBatchScheduler: def _set_cache(self, cache_key: str, result: Any) -> None: """设置缓存(改进版,带大小限制和内存统计)""" - import sys - + # 🔧 检查缓存大小限制 if len(self._result_cache) >= self._cache_max_size: # 首先清理过期条目 @@ -549,18 +548,18 @@ class AdaptiveBatchScheduler: k for k, (_, ts) in self._result_cache.items() if current_time - ts >= self.cache_ttl ] - + for k in expired_keys: # 更新内存统计 if k in self._cache_size_map: self._cache_memory_estimate -= self._cache_size_map[k] del self._cache_size_map[k] del self._result_cache[k] - + # 如果还是太大,清理最老的条目(LRU) if len(self._result_cache) >= self._cache_max_size: oldest_key = min( - self._result_cache.keys(), + self._result_cache.keys(), key=lambda k: self._result_cache[k][1] ) # 更新内存统计 @@ -569,7 +568,7 @@ class AdaptiveBatchScheduler: del self._cache_size_map[oldest_key] del self._result_cache[oldest_key] logger.debug(f"缓存已满,淘汰最老条目: {oldest_key}") - + # 🔧 使用准确的内存估算方法 try: total_size = estimate_size_smart(cache_key) + estimate_size_smart(result) @@ -580,7 +579,7 @@ class AdaptiveBatchScheduler: # 使用默认值 self._cache_size_map[cache_key] = 1024 self._cache_memory_estimate += 1024 - + self._result_cache[cache_key] = (result, time.time()) async def get_stats(self) -> BatchStats: diff --git a/src/common/database/optimization/cache_manager.py b/src/common/database/optimization/cache_manager.py index 6a44ec021..243f168e8 100644 --- a/src/common/database/optimization/cache_manager.py +++ b/src/common/database/optimization/cache_manager.py @@ -171,7 +171,7 @@ class LRUCache(Generic[T]): ) else: adjusted_created_at = now - + entry = CacheEntry( value=value, created_at=adjusted_created_at, @@ -345,7 +345,7 @@ class MultiLevelCache: # 估算数据大小(如果未提供) if size is None: size = estimate_size_smart(value) - + # 检查单个条目大小是否超过限制 if size > self.max_item_size_bytes: logger.warning( @@ -354,7 +354,7 @@ class MultiLevelCache: f"limit={self.max_item_size_bytes / (1024 * 1024):.2f}MB" ) return - + # 根据TTL决定写入哪个缓存层 if ttl is not None: # 有自定义TTL,根据TTL大小决定写入层级 @@ -394,37 +394,37 @@ class MultiLevelCache: """获取所有缓存层的统计信息(修正版,避免重复计数)""" l1_stats = await self.l1_cache.get_stats() l2_stats = await self.l2_cache.get_stats() - + # 🔧 修复:计算实际独占的内存,避免L1和L2共享数据的重复计数 l1_keys = set(self.l1_cache._cache.keys()) l2_keys = set(self.l2_cache._cache.keys()) - + shared_keys = l1_keys & l2_keys l1_only_keys = l1_keys - l2_keys l2_only_keys = l2_keys - l1_keys - + # 计算实际总内存(避免重复计数) # L1独占内存 l1_only_size = sum( - self.l1_cache._cache[k].size - for k in l1_only_keys + self.l1_cache._cache[k].size + for k in l1_only_keys if k in self.l1_cache._cache ) # L2独占内存 l2_only_size = sum( - self.l2_cache._cache[k].size - for k in l2_only_keys + self.l2_cache._cache[k].size + for k in l2_only_keys if k in self.l2_cache._cache ) # 共享内存(只计算一次,使用L1的数据) shared_size = sum( - self.l1_cache._cache[k].size - for k in shared_keys + self.l1_cache._cache[k].size + for k in shared_keys if k in self.l1_cache._cache ) - + actual_total_size = l1_only_size + l2_only_size + shared_size - + return { "l1": l1_stats, "l2": l2_stats, @@ -442,7 +442,7 @@ class MultiLevelCache: """检查并强制清理超出内存限制的缓存""" stats = await self.get_stats() total_size = stats["l1"].total_size + stats["l2"].total_size - + if total_size > self.max_memory_bytes: memory_mb = total_size / (1024 * 1024) max_mb = self.max_memory_bytes / (1024 * 1024) @@ -452,14 +452,14 @@ class MultiLevelCache: ) # 优先清理L2缓存(温数据) await self.l2_cache.clear() - + # 如果清理L2后仍超限,清理L1 stats_after_l2 = await self.get_stats() total_after_l2 = stats_after_l2["l1"].total_size + stats_after_l2["l2"].total_size if total_after_l2 > self.max_memory_bytes: logger.warning("清理L2后仍超限,继续清理L1缓存") await self.l1_cache.clear() - + logger.info("缓存强制清理完成") async def start_cleanup_task(self, interval: float = 60) -> None: @@ -476,10 +476,10 @@ class MultiLevelCache: while not self._is_closing: try: await asyncio.sleep(interval) - + if self._is_closing: break - + stats = await self.get_stats() l1_stats = stats["l1"] l2_stats = stats["l2"] @@ -493,13 +493,13 @@ class MultiLevelCache: f"共享: {stats['shared_keys_count']}键/{stats['shared_mb']:.2f}MB " f"(去重节省{stats['dedup_savings_mb']:.2f}MB)" ) - + # 🔧 清理过期条目 await self._clean_expired_entries() - + # 检查内存限制 await self.check_memory_limit() - + except asyncio.CancelledError: break except Exception as e: @@ -511,7 +511,7 @@ class MultiLevelCache: async def stop_cleanup_task(self) -> None: """停止清理任务""" self._is_closing = True - + if self._cleanup_task is not None: self._cleanup_task.cancel() try: @@ -520,43 +520,43 @@ class MultiLevelCache: pass self._cleanup_task = None logger.info("缓存清理任务已停止") - + async def _clean_expired_entries(self) -> None: """清理过期的缓存条目""" try: current_time = time.time() - + # 清理 L1 过期条目 async with self.l1_cache._lock: expired_keys = [ key for key, entry in self.l1_cache._cache.items() if current_time - entry.created_at > self.l1_cache.ttl ] - + for key in expired_keys: entry = self.l1_cache._cache.pop(key, None) if entry: self.l1_cache._stats.evictions += 1 self.l1_cache._stats.item_count -= 1 self.l1_cache._stats.total_size -= entry.size - + # 清理 L2 过期条目 async with self.l2_cache._lock: expired_keys = [ key for key, entry in self.l2_cache._cache.items() if current_time - entry.created_at > self.l2_cache.ttl ] - + for key in expired_keys: entry = self.l2_cache._cache.pop(key, None) if entry: self.l2_cache._stats.evictions += 1 self.l2_cache._stats.item_count -= 1 self.l2_cache._stats.total_size -= entry.size - + if expired_keys: logger.debug(f"清理了 {len(expired_keys)} 个过期缓存条目") - + except Exception as e: logger.error(f"清理过期条目失败: {e}", exc_info=True) @@ -568,7 +568,7 @@ _cache_lock = asyncio.Lock() async def get_cache() -> MultiLevelCache: """获取全局缓存实例(单例) - + 从配置文件读取缓存参数,如果配置未加载则使用默认值 如果配置中禁用了缓存,返回一个最小化的缓存实例(容量为1) """ @@ -580,9 +580,9 @@ async def get_cache() -> MultiLevelCache: # 尝试从配置读取参数 try: from src.config.config import global_config - + db_config = global_config.database - + # 检查是否启用缓存 if not db_config.enable_database_cache: logger.info("数据库缓存已禁用,使用最小化缓存实例") @@ -594,7 +594,7 @@ async def get_cache() -> MultiLevelCache: max_memory_mb=1, ) return _global_cache - + l1_max_size = db_config.cache_l1_max_size l1_ttl = db_config.cache_l1_ttl l2_max_size = db_config.cache_l2_max_size @@ -602,7 +602,7 @@ async def get_cache() -> MultiLevelCache: max_memory_mb = db_config.cache_max_memory_mb max_item_size_mb = db_config.cache_max_item_size_mb cleanup_interval = db_config.cache_cleanup_interval - + logger.info( f"从配置加载缓存参数: L1({l1_max_size}/{l1_ttl}s), " f"L2({l2_max_size}/{l2_ttl}s), 内存限制({max_memory_mb}MB), " @@ -618,7 +618,7 @@ async def get_cache() -> MultiLevelCache: max_memory_mb = 100 max_item_size_mb = 1 cleanup_interval = 60 - + _global_cache = MultiLevelCache( l1_max_size=l1_max_size, l1_ttl=l1_ttl, diff --git a/src/common/memory_utils.py b/src/common/memory_utils.py index 2f543ed1d..17971181e 100644 --- a/src/common/memory_utils.py +++ b/src/common/memory_utils.py @@ -4,73 +4,74 @@ 提供比 sys.getsizeof() 更准确的内存占用估算方法 """ -import sys import pickle +import sys from typing import Any + import numpy as np def get_accurate_size(obj: Any, seen: set | None = None) -> int: """ 准确估算对象的内存大小(递归计算所有引用对象) - + 比 sys.getsizeof() 准确得多,特别是对于复杂嵌套对象。 - + Args: obj: 要估算大小的对象 seen: 已访问对象的集合(用于避免循环引用) - + Returns: 估算的字节数 """ if seen is None: seen = set() - + obj_id = id(obj) if obj_id in seen: return 0 - + seen.add(obj_id) size = sys.getsizeof(obj) - + # NumPy 数组特殊处理 if isinstance(obj, np.ndarray): size += obj.nbytes return size - + # 字典:递归计算所有键值对 if isinstance(obj, dict): - size += sum(get_accurate_size(k, seen) + get_accurate_size(v, seen) + size += sum(get_accurate_size(k, seen) + get_accurate_size(v, seen) for k, v in obj.items()) - + # 列表、元组、集合:递归计算所有元素 - elif isinstance(obj, (list, tuple, set, frozenset)): + elif isinstance(obj, list | tuple | set | frozenset): size += sum(get_accurate_size(item, seen) for item in obj) - + # 有 __dict__ 的对象:递归计算属性 - elif hasattr(obj, '__dict__'): + elif hasattr(obj, "__dict__"): size += get_accurate_size(obj.