Merge pull request #356 from SaigyoujiYusora/debug-fix-log
fix: 优化发送错误时图片大喷射
This commit is contained in:
@@ -185,9 +185,9 @@ class LLM_request:
|
||||
elif response.status in policy["abort_codes"]:
|
||||
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
|
||||
if response.status == 403:
|
||||
#只针对硅基流动的V3和R1进行降级处理
|
||||
if self.model_name.startswith(
|
||||
"Pro/deepseek-ai") and self.base_url == "https://api.siliconflow.cn/v1/":
|
||||
# 只针对硅基流动的V3和R1进行降级处理
|
||||
if self.model_name.startswith(
|
||||
"Pro/deepseek-ai") and self.base_url == "https://api.siliconflow.cn/v1/":
|
||||
old_model_name = self.model_name
|
||||
self.model_name = self.model_name[4:] # 移除"Pro/"前缀
|
||||
logger.warning(f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}")
|
||||
@@ -228,7 +228,7 @@ class LLM_request:
|
||||
try:
|
||||
chunk = json.loads(data_str)
|
||||
if flag_delta_content_finished:
|
||||
usage = chunk.get("usage", None) # 获取tokn用量
|
||||
usage = chunk.get("usage", None) # 获取tokn用量
|
||||
else:
|
||||
delta = chunk["choices"][0]["delta"]
|
||||
delta_content = delta.get("content")
|
||||
@@ -236,14 +236,14 @@ class LLM_request:
|
||||
delta_content = ""
|
||||
accumulated_content += delta_content
|
||||
# 检测流式输出文本是否结束
|
||||
finish_reason = chunk["choices"][0].get("finish_reason")
|
||||
finish_reason = chunk["choices"][0].get("finish_reason")
|
||||
if finish_reason == "stop":
|
||||
usage = chunk.get("usage", None)
|
||||
if usage:
|
||||
break
|
||||
# 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk
|
||||
flag_delta_content_finished = True
|
||||
|
||||
|
||||
except Exception:
|
||||
logger.exception("解析流式输出错误")
|
||||
content = accumulated_content
|
||||
@@ -254,7 +254,8 @@ class LLM_request:
|
||||
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
||||
# 构造一个伪result以便调用自定义响应处理器或默认处理器
|
||||
result = {
|
||||
"choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}], "usage": usage}
|
||||
"choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}],
|
||||
"usage": usage}
|
||||
return response_handler(result) if response_handler else self._default_response_handler(
|
||||
result, user_id, request_type, endpoint)
|
||||
else:
|
||||
@@ -270,6 +271,9 @@ class LLM_request:
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.critical(f"请求失败: {str(e)}")
|
||||
if image_base64:
|
||||
payload["messages"][0]["content"][1]["image_url"][
|
||||
"url"] = f"data:image/{image_format.lower()};base64,{image_base64[:10]}...{image_base64[-10:]}"
|
||||
logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}")
|
||||
raise RuntimeError(f"API请求失败: {str(e)}")
|
||||
|
||||
@@ -307,7 +311,8 @@ class LLM_request:
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{"type": "image_url", "image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"}}
|
||||
{"type": "image_url",
|
||||
"image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"}}
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -452,6 +457,7 @@ class LLM_request:
|
||||
)
|
||||
return embedding
|
||||
|
||||
|
||||
def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 1024 * 1024) -> str:
|
||||
"""压缩base64格式的图片到指定大小
|
||||
Args:
|
||||
@@ -463,36 +469,36 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
|
||||
try:
|
||||
# 将base64转换为字节数据
|
||||
image_data = base64.b64decode(base64_data)
|
||||
|
||||
|
||||
# 如果已经小于目标大小,直接返回原图
|
||||
if len(image_data) <= 2*1024*1024:
|
||||
if len(image_data) <= 2 * 1024 * 1024:
|
||||
return base64_data
|
||||
|
||||
|
||||
# 将字节数据转换为图片对象
|
||||
img = Image.open(io.BytesIO(image_data))
|
||||
|
||||
|
||||
# 获取原始尺寸
|
||||
original_width, original_height = img.size
|
||||
|
||||
|
||||
# 计算缩放比例
|
||||
scale = min(1.0, (target_size / len(image_data)) ** 0.5)
|
||||
|
||||
|
||||
# 计算新的尺寸
|
||||
new_width = int(original_width * scale)
|
||||
new_height = int(original_height * scale)
|
||||
|
||||
|
||||
# 创建内存缓冲区
|
||||
output_buffer = io.BytesIO()
|
||||
|
||||
|
||||
# 如果是GIF,处理所有帧
|
||||
if getattr(img, "is_animated", False):
|
||||
frames = []
|
||||
for frame_idx in range(img.n_frames):
|
||||
img.seek(frame_idx)
|
||||
new_frame = img.copy()
|
||||
new_frame = new_frame.resize((new_width//2, new_height//2), Image.Resampling.LANCZOS) # 动图折上折
|
||||
new_frame = new_frame.resize((new_width // 2, new_height // 2), Image.Resampling.LANCZOS) # 动图折上折
|
||||
frames.append(new_frame)
|
||||
|
||||
|
||||
# 保存到缓冲区
|
||||
frames[0].save(
|
||||
output_buffer,
|
||||
@@ -506,23 +512,22 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
|
||||
else:
|
||||
# 处理静态图片
|
||||
resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
||||
|
||||
|
||||
# 保存到缓冲区,保持原始格式
|
||||
if img.format == 'PNG' and img.mode in ('RGBA', 'LA'):
|
||||
resized_img.save(output_buffer, format='PNG', optimize=True)
|
||||
else:
|
||||
resized_img.save(output_buffer, format='JPEG', quality=95, optimize=True)
|
||||
|
||||
|
||||
# 获取压缩后的数据并转换为base64
|
||||
compressed_data = output_buffer.getvalue()
|
||||
logger.success(f"压缩图片: {original_width}x{original_height} -> {new_width}x{new_height}")
|
||||
logger.info(f"压缩前大小: {len(image_data)/1024:.1f}KB, 压缩后大小: {len(compressed_data)/1024:.1f}KB")
|
||||
|
||||
logger.info(f"压缩前大小: {len(image_data) / 1024:.1f}KB, 压缩后大小: {len(compressed_data) / 1024:.1f}KB")
|
||||
|
||||
return base64.b64encode(compressed_data).decode('utf-8')
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"压缩图片失败: {str(e)}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
return base64_data
|
||||
|
||||
return base64_data
|
||||
|
||||
Reference in New Issue
Block a user