__dict__, seen) - + # 其他可迭代对象 - elif hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes, bytearray)): + elif hasattr(obj, "__iter__") and not isinstance(obj, str | bytes | bytearray): try: size += sum(get_accurate_size(item, seen) for item in obj) except: pass - + return size def get_pickle_size(obj: Any) -> int: """ 使用 pickle 序列化大小作为参考 - + 通常比 sys.getsizeof() 更接近实际内存占用, 但可能略小于真实内存占用(不包括 Python 对象开销) - + Args: obj: 要估算大小的对象 - + Returns: pickle 序列化后的字节数,失败返回 0 """ @@ -83,17 +84,17 @@ def get_pickle_size(obj: Any) -> int: def estimate_size_smart(obj: Any, max_depth: int = 5, sample_large: bool = True) -> int: """ 智能估算对象大小(平衡准确性和性能) - + 使用深度受限的递归估算+采样策略,平衡准确性和性能: - 深度5层足以覆盖99%的缓存数据结构 - 对大型容器(>100项)进行采样估算 - 性能开销约60倍于sys.getsizeof,但准确度提升1000+倍 - + Args: obj: 要估算大小的对象 max_depth: 最大递归深度(默认5层,可覆盖大多数嵌套结构) sample_large: 对大型容器是否采样(默认True,提升性能) - + Returns: 估算的字节数 """ @@ -105,24 +106,24 @@ def _estimate_recursive(obj: Any, depth: int, seen: set, sample_large: bool) -> # 检查深度限制 if depth <= 0: return sys.getsizeof(obj) - + # 检查循环引用 obj_id = id(obj) if obj_id in seen: return 0 seen.add(obj_id) - + # 基本大小 size = sys.getsizeof(obj) - + # 简单类型直接返回 - if isinstance(obj, (int, float, bool, type(None), str, bytes, bytearray)): + if isinstance(obj, int | float | bool | type(None) | str | bytes | bytearray): return size - + # NumPy 数组特殊处理 if isinstance(obj, np.ndarray): return size + obj.nbytes - + # 字典递归 if isinstance(obj, dict): items = list(obj.items()) @@ -130,7 +131,7 @@ def _estimate_recursive(obj: Any, depth: int, seen: set, sample_large: bool) -> # 大字典采样:前50 + 中间50 + 最后50 sample_items = items[:50] + items[len(items)//2-25:len(items)//2+25] + items[-50:] sampled_size = sum( - _estimate_recursive(k, depth - 1, seen, sample_large) + + _estimate_recursive(k, depth - 1, seen, sample_large) + _estimate_recursive(v, depth - 1, seen, sample_large) for k, v in sample_items ) @@ -142,9 +143,9 @@ def _estimate_recursive(obj: Any, depth: int, seen: set, sample_large: bool) -> size += _estimate_recursive(k, depth - 1, seen, sample_large) size += _estimate_recursive(v, depth - 1, seen, sample_large) return size - + # 列表、元组、集合递归 - if isinstance(obj, (list, tuple, set, frozenset)): + if isinstance(obj, list | tuple | set | frozenset): items = list(obj) if sample_large and len(items) > 100: # 大容器采样:前50 + 中间50 + 最后50 @@ -160,21 +161,21 @@ def _estimate_recursive(obj: Any, depth: int, seen: set, sample_large: bool) -> for item in items: size += _estimate_recursive(item, depth - 1, seen, sample_large) return size - + # 有 __dict__ 的对象 - if hasattr(obj, '__dict__'): + if hasattr(obj, "__dict__"): size += _estimate_recursive(obj.__dict__, depth - 1, seen, sample_large) - + return size def format_size(size_bytes: int) -> str: """ 格式化字节数为人类可读的格式 - + Args: size_bytes: 字节数 - + Returns: 格式化后的字符串,如 "1.23 MB" """ diff --git a/src/config/config.py b/src/config/config.py index a5dafedde..e3ae23ade 100644 --- a/src/config/config.py +++ b/src/config/config.py @@ -2,7 +2,6 @@ import os import shutil import sys from datetime import datetime -from typing import Optional import tomlkit from pydantic import Field @@ -381,7 +380,7 @@ class Config(ValidatedConfigBase): notice: NoticeConfig = Field(..., description="Notice消息配置") emoji: EmojiConfig = Field(..., description="表情配置") expression: ExpressionConfig = Field(..., description="表达配置") - memory: Optional[MemoryConfig] = Field(default=None, description="记忆配置") + memory: MemoryConfig | None = Field(default=None, description="记忆配置") mood: MoodConfig = Field(..., description="情绪配置") reaction: ReactionConfig = Field(default_factory=ReactionConfig, description="反应规则配置") chinese_typo: ChineseTypoConfig = Field(..., description="中文错别字配置") diff --git a/src/config/official_configs.py b/src/config/official_configs.py index 8be21a3eb..1f96c05da 100644 --- a/src/config/official_configs.py +++ b/src/config/official_configs.py @@ -401,16 +401,16 @@ class MemoryConfig(ValidatedConfigBase): memory_system_load_balancing: bool = Field(default=True, description="启用记忆系统负载均衡") memory_build_throttling: bool = Field(default=True, description="启用记忆构建节流") memory_priority_queue_enabled: bool = Field(default=True, description="启用记忆优先级队列") - + # === 记忆图系统配置 (Memory Graph System) === # 新一代记忆系统的配置项 enable: bool = Field(default=True, description="启用记忆图系统") data_dir: str = Field(default="data/memory_graph", description="记忆数据存储目录") - + # 向量存储配置 vector_collection_name: str = Field(default="memory_nodes", description="向量集合名称") vector_db_path: str = Field(default="data/memory_graph/chroma_db", description="向量数据库路径") - + # 检索配置 search_top_k: int = Field(default=10, description="默认检索返回数量") search_min_importance: float = Field(default=0.3, description="最小重要性阈值") @@ -418,13 +418,13 @@ class MemoryConfig(ValidatedConfigBase): search_max_expand_depth: int = Field(default=2, description="检索时图扩展深度(0-3)") search_expand_semantic_threshold: float = Field(default=0.3, description="图扩展时语义相似度阈值(建议0.3-0.5,过低可能引入无关记忆,过高无法扩展)") enable_query_optimization: bool = Field(default=True, description="启用查询优化") - + # 检索权重配置 (记忆图系统) search_vector_weight: float = Field(default=0.4, description="向量相似度权重") search_graph_distance_weight: float = Field(default=0.2, description="图距离权重") search_importance_weight: float = Field(default=0.2, description="重要性权重") search_recency_weight: float = Field(default=0.2, description="时效性权重") - + # 记忆整合配置 consolidation_enabled: bool = Field(default=False, description="是否启用记忆整合") consolidation_interval_hours: float = Field(default=2.0, description="整合任务执行间隔(小时)") @@ -442,21 +442,21 @@ class MemoryConfig(ValidatedConfigBase): consolidation_linking_min_confidence: float = Field(default=0.7, description="LLM分析最低置信度阈值") consolidation_linking_llm_temperature: float = Field(default=0.2, description="LLM分析温度参数") consolidation_linking_llm_max_tokens: int = Field(default=1500, description="LLM分析最大输出长度") - + # 遗忘配置 (记忆图系统) forgetting_enabled: bool = Field(default=True, description="是否启用自动遗忘") forgetting_activation_threshold: float = Field(default=0.1, description="激活度阈值") forgetting_min_importance: float = Field(default=0.8, description="最小保护重要性") - + # 激活配置 activation_decay_rate: float = Field(default=0.9, description="激活度衰减率") activation_propagation_strength: float = Field(default=0.5, description="激活传播强度") activation_propagation_depth: int = Field(default=2, description="激活传播深度") - + # 性能配置 max_memory_nodes_per_memory: int = Field(default=10, description="每个记忆最多包含的节点数") max_related_memories: int = Field(default=5, description="相关记忆最大数量") - + # 节点去重合并配置 node_merger_similarity_threshold: float = Field(default=0.85, description="节点去重相似度阈值") node_merger_context_match_required: bool = Field(default=True, description="节点合并是否要求上下文匹配") diff --git a/src/llm_models/utils_model.py b/src/llm_models/utils_model.py index 49c83c135..663c08a02 100644 --- a/src/llm_models/utils_model.py +++ b/src/llm_models/utils_model.py @@ -534,7 +534,7 @@ class _RequestExecutor: model_name = model_info.name retry_interval = api_provider.retry_interval - if isinstance(e, (NetworkConnectionError, ReqAbortException)): + if isinstance(e, NetworkConnectionError | ReqAbortException): return await self._check_retry(remain_try, retry_interval, "连接异常", model_name) elif isinstance(e, RespNotOkException): return await self._handle_resp_not_ok(e, model_info, api_provider, remain_try, messages_info) diff --git a/src/memory_graph/storage/vector_store.py b/src/memory_graph/storage/vector_store.py index 883e32f6b..07506c570 100644 --- a/src/memory_graph/storage/vector_store.py +++ b/src/memory_graph/storage/vector_store.py @@ -100,10 +100,10 @@ class VectorStore: # 处理额外的元数据,将 list 转换为 JSON 字符串 for key, value in node.metadata.items(): - if isinstance(value, (list, dict)): + if isinstance(value, list | dict): import orjson metadata[key] = orjson.dumps(value, option=orjson.OPT_NON_STR_KEYS).decode("utf-8") - elif isinstance(value, (str, int, float, bool)) or value is None: + elif isinstance(value, str | int | float | bool) or value is None: metadata[key] = value else: metadata[key] = str(value) @@ -149,9 +149,9 @@ class VectorStore: "created_at": n.created_at.isoformat(), } for key, value in n.metadata.items(): - if isinstance(value, (list, dict)): + if isinstance(value, list | dict): metadata[key] = orjson.dumps(value, option=orjson.OPT_NON_STR_KEYS).decode("utf-8") - elif isinstance(value, (str, int, float, bool)) or value is None: + elif isinstance(value, str | int | float | bool) or value is None: metadata[key] = value # type: ignore else: metadata[key] = str(value) diff --git a/src/memory_graph/utils/embeddings.py b/src/memory_graph/utils/embeddings.py index 30787d34f..1432d1c8b 100644 --- a/src/memory_graph/utils/embeddings.py +++ b/src/memory_graph/utils/embeddings.py @@ -4,8 +4,6 @@ from __future__ import annotations -import asyncio - import numpy as np from src.common.logger import get_logger @@ -72,7 +70,7 @@ class EmbeddingGenerator: logger.warning(f"⚠️ Embedding API 初始化失败: {e}") self._api_available = False - + async def generate(self, text: str) -> np.ndarray | None: """ 生成单个文本的嵌入向量 @@ -130,7 +128,7 @@ class EmbeddingGenerator: logger.debug(f"API 嵌入生成失败: {e}") return None - + def _get_dimension(self) -> int: """获取嵌入维度""" # 优先使用 API 维度 diff --git a/src/plugin_system/apis/storage_api.py b/src/plugin_system/apis/storage_api.py index 2c8060473..04174052e 100644 --- a/src/plugin_system/apis/storage_api.py +++ b/src/plugin_system/apis/storage_api.py @@ -7,11 +7,12 @@ """ import atexit -import orjson import os import threading from typing import Any, ClassVar +import orjson + from src.common.logger import get_logger # 获取日志记录器 @@ -125,7 +126,7 @@ class PluginStorage: try: with open(self.file_path, "w", encoding="utf-8") as f: - f.write(orjson.dumps(self._data, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS).decode('utf-8')) + f.write(orjson.dumps(self._data, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS).decode("utf-8")) self._dirty = False # 保存后重置标志 logger.debug(f"插件 '{self.name}' 的数据已成功保存到磁盘。") except Exception as e: diff --git a/src/plugin_system/core/mcp_client_manager.py b/src/plugin_system/core/mcp_client_manager.py index 3bc7d6cdb..ffcec9e1c 100644 --- a/src/plugin_system/core/mcp_client_manager.py +++ b/src/plugin_system/core/mcp_client_manager.py @@ -5,12 +5,12 @@ MCP Client Manager """ import asyncio -import orjson import shutil from pathlib import Path from typing import Any import mcp.types +import orjson from fastmcp.client import Client, StdioTransport, StreamableHttpTransport from src.common.logger import get_logger diff --git a/src/plugin_system/core/stream_tool_history.py b/src/plugin_system/core/stream_tool_history.py index a15c77040..49948439b 100644 --- a/src/plugin_system/core/stream_tool_history.py +++ b/src/plugin_system/core/stream_tool_history.py @@ -4,11 +4,13 @@ """ import time -from typing import Any, Optional -from dataclasses import dataclass, asdict, field +from dataclasses import dataclass, field +from typing import Any + import orjson -from src.common.logger import get_logger + from src.common.cache_manager import tool_cache +from src.common.logger import get_logger logger = get_logger("stream_tool_history") @@ -18,10 +20,10 @@ class ToolCallRecord: """工具调用记录""" tool_name: str args: dict[str, Any] - result: Optional[dict[str, Any]] = None + result: dict[str, Any] | None = None status: str = "success" # success, error, pending timestamp: float = field(default_factory=time.time) - execution_time: Optional[float] = None # 执行耗时(秒) + execution_time: float | None = None # 执行耗时(秒) cache_hit: bool = False # 是否命中缓存 result_preview: str = "" # 结果预览 error_message: str = "" # 错误信息 @@ -32,9 +34,9 @@ class ToolCallRecord: content = self.result.get("content", "") if isinstance(content, str): self.result_preview = content[:500] + ("..." if len(content) > 500 else "") - elif isinstance(content, (list, dict)): + elif isinstance(content, list | dict): try: - self.result_preview = orjson.dumps(content, option=orjson.OPT_NON_STR_KEYS).decode('utf-8')[:500] + "..." + self.result_preview = orjson.dumps(content, option=orjson.OPT_NON_STR_KEYS).decode("utf-8")[:500] + "..." except Exception: self.result_preview = str(content)[:500] + "..." else: @@ -105,7 +107,7 @@ class StreamToolHistoryManager: logger.debug(f"[{self.chat_id}] 添加工具调用记录: {record.tool_name}, 缓存命中: {record.cache_hit}") - async def get_cached_result(self, tool_name: str, args: dict[str, Any]) -> Optional[dict[str, Any]]: + async def get_cached_result(self, tool_name: str, args: dict[str, Any]) -> dict[str, Any] | None: """从缓存或历史记录中获取结果 Args: @@ -160,9 +162,9 @@ class StreamToolHistoryManager: return None async def cache_result(self, tool_name: str, args: dict[str, Any], result: dict[str, Any], - execution_time: Optional[float] = None, - tool_file_path: Optional[str] = None, - ttl: Optional[int] = None) -> None: + execution_time: float | None = None, + tool_file_path: str | None = None, + ttl: int | None = None) -> None: """缓存工具调用结果 Args: @@ -207,7 +209,7 @@ class StreamToolHistoryManager: except Exception as e: logger.warning(f"[{self.chat_id}] 缓存设置失败: {e}") - async def get_recent_history(self, count: int = 5, status_filter: Optional[str] = None) -> list[ToolCallRecord]: + async def get_recent_history(self, count: int = 5, status_filter: str | None = None) -> list[ToolCallRecord]: """获取最近的历史记录 Args: @@ -295,7 +297,7 @@ class StreamToolHistoryManager: self._history.clear() logger.info(f"[{self.chat_id}] 工具历史记录已清除") - def _search_memory_cache(self, tool_name: str, args: dict[str, Any]) -> Optional[dict[str, Any]]: + def _search_memory_cache(self, tool_name: str, args: dict[str, Any]) -> dict[str, Any] | None: """在内存历史记录中搜索缓存 Args: @@ -333,7 +335,7 @@ class StreamToolHistoryManager: return tool_path_mapping.get(tool_name, f"src/plugins/tools/{tool_name}.py") - def _extract_semantic_query(self, tool_name: str, args: dict[str, Any]) -> Optional[str]: + def _extract_semantic_query(self, tool_name: str, args: dict[str, Any]) -> str | None: """提取语义查询参数 Args: @@ -370,7 +372,7 @@ class StreamToolHistoryManager: return "" try: - args_str = orjson.dumps(args, option=orjson.OPT_SORT_KEYS).decode('utf-8') + args_str = orjson.dumps(args, option=orjson.OPT_SORT_KEYS).decode("utf-8") if len(args_str) > max_length: args_str = args_str[:max_length] + "..." return args_str @@ -411,4 +413,4 @@ def cleanup_stream_manager(chat_id: str) -> None: """ if chat_id in _stream_managers: del _stream_managers[chat_id] - logger.info(f"已清理聊天 {chat_id} 的工具历史记录管理器") \ No newline at end of file + logger.info(f"已清理聊天 {chat_id} 的工具历史记录管理器") diff --git a/src/plugin_system/core/tool_use.py b/src/plugin_system/core/tool_use.py index c705ac66f..57d7764dd 100644 --- a/src/plugin_system/core/tool_use.py +++ b/src/plugin_system/core/tool_use.py @@ -1,5 +1,6 @@ import inspect import time +from dataclasses import asdict from typing import Any from src.chat.utils.prompt import Prompt, global_prompt_manager @@ -10,8 +11,7 @@ from src.llm_models.utils_model import LLMRequest from src.plugin_system.apis.tool_api import get_llm_available_tool_definitions, get_tool_instance from src.plugin_system.base.base_tool import BaseTool from src.plugin_system.core.global_announcement_manager import global_announcement_manager -from src.plugin_system.core.stream_tool_history import get_stream_tool_history_manager, ToolCallRecord -from dataclasses import asdict +from src.plugin_system.core.stream_tool_history import ToolCallRecord, get_stream_tool_history_manager logger = get_logger("tool_use") @@ -140,7 +140,7 @@ class ToolExecutor: # 构建工具调用历史文本 tool_history = self.history_manager.format_for_prompt(max_records=5, include_results=True) - + # 获取人设信息 personality_core = global_config.personality.personality_core personality_side = global_config.personality.personality_side @@ -197,7 +197,7 @@ class ToolExecutor: return tool_definitions - + async def execute_tool_calls(self, tool_calls: list[ToolCall] | None) -> tuple[list[dict[str, Any]], list[str]]: """执行工具调用 @@ -338,9 +338,8 @@ class ToolExecutor: if tool_instance and result and tool_instance.enable_cache: try: tool_file_path = inspect.getfile(tool_instance.__class__) - semantic_query = None if tool_instance.semantic_cache_query_key: - semantic_query = function_args.get(tool_instance.semantic_cache_query_key) + function_args.get(tool_instance.semantic_cache_query_key) await self.history_manager.cache_result( tool_name=tool_call.func_name, diff --git a/src/plugins/built_in/affinity_flow_chatter/core/affinity_interest_calculator.py b/src/plugins/built_in/affinity_flow_chatter/core/affinity_interest_calculator.py index 47a3cec92..95dff746e 100644 --- a/src/plugins/built_in/affinity_flow_chatter/core/affinity_interest_calculator.py +++ b/src/plugins/built_in/affinity_flow_chatter/core/affinity_interest_calculator.py @@ -122,7 +122,7 @@ class AffinityInterestCalculator(BaseInterestCalculator): + relationship_score * self.score_weights["relationship"] + mentioned_score * self.score_weights["mentioned"] ) - + # 限制总分上限为1.0,确保分数在合理范围内 total_score = min(raw_total_score, 1.0) @@ -131,7 +131,7 @@ class AffinityInterestCalculator(BaseInterestCalculator): f"{relationship_score:.3f}*{self.score_weights['relationship']} + " f"{mentioned_score:.3f}*{self.score_weights['mentioned']} = {raw_total_score:.3f}" ) - + if raw_total_score > 1.0: logger.debug(f"[Affinity兴趣计算] 原始分数 {raw_total_score:.3f} 超过1.0,已限制为 {total_score:.3f}") @@ -217,7 +217,7 @@ class AffinityInterestCalculator(BaseInterestCalculator): return 0.0 except asyncio.TimeoutError: - logger.warning(f"⏱️ 兴趣匹配计算超时(>1.5秒),返回默认分值0.5以保留其他分数") + logger.warning("⏱️ 兴趣匹配计算超时(>1.5秒),返回默认分值0.5以保留其他分数") return 0.5 # 超时时返回默认分值,避免丢失提及分和关系分 except Exception as e: logger.warning(f"智能兴趣匹配失败: {e}") @@ -251,19 +251,19 @@ class AffinityInterestCalculator(BaseInterestCalculator): def _calculate_mentioned_score(self, message: "DatabaseMessages", bot_nickname: str) -> float: """计算提及分 - 区分强提及和弱提及 - + 强提及(被@、被回复、私聊): 使用 strong_mention_interest_score 弱提及(文本匹配名字/别名): 使用 weak_mention_interest_score """ from src.chat.utils.utils import is_mentioned_bot_in_message - + # 使用统一的提及检测函数 is_mentioned, mention_type = is_mentioned_bot_in_message(message) - + if not is_mentioned: logger.debug("[提及分计算] 未提及机器人,返回0.0") return 0.0 - + # mention_type: 0=未提及, 1=弱提及, 2=强提及 if mention_type >= 2: # 强提及:被@、被回复、私聊 @@ -281,22 +281,22 @@ class AffinityInterestCalculator(BaseInterestCalculator): def _apply_no_reply_threshold_adjustment(self) -> tuple[float, float]: """应用阈值调整(包括连续不回复和回复后降低机制) - + Returns: tuple[float, float]: (调整后的回复阈值, 调整后的动作阈值) """ # 基础阈值 base_reply_threshold = self.reply_threshold base_action_threshold = global_config.affinity_flow.non_reply_action_interest_threshold - + total_reduction = 0.0 - + # 1. 连续不回复的阈值降低 if self.no_reply_count > 0 and self.no_reply_count < self.max_no_reply_count: no_reply_reduction = self.no_reply_count * self.probability_boost_per_no_reply total_reduction += no_reply_reduction logger.debug(f"[阈值调整] 连续不回复降低: {no_reply_reduction:.3f} (计数: {self.no_reply_count})") - + # 2. 回复后的阈值降低(使bot更容易连续对话) if self.enable_post_reply_boost and self.post_reply_boost_remaining > 0: # 计算衰减后的降低值 @@ -309,16 +309,16 @@ class AffinityInterestCalculator(BaseInterestCalculator): f"[阈值调整] 回复后降低: {post_reply_reduction:.3f} " f"(剩余次数: {self.post_reply_boost_remaining}, 衰减: {decay_factor:.2f})" ) - + # 应用总降低量 adjusted_reply_threshold = max(0.0, base_reply_threshold - total_reduction) adjusted_action_threshold = max(0.0, base_action_threshold - total_reduction) - + return adjusted_reply_threshold, adjusted_action_threshold - + def _apply_no_reply_boost(self, base_score: float) -> float: """【已弃用】应用连续不回复的概率提升 - + 注意:此方法已被 _apply_no_reply_threshold_adjustment 替代 保留用于向后兼容 """ @@ -388,7 +388,7 @@ class AffinityInterestCalculator(BaseInterestCalculator): self.no_reply_count = 0 else: self.no_reply_count = min(self.no_reply_count + 1, self.max_no_reply_count) - + def on_reply_sent(self): """当机器人发送回复后调用,激活回复后阈值降低机制""" if self.enable_post_reply_boost: @@ -399,16 +399,16 @@ class AffinityInterestCalculator(BaseInterestCalculator): ) # 同时重置不回复计数 self.no_reply_count = 0 - + def on_message_processed(self, replied: bool): """消息处理完成后调用,更新各种计数器 - + Args: replied: 是否回复了此消息 """ # 更新不回复计数 self.update_no_reply_count(replied) - + # 如果已回复,激活回复后降低机制 if replied: self.on_reply_sent() diff --git a/src/plugins/built_in/affinity_flow_chatter/planner/__init__.py b/src/plugins/built_in/affinity_flow_chatter/planner/__init__.py index 95a7d90ff..0aa9a191b 100644 --- a/src/plugins/built_in/affinity_flow_chatter/planner/__init__.py +++ b/src/plugins/built_in/affinity_flow_chatter/planner/__init__.py @@ -4,10 +4,10 @@ AffinityFlow Chatter 规划器模块 包含计划生成、过滤、执行等规划相关功能 """ +from . import planner_prompts from .plan_executor import ChatterPlanExecutor from .plan_filter import ChatterPlanFilter from .plan_generator import ChatterPlanGenerator from .planner import ChatterActionPlanner -from . import planner_prompts -__all__ = ["ChatterActionPlanner", "planner_prompts", "ChatterPlanGenerator", "ChatterPlanFilter", "ChatterPlanExecutor"] +__all__ = ["ChatterActionPlanner", "ChatterPlanExecutor", "ChatterPlanFilter", "ChatterPlanGenerator", "planner_prompts"] diff --git a/src/plugins/built_in/affinity_flow_chatter/planner/plan_filter.py b/src/plugins/built_in/affinity_flow_chatter/planner/plan_filter.py index a194a1705..0ed435ae9 100644 --- a/src/plugins/built_in/affinity_flow_chatter/planner/plan_filter.py +++ b/src/plugins/built_in/affinity_flow_chatter/planner/plan_filter.py @@ -14,9 +14,7 @@ from json_repair import repair_json # 旧的Hippocampus系统已被移除,现在使用增强记忆系统 # from src.chat.memory_system.enhanced_memory_manager import enhanced_memory_manager from src.chat.utils.chat_message_builder import ( - build_readable_actions, build_readable_messages_with_id, - get_actions_by_timestamp_with_chat, ) from src.chat.utils.prompt import global_prompt_manager from src.common.data_models.info_data_model import ActionPlannerInfo, Plan @@ -646,7 +644,7 @@ class ChatterPlanFilter: memory_manager = get_memory_manager() if not memory_manager: return "记忆系统未初始化。" - + # 将关键词转换为查询字符串 query = " ".join(keywords) enhanced_memories = await memory_manager.search_memories( diff --git a/src/plugins/built_in/affinity_flow_chatter/planner/planner.py b/src/plugins/built_in/affinity_flow_chatter/planner/planner.py index 585759c15..4f74a002b 100644 --- a/src/plugins/built_in/affinity_flow_chatter/planner/planner.py +++ b/src/plugins/built_in/affinity_flow_chatter/planner/planner.py @@ -21,7 +21,6 @@ if TYPE_CHECKING: from src.common.data_models.message_manager_data_model import StreamContext # 导入提示词模块以确保其被初始化 -from src.plugins.built_in.affinity_flow_chatter.planner import planner_prompts logger = get_logger("planner") @@ -159,10 +158,10 @@ class ChatterActionPlanner: action_data={}, action_message=None, ) - + # 更新连续不回复计数 await self._update_interest_calculator_state(replied=False) - + initial_plan = await self.generator.generate(chat_mode) filtered_plan = initial_plan filtered_plan.decided_actions = [no_action] @@ -270,7 +269,7 @@ class ChatterActionPlanner: try: # Normal模式开始时,刷新缓存消息到未读列表 await self._flush_cached_messages_to_unread(context) - + unread_messages = context.get_unread_messages() if context else [] if not unread_messages: @@ -347,7 +346,7 @@ class ChatterActionPlanner: self._update_stats_from_execution_result(execution_result) logger.info("Normal模式: 执行reply动作完成") - + # 更新兴趣计算器状态(回复成功,重置不回复计数) await self._update_interest_calculator_state(replied=True) @@ -465,7 +464,7 @@ class ChatterActionPlanner: async def _update_interest_calculator_state(self, replied: bool) -> None: """更新兴趣计算器状态(连续不回复计数和回复后降低机制) - + Args: replied: 是否回复了消息 """ @@ -504,36 +503,36 @@ class ChatterActionPlanner: async def _flush_cached_messages_to_unread(self, context: "StreamContext | None") -> list: """在planner开始时将缓存消息刷新到未读消息列表 - + 此方法在动作修改器执行后、生成初始计划前调用,确保计划阶段能看到所有积累的消息。 - + Args: context: 流上下文 - + Returns: list: 刷新的消息列表 """ if not context: return [] - + try: from src.chat.message_manager.message_manager import message_manager - + stream_id = context.stream_id - + if message_manager.is_running and message_manager.has_cached_messages(stream_id): # 获取缓存消息 cached_messages = message_manager.flush_cached_messages(stream_id) - + if cached_messages: # 直接添加到上下文的未读消息列表 for message in cached_messages: context.unread_messages.append(message) logger.info(f"Planner开始前刷新缓存消息到未读列表: stream={stream_id}, 数量={len(cached_messages)}") return cached_messages - + return [] - + except ImportError: logger.debug("MessageManager不可用,跳过缓存刷新") return [] diff --git a/src/plugins/built_in/affinity_flow_chatter/proactive/__init__.py b/src/plugins/built_in/affinity_flow_chatter/proactive/__init__.py index bfffdd2bf..81aac8744 100644 --- a/src/plugins/built_in/affinity_flow_chatter/proactive/__init__.py +++ b/src/plugins/built_in/affinity_flow_chatter/proactive/__init__.py @@ -9,9 +9,9 @@ from .proactive_thinking_executor import execute_proactive_thinking from .proactive_thinking_scheduler import ProactiveThinkingScheduler, proactive_thinking_scheduler __all__ = [ - "ProactiveThinkingReplyHandler", "ProactiveThinkingMessageHandler", - "execute_proactive_thinking", + "ProactiveThinkingReplyHandler", "ProactiveThinkingScheduler", + "execute_proactive_thinking", "proactive_thinking_scheduler", ] diff --git a/src/plugins/built_in/affinity_flow_chatter/proactive/proactive_thinking_executor.py b/src/plugins/built_in/affinity_flow_chatter/proactive/proactive_thinking_executor.py index 4ed5aa406..b62ee9dea 100644 --- a/src/plugins/built_in/affinity_flow_chatter/proactive/proactive_thinking_executor.py +++ b/src/plugins/built_in/affinity_flow_chatter/proactive/proactive_thinking_executor.py @@ -3,7 +3,6 @@ 当定时任务触发时,负责搜集信息、调用LLM决策、并根据决策生成回复 """ -import orjson from datetime import datetime from typing import Any, Literal diff --git a/src/plugins/built_in/maizone_refactored/services/content_service.py b/src/plugins/built_in/maizone_refactored/services/content_service.py index 0da66b09f..c302f15e9 100644 --- a/src/plugins/built_in/maizone_refactored/services/content_service.py +++ b/src/plugins/built_in/maizone_refactored/services/content_service.py @@ -14,7 +14,6 @@ from maim_message import UserInfo from src.chat.message_receive.chat_stream import get_chat_manager from src.common.logger import get_logger -from src.config.api_ada_configs import TaskConfig from src.llm_models.utils_model import LLMRequest from src.plugin_system.apis import config_api, generator_api, llm_api @@ -320,7 +319,7 @@ class ContentService: - 禁止在说说中直接、完整地提及当前的年月日,除非日期有特殊含义,但也尽量用节日名/节气名字代替。 2. **严禁重复**:下方会提供你最近发过的说说历史,你必须创作一条全新的、与历史记录内容和主题都不同的说说。 - + **其他的禁止的内容以及说明**: - 绝对禁止提及当下具体几点几分的时间戳。 - 绝对禁止攻击性内容和过度的负面情绪。 diff --git a/src/plugins/built_in/maizone_refactored/services/qzone_service.py b/src/plugins/built_in/maizone_refactored/services/qzone_service.py index 800bdfee0..13e022866 100644 --- a/src/plugins/built_in/maizone_refactored/services/qzone_service.py +++ b/src/plugins/built_in/maizone_refactored/services/qzone_service.py @@ -136,10 +136,10 @@ class QZoneService: logger.info(f"[DEBUG] 准备获取API客户端,qq_account={qq_account}") api_client = await self._get_api_client(qq_account, stream_id) if not api_client: - logger.error(f"[DEBUG] API客户端获取失败,返回错误") + logger.error("[DEBUG] API客户端获取失败,返回错误") return {"success": False, "message": "获取QZone API客户端失败"} - logger.info(f"[DEBUG] API客户端获取成功,准备读取说说") + logger.info("[DEBUG] API客户端获取成功,准备读取说说") num_to_read = self.get_config("read.read_number", 5) # 尝试执行,如果Cookie失效则自动重试一次 @@ -186,7 +186,7 @@ class QZoneService: # 检查是否是Cookie失效(-3000错误) if "错误码: -3000" in error_msg and retry_count == 0: - logger.warning(f"检测到Cookie失效(-3000错误),准备删除缓存并重试...") + logger.warning("检测到Cookie失效(-3000错误),准备删除缓存并重试...") # 删除Cookie缓存文件 cookie_file = self.cookie_service._get_cookie_file_path(qq_account) @@ -623,7 +623,7 @@ class QZoneService: logger.error(f"获取API客户端失败:Cookie中缺少关键的 'p_skey'。Cookie内容: {cookies}") return None - logger.info(f"[DEBUG] p_skey获取成功") + logger.info("[DEBUG] p_skey获取成功") gtk = self._generate_gtk(p_skey) uin = cookies.get("uin", "").lstrip("o") @@ -1230,7 +1230,7 @@ class QZoneService: logger.error(f"监控好友动态失败: {e}", exc_info=True) return [] - logger.info(f"[DEBUG] API客户端构造完成,返回包含6个方法的字典") + logger.info("[DEBUG] API客户端构造完成,返回包含6个方法的字典") return { "publish": _publish, "list_feeds": _list_feeds, diff --git a/src/plugins/built_in/maizone_refactored/services/reply_tracker_service.py b/src/plugins/built_in/maizone_refactored/services/reply_tracker_service.py index 3f70bd7fb..8fa0ce1e4 100644 --- a/src/plugins/built_in/maizone_refactored/services/reply_tracker_service.py +++ b/src/plugins/built_in/maizone_refactored/services/reply_tracker_service.py @@ -3,11 +3,12 @@ 负责记录和管理已回复过的评论ID,避免重复回复 """ -import orjson import time from pathlib import Path from typing import Any +import orjson + from src.common.logger import get_logger logger = get_logger("MaiZone.ReplyTrackerService") @@ -117,8 +118,8 @@ class ReplyTrackerService: temp_file = self.reply_record_file.with_suffix(".tmp") # 先写入临时文件 - with open(temp_file, "w", encoding="utf-8") as f: - orjson.dumps(self.replied_comments, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS).decode('utf-8') + with open(temp_file, "w", encoding="utf-8"): + orjson.dumps(self.replied_comments, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS).decode("utf-8") # 如果写入成功,重命名为正式文件 if temp_file.stat().st_size > 0: # 确保写入成功 diff --git a/src/plugins/built_in/napcat_adapter_plugin/src/send_handler.py b/src/plugins/built_in/napcat_adapter_plugin/src/send_handler.py index d24e9068a..9ec950bc8 100644 --- a/src/plugins/built_in/napcat_adapter_plugin/src/send_handler.py +++ b/src/plugins/built_in/napcat_adapter_plugin/src/send_handler.py @@ -1,7 +1,6 @@ import orjson import random import time -import random import websockets as Server import uuid from maim_message import ( @@ -205,7 +204,7 @@ class SendHandler: # 发送响应回MoFox-Bot logger.debug(f"[DEBUG handle_adapter_command] 即将调用send_adapter_command_response, request_id={request_id}") await self.send_adapter_command_response(raw_message_base, response, request_id) - logger.debug(f"[DEBUG handle_adapter_command] send_adapter_command_response调用完成") + logger.debug("[DEBUG handle_adapter_command] send_adapter_command_response调用完成") if response.get("status") == "ok": logger.info(f"适配器命令 {action} 执行成功") diff --git a/src/plugins/built_in/web_search_tool/engines/metaso_engine.py b/src/plugins/built_in/web_search_tool/engines/metaso_engine.py index 78e7e67cb..354182577 100644 --- a/src/plugins/built_in/web_search_tool/engines/metaso_engine.py +++ b/src/plugins/built_in/web_search_tool/engines/metaso_engine.py @@ -1,10 +1,10 @@ """ Metaso Search Engine (Chat Completions Mode) """ -import orjson from typing import Any import httpx +import orjson from src.common.logger import get_logger from src.plugin_system.apis import config_api diff --git a/src/plugins/built_in/web_search_tool/engines/serper_engine.py b/src/plugins/built_in/web_search_tool/engines/serper_engine.py index 2e1a8fc0f..08264f078 100644 --- a/src/plugins/built_in/web_search_tool/engines/serper_engine.py +++ b/src/plugins/built_in/web_search_tool/engines/serper_engine.py @@ -3,9 +3,10 @@ Serper search engine implementation Google Search via Serper.dev API """ -import aiohttp from typing import Any +import aiohttp + from src.common.logger import get_logger from src.plugin_system.apis import config_api diff --git a/src/plugins/built_in/web_search_tool/plugin.py b/src/plugins/built_in/web_search_tool/plugin.py index 7f892e493..cc050b91b 100644 --- a/src/plugins/built_in/web_search_tool/plugin.py +++ b/src/plugins/built_in/web_search_tool/plugin.py @@ -5,7 +5,7 @@ Web Search Tool Plugin """ from src.common.logger import get_logger -from src.plugin_system import BasePlugin, ComponentInfo, ConfigField, PythonDependency, register_plugin +from src.plugin_system import BasePlugin, ComponentInfo, ConfigField, register_plugin from src.plugin_system.apis import config_api from .tools.url_parser import URLParserTool diff --git a/src/plugins/built_in/web_search_tool/tools/web_search.py b/src/plugins/built_in/web_search_tool/tools/web_search.py index eaac1d7e1..a0b174167 100644 --- a/src/plugins/built_in/web_search_tool/tools/web_search.py +++ b/src/plugins/built_in/web_search_tool/tools/web_search.py @@ -113,7 +113,7 @@ class WebSurfingTool(BaseTool): custom_args["num_results"] = custom_args.get("num_results", 5) # 如果启用了answer模式且是Exa引擎,使用answer_search方法 - if answer_mode and engine_name == "exa" and hasattr(engine, 'answer_search'): + if answer_mode and engine_name == "exa" and hasattr(engine, "answer_search"): search_tasks.append(engine.answer_search(custom_args)) else: search_tasks.append(engine.search(custom_args)) @@ -162,7 +162,7 @@ class WebSurfingTool(BaseTool): custom_args["num_results"] = custom_args.get("num_results", 5) # 如果启用了answer模式且是Exa引擎,使用answer_search方法 - if answer_mode and engine_name == "exa" and hasattr(engine, 'answer_search'): + if answer_mode and engine_name == "exa" and hasattr(engine, "answer_search"): logger.info("使用Exa答案模式进行搜索(fallback策略)") results = await engine.answer_search(custom_args) else: @@ -195,7 +195,7 @@ class WebSurfingTool(BaseTool): custom_args["num_results"] = custom_args.get("num_results", 5) # 如果启用了answer模式且是Exa引擎,使用answer_search方法 - if answer_mode and engine_name == "exa" and hasattr(engine, 'answer_search'): + if answer_mode and engine_name == "exa" and hasattr(engine, "answer_search"): logger.info("使用Exa答案模式进行搜索") results = await engine.answer_search(custom_args) else: diff --git a/src/schedule/unified_scheduler.py b/src/schedule/unified_scheduler.py index 5b758c181..195518c96 100644 --- a/src/schedule/unified_scheduler.py +++ b/src/schedule/unified_scheduler.py @@ -266,13 +266,13 @@ class UnifiedScheduler: name=f"execute_{task.task_name}" ) execution_tasks.append(execution_task) - + # 追踪正在执行的任务,以便在 remove_schedule 时可以取消 self._executing_tasks[task.schedule_id] = execution_task # 等待所有任务完成(使用 return_exceptions=True 避免单个任务失败影响其他任务) results = await asyncio.gather(*execution_tasks, return_exceptions=True) - + # 清理执行追踪 for task in tasks_to_trigger: self._executing_tasks.pop(task.schedule_id, None) @@ -515,7 +515,7 @@ class UnifiedScheduler: async def remove_schedule(self, schedule_id: str) -> bool: """移除调度任务 - + 如果任务正在执行,会取消执行中的任务 """ async with self._lock: @@ -524,7 +524,7 @@ class UnifiedScheduler: return False task = self._tasks[schedule_id] - + # 检查是否有正在执行的任务 executing_task = self._executing_tasks.get(schedule_id) if executing_task and not executing_task.done(): diff --git a/src/utils/json_parser.py b/src/utils/json_parser.py index b964647da..33a971cfa 100644 --- a/src/utils/json_parser.py +++ b/src/utils/json_parser.py @@ -19,42 +19,42 @@ logger = get_logger(__name__) def extract_and_parse_json(response: str, *, strict: bool = False) -> dict[str, Any] | list | None: """ 从 LLM 响应中提取并解析 JSON - + 处理策略: 1. 清理 Markdown 代码块标记(```json 和 ```) 2. 提取 JSON 对象或数组 3. 使用 json_repair 修复格式问题 4. 解析为 Python 对象 - + Args: response: LLM 响应字符串 strict: 严格模式,如果为 True 则解析失败时返回 None,否则尝试容错处理 - + Returns: 解析后的 dict 或 list,失败时返回 None - + Examples: >>> extract_and_parse_json('```json\\n{"key": "value"}\\n```') {'key': 'value'} - + >>> extract_and_parse_json('Some text {"key": "value"} more text') {'key': 'value'} - + >>> extract_and_parse_json('[{"a": 1}, {"b": 2}]') [{'a': 1}, {'b': 2}] """ if not response: logger.debug("空响应,无法解析 JSON") return None - + try: # 步骤 1: 清理响应 cleaned = _clean_llm_response(response) - + if not cleaned: logger.warning("清理后的响应为空") return None - + # 步骤 2: 尝试直接解析 try: result = orjson.loads(cleaned) @@ -62,11 +62,11 @@ def extract_and_parse_json(response: str, *, strict: bool = False) -> dict[str, return result except Exception as direct_error: logger.debug(f"直接解析失败: {type(direct_error).__name__}: {direct_error}") - + # 步骤 3: 使用 json_repair 修复并解析 try: repaired = repair_json(cleaned) - + # repair_json 可能返回字符串或已解析的对象 if isinstance(repaired, str): result = orjson.loads(repaired) @@ -74,16 +74,16 @@ def extract_and_parse_json(response: str, *, strict: bool = False) -> dict[str, else: result = repaired logger.debug(f"✅ JSON 修复后解析成功(对象模式),类型: {type(result).__name__}") - + return result - + except Exception as repair_error: logger.warning(f"JSON 修复失败: {type(repair_error).__name__}: {repair_error}") - + if strict: logger.error(f"严格模式下解析失败,响应片段: {cleaned[:200]}") return None - + # 最后的容错尝试:返回空字典或空列表 if cleaned.strip().startswith("["): logger.warning("返回空列表作为容错") @@ -91,7 +91,7 @@ def extract_and_parse_json(response: str, *, strict: bool = False) -> dict[str, else: logger.warning("返回空字典作为容错") return {} - + except Exception as e: logger.error(f"❌ JSON 解析过程出现异常: {type(e).__name__}: {e}") if strict: @@ -102,37 +102,37 @@ def extract_and_parse_json(response: str, *, strict: bool = False) -> dict[str, def _clean_llm_response(response: str) -> str: """ 清理 LLM 响应,提取 JSON 部分 - + 处理步骤: 1. 移除 Markdown 代码块标记(```json 和 ```) 2. 提取第一个完整的 JSON 对象 {...} 或数组 [...] 3. 清理多余的空格和换行 - + Args: response: 原始 LLM 响应 - + Returns: 清理后的 JSON 字符串 """ if not response: return "" - + cleaned = response.strip() - + # 移除 Markdown 代码块标记 # 匹配 ```json ... ``` 或 ``` ... ``` code_block_patterns = [ r"```json\s*(.*?)```", # ```json ... ``` r"```\s*(.*?)```", # ``` ... ``` ] - + for pattern in code_block_patterns: match = re.search(pattern, cleaned, re.IGNORECASE | re.DOTALL) if match: cleaned = match.group(1).strip() logger.debug(f"从 Markdown 代码块中提取内容,长度: {len(cleaned)}") break - + # 提取 JSON 对象或数组 # 优先查找对象 {...},其次查找数组 [...] for start_char, end_char in [("{", "}"), ("[", "]")]: @@ -143,7 +143,7 @@ def _clean_llm_response(response: str) -> str: if extracted: logger.debug(f"提取到 {start_char}...{end_char} 结构,长度: {len(extracted)}") return extracted - + # 如果没有找到明确的 JSON 结构,返回清理后的原始内容 logger.debug("未找到明确的 JSON 结构,返回清理后的原始内容") return cleaned @@ -152,39 +152,39 @@ def _clean_llm_response(response: str) -> str: def _extract_balanced_json(text: str, start_idx: int, start_char: str, end_char: str) -> str | None: """ 从指定位置提取平衡的 JSON 结构 - + 使用栈匹配算法找到对应的结束符,处理嵌套和字符串中的特殊字符 - + Args: text: 源文本 start_idx: 起始字符的索引 start_char: 起始字符({ 或 [) end_char: 结束字符(} 或 ]) - + Returns: 提取的 JSON 字符串,失败时返回 None """ depth = 0 in_string = False escape_next = False - + for i in range(start_idx, len(text)): char = text[i] - + # 处理转义字符 if escape_next: escape_next = False continue - + if char == "\\": escape_next = True continue - + # 处理字符串 if char == '"': in_string = not in_string continue - + # 只在非字符串内处理括号 if not in_string: if char == start_char: @@ -194,7 +194,7 @@ def _extract_balanced_json(text: str, start_idx: int, start_char: str, end_char: if depth == 0: # 找到匹配的结束符 return text[start_idx : i + 1].strip() - + # 没有找到匹配的结束符 logger.debug(f"未找到匹配的 {end_char},深度: {depth}") return None @@ -203,11 +203,11 @@ def _extract_balanced_json(text: str, start_idx: int, start_char: str, end_char: def safe_parse_json(json_str: str, default: Any = None) -> Any: """ 安全解析 JSON,失败时返回默认值 - + Args: json_str: JSON 字符串 default: 解析失败时返回的默认值 - + Returns: 解析结果或默认值 """ @@ -222,19 +222,19 @@ def safe_parse_json(json_str: str, default: Any = None) -> Any: def extract_json_field(response: str, field_name: str, default: Any = None) -> Any: """ 从 LLM 响应中提取特定字段的值 - + Args: response: LLM 响应 field_name: 字段名 default: 字段不存在时的默认值 - + Returns: 字段值或默认值 """ parsed = extract_and_parse_json(response, strict=False) - + if isinstance(parsed, dict): return parsed.get(field_name, default) - + logger.warning(f"解析结果不是字典,无法提取字段 '{field_name}'") return default diff --git a/tools/memory_visualizer/run_visualizer.py b/tools/memory_visualizer/run_visualizer.py index bc3b027a0..a8af8e33a 100644 --- a/tools/memory_visualizer/run_visualizer.py +++ b/tools/memory_visualizer/run_visualizer.py @@ -14,7 +14,7 @@ sys.path.insert(0, str(project_root)) from tools.memory_visualizer.visualizer_server import run_server -if __name__ == '__main__': +if __name__ == "__main__": print("=" * 60) print("🦊 MoFox Bot - 记忆图可视化工具") print("=" * 60) @@ -24,10 +24,10 @@ if __name__ == '__main__': print("⏹️ 按 Ctrl+C 停止服务器") print() print("=" * 60) - + try: run_server( - host='127.0.0.1', + host="127.0.0.1", port=5000, debug=True ) diff --git a/tools/memory_visualizer/run_visualizer_simple.py b/tools/memory_visualizer/run_visualizer_simple.py index 15aaad493..7c816754a 100644 --- a/tools/memory_visualizer/run_visualizer_simple.py +++ b/tools/memory_visualizer/run_visualizer_simple.py @@ -15,7 +15,7 @@ from pathlib import Path project_root = Path(__file__).parent sys.path.insert(0, str(project_root)) -if __name__ == '__main__': +if __name__ == "__main__": print("=" * 70) print("🦊 MoFox Bot - 记忆图可视化工具 (独立版)") print("=" * 70) @@ -26,10 +26,10 @@ if __name__ == '__main__': print(" • 快速启动,无需完整初始化") print() print("=" * 70) - + try: from tools.memory_visualizer.visualizer_simple import run_server - run_server(host='127.0.0.1', port=5001, debug=True) + run_server(host="127.0.0.1", port=5001, debug=True) except KeyboardInterrupt: print("\n\n👋 服务器已停止") except Exception as e: diff --git a/tools/memory_visualizer/visualizer_server.py b/tools/memory_visualizer/visualizer_server.py index 3c8c2d2c5..ba561a534 100644 --- a/tools/memory_visualizer/visualizer_server.py +++ b/tools/memory_visualizer/visualizer_server.py @@ -11,7 +11,6 @@ import logging import sys from datetime import datetime from pathlib import Path -from typing import Optional from flask import Flask, jsonify, render_template, request from flask_cors import CORS @@ -28,7 +27,7 @@ app = Flask(__name__) CORS(app) # 允许跨域请求 # 全局记忆管理器 -memory_manager: Optional[MemoryManager] = None +memory_manager: MemoryManager | None = None def init_memory_manager(): @@ -189,7 +188,7 @@ def search_memories(): init_memory_manager() query = request.args.get("q", "") - memory_type = request.args.get("type", None) + request.args.get("type", None) limit = int(request.args.get("limit", 50)) loop = asyncio.new_event_loop() diff --git a/tools/memory_visualizer/visualizer_simple.py b/tools/memory_visualizer/visualizer_simple.py index 3a1d4047f..62fb17205 100644 --- a/tools/memory_visualizer/visualizer_simple.py +++ b/tools/memory_visualizer/visualizer_simple.py @@ -4,20 +4,18 @@ 直接从存储的数据文件生成可视化,无需启动完整的记忆管理器 """ -import orjson import sys -from pathlib import Path from datetime import datetime -from typing import Any, Dict, List, Set - from pathlib import Path -from typing import Any, Dict, List, Optional, Set +from typing import Any + +import orjson # 添加项目根目录 project_root = Path(__file__).parent.parent.parent sys.path.insert(0, str(project_root)) -from flask import Flask, jsonify, render_template_string, request, send_from_directory +from flask import Flask, jsonify, render_template_string, request from flask_cors import CORS app = Flask(__name__) @@ -29,38 +27,38 @@ data_dir = project_root / "data" / "memory_graph" current_data_file = None # 当前选择的数据文件 -def find_available_data_files() -> List[Path]: +def find_available_data_files() -> list[Path]: """查找所有可用的记忆图数据文件""" files = [] - + if not data_dir.exists(): return files - + # 查找多种可能的文件名 possible_files = [ "graph_store.json", "memory_graph.json", "graph_data.json", ] - + for filename in possible_files: file_path = data_dir / filename if file_path.exists(): files.append(file_path) - + # 查找所有备份文件 for pattern in ["graph_store_*.json", "memory_graph_*.json", "graph_data_*.json"]: for backup_file in data_dir.glob(pattern): if backup_file not in files: files.append(backup_file) - + # 查找backups子目录 backups_dir = data_dir / "backups" if backups_dir.exists(): for backup_file in backups_dir.glob("**/*.json"): if backup_file not in files: files.append(backup_file) - + # 查找data/backup目录 backup_dir = data_dir.parent / "backup" if backup_dir.exists(): @@ -70,22 +68,22 @@ def find_available_data_files() -> List[Path]: for backup_file in backup_dir.glob("**/memory_*.json"): if backup_file not in files: files.append(backup_file) - + return sorted(files, key=lambda f: f.stat().st_mtime, reverse=True) -def load_graph_data(file_path: Optional[Path] = None) -> Dict[str, Any]: +def load_graph_data(file_path: Path | None = None) -> dict[str, Any]: """从磁盘加载图数据""" global graph_data_cache, current_data_file - + # 如果指定了新文件,清除缓存 if file_path is not None and file_path != current_data_file: graph_data_cache = None current_data_file = file_path - + if graph_data_cache is not None: return graph_data_cache - + try: # 确定要加载的文件 if current_data_file is not None: @@ -94,115 +92,115 @@ def load_graph_data(file_path: Optional[Path] = None) -> Dict[str, Any]: # 尝试查找可用的数据文件 available_files = find_available_data_files() if not available_files: - print(f"⚠️ 未找到任何图数据文件") + print("⚠️ 未找到任何图数据文件") print(f"📂 搜索目录: {data_dir}") return { - "nodes": [], - "edges": [], + "nodes": [], + "edges": [], "memories": [], "stats": {"total_nodes": 0, "total_edges": 0, "total_memories": 0}, "error": "未找到数据文件", "available_files": [] } - + # 使用最新的文件 graph_file = available_files[0] current_data_file = graph_file print(f"📂 自动选择最新文件: {graph_file}") - + if not graph_file.exists(): print(f"⚠️ 图数据文件不存在: {graph_file}") return { - "nodes": [], - "edges": [], + "nodes": [], + "edges": [], "memories": [], "stats": {"total_nodes": 0, "total_edges": 0, "total_memories": 0}, "error": f"文件不存在: {graph_file}" } - + print(f"📂 加载图数据: {graph_file}") - with open(graph_file, 'r', encoding='utf-8') as f: + with open(graph_file, encoding="utf-8") as f: data = orjson.loads(f.read()) - + # 解析数据 nodes_dict = {} edges_list = [] memory_info = [] - + # 实际文件格式是 {nodes: [], edges: [], metadata: {}} # 不是 {memories: [{nodes: [], edges: []}]} nodes = data.get("nodes", []) edges = data.get("edges", []) metadata = data.get("metadata", {}) - + print(f"✅ 找到 {len(nodes)} 个节点, {len(edges)} 条边") - + # 处理节点 for node in nodes: - node_id = node.get('id', '') + node_id = node.get("id", "") if node_id and node_id not in nodes_dict: - memory_ids = node.get('metadata', {}).get('memory_ids', []) + memory_ids = node.get("metadata", {}).get("memory_ids", []) nodes_dict[node_id] = { - 'id': node_id, - 'label': node.get('content', ''), - 'type': node.get('node_type', ''), - 'group': extract_group_from_type(node.get('node_type', '')), - 'title': f"{node.get('node_type', '')}: {node.get('content', '')}", - 'metadata': node.get('metadata', {}), - 'created_at': node.get('created_at', ''), - 'memory_ids': memory_ids, + "id": node_id, + "label": node.get("content", ""), + "type": node.get("node_type", ""), + "group": extract_group_from_type(node.get("node_type", "")), + "title": f"{node.get('node_type', '')}: {node.get('content', '')}", + "metadata": node.get("metadata", {}), + "created_at": node.get("created_at", ""), + "memory_ids": memory_ids, } - + # 处理边 - 使用集合去重,避免重复的边ID existing_edge_ids = set() for edge in edges: # 边的ID字段可能是 'id' 或 'edge_id' - edge_id = edge.get('edge_id') or edge.get('id', '') + edge_id = edge.get("edge_id") or edge.get("id", "") # 如果ID为空或已存在,跳过这条边 if not edge_id or edge_id in existing_edge_ids: continue - + existing_edge_ids.add(edge_id) - memory_id = edge.get('metadata', {}).get('memory_id', '') - + memory_id = edge.get("metadata", {}).get("memory_id", "") + # 注意: GraphStore 保存的格式使用 'source'/'target', 不是 'source_id'/'target_id' edges_list.append({ - 'id': edge_id, - 'from': edge.get('source', edge.get('source_id', '')), - 'to': edge.get('target', edge.get('target_id', '')), - 'label': edge.get('relation', ''), - 'type': edge.get('edge_type', ''), - 'importance': edge.get('importance', 0.5), - 'title': f"{edge.get('edge_type', '')}: {edge.get('relation', '')}", - 'arrows': 'to', - 'memory_id': memory_id, + "id": edge_id, + "from": edge.get("source", edge.get("source_id", "")), + "to": edge.get("target", edge.get("target_id", "")), + "label": edge.get("relation", ""), + "type": edge.get("edge_type", ""), + "importance": edge.get("importance", 0.5), + "title": f"{edge.get('edge_type', '')}: {edge.get('relation', '')}", + "arrows": "to", + "memory_id": memory_id, }) - + # 从元数据中获取统计信息 - stats = metadata.get('statistics', {}) - total_memories = stats.get('total_memories', 0) - + stats = metadata.get("statistics", {}) + total_memories = stats.get("total_memories", 0) + # TODO: 如果需要记忆详细信息,需要从其他地方加载 # 目前只有节点和边的数据 - + graph_data_cache = { - 'nodes': list(nodes_dict.values()), - 'edges': edges_list, - 'memories': memory_info, # 空列表,因为文件中没有记忆详情 - 'stats': { - 'total_nodes': len(nodes_dict), - 'total_edges': len(edges_list), - 'total_memories': total_memories, + "nodes": list(nodes_dict.values()), + "edges": edges_list, + "memories": memory_info, # 空列表,因为文件中没有记忆详情 + "stats": { + "total_nodes": len(nodes_dict), + "total_edges": len(edges_list), + "total_memories": total_memories, }, - 'current_file': str(graph_file), - 'file_size': graph_file.stat().st_size, - 'file_modified': datetime.fromtimestamp(graph_file.stat().st_mtime).isoformat(), + "current_file": str(graph_file), + "file_size": graph_file.stat().st_size, + "file_modified": datetime.fromtimestamp(graph_file.stat().st_mtime).isoformat(), } - + print(f"📊 统计: {len(nodes_dict)} 个节点, {len(edges_list)} 条边, {total_memories} 条记忆") print(f"📄 数据文件: {graph_file} ({graph_file.stat().st_size / 1024:.2f} KB)") return graph_data_cache - + except Exception as e: print(f"❌ 加载失败: {e}") import traceback @@ -214,246 +212,246 @@ def extract_group_from_type(node_type: str) -> str: """从节点类型提取分组名""" # 假设类型格式为 "主体" 或 "SUBJECT" type_mapping = { - '主体': 'SUBJECT', - '主题': 'TOPIC', - '客体': 'OBJECT', - '属性': 'ATTRIBUTE', - '值': 'VALUE', + "主体": "SUBJECT", + "主题": "TOPIC", + "客体": "OBJECT", + "属性": "ATTRIBUTE", + "值": "VALUE", } return type_mapping.get(node_type, node_type) -def generate_memory_text(memory: Dict[str, Any]) -> str: +def generate_memory_text(memory: dict[str, Any]) -> str: """生成记忆的文本描述""" try: - nodes = {n['id']: n for n in memory.get('nodes', [])} - edges = memory.get('edges', []) - - subject_id = memory.get('subject_id', '') + nodes = {n["id"]: n for n in memory.get("nodes", [])} + edges = memory.get("edges", []) + + subject_id = memory.get("subject_id", "") if not subject_id or subject_id not in nodes: return f"[记忆 {memory.get('id', '')[:8]}]" - - parts = [nodes[subject_id]['content']] - + + parts = [nodes[subject_id]["content"]] + # 找主题节点 for edge in edges: - if edge.get('edge_type') == '记忆类型' and edge.get('source_id') == subject_id: - topic_id = edge.get('target_id', '') + if edge.get("edge_type") == "记忆类型" and edge.get("source_id") == subject_id: + topic_id = edge.get("target_id", "") if topic_id in nodes: - parts.append(nodes[topic_id]['content']) - + parts.append(nodes[topic_id]["content"]) + # 找客体 for e2 in edges: - if e2.get('edge_type') == '核心关系' and e2.get('source_id') == topic_id: - obj_id = e2.get('target_id', '') + if e2.get("edge_type") == "核心关系" and e2.get("source_id") == topic_id: + obj_id = e2.get("target_id", "") if obj_id in nodes: parts.append(f"{e2.get('relation', '')} {nodes[obj_id]['content']}") break break - + return " ".join(parts) except Exception: return f"[记忆 {memory.get('id', '')[:8]}]" # 使用内嵌的HTML模板(与之前相同) -HTML_TEMPLATE = open(project_root / "tools" / "memory_visualizer" / "templates" / "visualizer.html", 'r', encoding='utf-8').read() +HTML_TEMPLATE = open(project_root / "tools" / "memory_visualizer" / "templates" / "visualizer.html", encoding="utf-8").read() -@app.route('/') +@app.route("/") def index(): """主页面""" return render_template_string(HTML_TEMPLATE) -@app.route('/api/graph/full') +@app.route("/api/graph/full") def get_full_graph(): """获取完整记忆图数据""" try: data = load_graph_data() return jsonify({ - 'success': True, - 'data': data + "success": True, + "data": data }) except Exception as e: return jsonify({ - 'success': False, - 'error': str(e) + "success": False, + "error": str(e) }), 500 -@app.route('/api/memory/') +@app.route("/api/memory/") def get_memory_detail(memory_id: str): """获取记忆详情""" try: data = load_graph_data() - memory = next((m for m in data['memories'] if m['id'] == memory_id), None) - + memory = next((m for m in data["memories"] if m["id"] == memory_id), None) + if memory is None: return jsonify({ - 'success': False, - 'error': '记忆不存在' + "success": False, + "error": "记忆不存在" }), 404 - + return jsonify({ - 'success': True, - 'data': memory + "success": True, + "data": memory }) except Exception as e: return jsonify({ - 'success': False, - 'error': str(e) + "success": False, + "error": str(e) }), 500 -@app.route('/api/search') +@app.route("/api/search") def search_memories(): """搜索记忆""" try: - query = request.args.get('q', '').lower() - limit = int(request.args.get('limit', 50)) - + query = request.args.get("q", "").lower() + limit = int(request.args.get("limit", 50)) + data = load_graph_data() - + # 简单的文本匹配搜索 results = [] - for memory in data['memories']: - text = memory.get('text', '').lower() + for memory in data["memories"]: + text = memory.get("text", "").lower() if query in text: results.append(memory) - + return jsonify({ - 'success': True, - 'data': { - 'results': results[:limit], - 'count': len(results), + "success": True, + "data": { + "results": results[:limit], + "count": len(results), } }) except Exception as e: return jsonify({ - 'success': False, - 'error': str(e) + "success": False, + "error": str(e) }), 500 -@app.route('/api/stats') +@app.route("/api/stats") def get_statistics(): """获取统计信息""" try: data = load_graph_data() - + # 扩展统计信息 node_types = {} memory_types = {} - - for node in data['nodes']: - node_type = node.get('type', 'Unknown') + + for node in data["nodes"]: + node_type = node.get("type", "Unknown") node_types[node_type] = node_types.get(node_type, 0) + 1 - - for memory in data['memories']: - mem_type = memory.get('type', 'Unknown') + + for memory in data["memories"]: + mem_type = memory.get("type", "Unknown") memory_types[mem_type] = memory_types.get(mem_type, 0) + 1 - - stats = data.get('stats', {}) - stats['node_types'] = node_types - stats['memory_types'] = memory_types - + + stats = data.get("stats", {}) + stats["node_types"] = node_types + stats["memory_types"] = memory_types + return jsonify({ - 'success': True, - 'data': stats + "success": True, + "data": stats }) except Exception as e: return jsonify({ - 'success': False, - 'error': str(e) + "success": False, + "error": str(e) }), 500 -@app.route('/api/reload') +@app.route("/api/reload") def reload_data(): """重新加载数据""" global graph_data_cache graph_data_cache = None data = load_graph_data() return jsonify({ - 'success': True, - 'message': '数据已重新加载', - 'stats': data.get('stats', {}) + "success": True, + "message": "数据已重新加载", + "stats": data.get("stats", {}) }) -@app.route('/api/files') +@app.route("/api/files") def list_files(): """列出所有可用的数据文件""" try: files = find_available_data_files() file_list = [] - + for f in files: stat = f.stat() file_list.append({ - 'path': str(f), - 'name': f.name, - 'size': stat.st_size, - 'size_kb': round(stat.st_size / 1024, 2), - 'modified': datetime.fromtimestamp(stat.st_mtime).isoformat(), - 'modified_readable': datetime.fromtimestamp(stat.st_mtime).strftime('%Y-%m-%d %H:%M:%S'), - 'is_current': str(f) == str(current_data_file) if current_data_file else False + "path": str(f), + "name": f.name, + "size": stat.st_size, + "size_kb": round(stat.st_size / 1024, 2), + "modified": datetime.fromtimestamp(stat.st_mtime).isoformat(), + "modified_readable": datetime.fromtimestamp(stat.st_mtime).strftime("%Y-%m-%d %H:%M:%S"), + "is_current": str(f) == str(current_data_file) if current_data_file else False }) - + return jsonify({ - 'success': True, - 'files': file_list, - 'count': len(file_list), - 'current_file': str(current_data_file) if current_data_file else None + "success": True, + "files": file_list, + "count": len(file_list), + "current_file": str(current_data_file) if current_data_file else None }) except Exception as e: return jsonify({ - 'success': False, - 'error': str(e) + "success": False, + "error": str(e) }), 500 -@app.route('/api/select_file', methods=['POST']) +@app.route("/api/select_file", methods=["POST"]) def select_file(): """选择要加载的数据文件""" global graph_data_cache, current_data_file - + try: data = request.get_json() - file_path = data.get('file_path') - + file_path = data.get("file_path") + if not file_path: return jsonify({ - 'success': False, - 'error': '未提供文件路径' + "success": False, + "error": "未提供文件路径" }), 400 - + file_path = Path(file_path) if not file_path.exists(): return jsonify({ - 'success': False, - 'error': f'文件不存在: {file_path}' + "success": False, + "error": f"文件不存在: {file_path}" }), 404 - + # 清除缓存并加载新文件 graph_data_cache = None current_data_file = file_path graph_data = load_graph_data(file_path) - + return jsonify({ - 'success': True, - 'message': f'已切换到文件: {file_path.name}', - 'stats': graph_data.get('stats', {}) + "success": True, + "message": f"已切换到文件: {file_path.name}", + "stats": graph_data.get("stats", {}) }) except Exception as e: return jsonify({ - 'success': False, - 'error': str(e) + "success": False, + "error": str(e) }), 500 -def run_server(host: str = '127.0.0.1', port: int = 5001, debug: bool = False): +def run_server(host: str = "127.0.0.1", port: int = 5001, debug: bool = False): """启动服务器""" print("=" * 60) print("🦊 MoFox Bot - 记忆图可视化工具 (独立版)") @@ -463,14 +461,14 @@ def run_server(host: str = '127.0.0.1', port: int = 5001, debug: bool = False): print("⏹️ 按 Ctrl+C 停止服务器") print("=" * 60) print() - + # 预加载数据 load_graph_data() - + app.run(host=host, port=port, debug=debug) -if __name__ == '__main__': +if __name__ == "__main__": try: run_server(debug=True) except KeyboardInterrupt: