Merge pull request #376 from SengokuCola/refactor

Refactor
This commit is contained in:
SengokuCola
2025-03-14 15:06:30 +08:00
committed by GitHub
15 changed files with 655 additions and 402 deletions

View File

@@ -8,9 +8,8 @@ import os
import jieba
import networkx as nx
from loguru import logger
from nonebot import get_driver
from ...common.database import db # 使用正确的导入语法
from ...common.database import db
from ..chat.config import global_config
from ..chat.utils import (
calculate_information_content,
@@ -20,6 +19,13 @@ from ..chat.utils import (
)
from ..models.utils_model import LLM_request
from ..utils.logger_config import setup_logger, LogModule
# 配置日志
logger = setup_logger(LogModule.MEMORY)
logger.info("初始化记忆系统")
class Memory_graph:
def __init__(self):
self.G = nx.Graph() # 使用 networkx 的图结构
@@ -518,7 +524,7 @@ class Hippocampus:
{'concept': concept},
{'$set': update_data}
)
logger.info(f"节点 {concept} 添加缺失的时间字段")
logger.info(f"[时间更新] 节点 {concept} 添加缺失的时间字段")
# 获取时间信息(如果不存在则使用当前时间)
created_time = node.get('created_time', current_time)
@@ -551,7 +557,7 @@ class Hippocampus:
{'source': source, 'target': target},
{'$set': update_data}
)
logger.info(f"{source} - {target} 添加缺失的时间字段")
logger.info(f"[时间更新] {source} - {target} 添加缺失的时间字段")
# 获取时间信息(如果不存在则使用当前时间)
created_time = edge.get('created_time', current_time)
@@ -565,16 +571,27 @@ class Hippocampus:
last_modified=last_modified)
if need_update:
logger.success("已为缺失的时间字段进行补充")
logger.success("[数据库] 已为缺失的时间字段进行补充")
async def operation_forget_topic(self, percentage=0.1):
"""随机选择图中一定比例的节点和边进行检查,根据时间条件决定是否遗忘"""
# 检查数据库是否为空
# logger.remove()
logger.info(f"[遗忘] 开始检查数据库... 当前Logger信息:")
# logger.info(f"- Logger名称: {logger.name}")
logger.info(f"- Logger等级: {logger.level}")
# logger.info(f"- Logger处理器: {[handler.__class__.__name__ for handler in logger.handlers]}")
# logger2 = setup_logger(LogModule.MEMORY)
# logger2.info(f"[遗忘] 开始检查数据库... 当前Logger信息:")
# logger.info(f"[遗忘] 开始检查数据库... 当前Logger信息:")
all_nodes = list(self.memory_graph.G.nodes())
all_edges = list(self.memory_graph.G.edges())
if not all_nodes and not all_edges:
logger.info("记忆图为空,无需进行遗忘操作")
logger.info("[遗忘] 记忆图为空,无需进行遗忘操作")
return
check_nodes_count = max(1, int(len(all_nodes) * percentage))
@@ -589,35 +606,32 @@ class Hippocampus:
current_time = datetime.datetime.now().timestamp()
# 检查并遗忘连接
logger.info("开始检查连接...")
logger.info("[遗忘] 开始检查连接...")
for source, target in edges_to_check:
edge_data = self.memory_graph.G[source][target]
last_modified = edge_data.get('last_modified')
# print(source,target)
# print(f"float(last_modified):{float(last_modified)}" )
# print(f"current_time:{current_time}")
# print(f"current_time - last_modified:{current_time - last_modified}")
if current_time - last_modified > 3600*global_config.memory_forget_time: # test
if current_time - last_modified > 3600*global_config.memory_forget_time:
current_strength = edge_data.get('strength', 1)
new_strength = current_strength - 1
if new_strength <= 0:
self.memory_graph.G.remove_edge(source, target)
edge_changes['removed'] += 1
logger.info(f"\033[1;31m[连接移除]\033[0m {source} - {target}")
logger.info(f"[遗忘] 连接移除: {source} -> {target}")
else:
edge_data['strength'] = new_strength
edge_data['last_modified'] = current_time
edge_changes['weakened'] += 1
logger.info(f"\033[1;34m[连接减弱]\033[0m {source} - {target} (强度: {current_strength} -> {new_strength})")
logger.info(f"[遗忘] 连接减弱: {source} -> {target} (强度: {current_strength} -> {new_strength})")
# 检查并遗忘话题
logger.info("开始检查节点...")
logger.info("[遗忘] 开始检查节点...")
for node in nodes_to_check:
node_data = self.memory_graph.G.nodes[node]
last_modified = node_data.get('last_modified', current_time)
if current_time - last_modified > 3600*24: # test
if current_time - last_modified > 3600*24:
memory_items = node_data.get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
@@ -631,27 +645,22 @@ class Hippocampus:
self.memory_graph.G.nodes[node]['memory_items'] = memory_items
self.memory_graph.G.nodes[node]['last_modified'] = current_time
node_changes['reduced'] += 1
logger.info(f"\033[1;33m[记忆减少]\033[0m {node} (记忆数量: {current_count} -> {len(memory_items)})")
logger.info(f"[遗忘] 记忆减少: {node} (数量: {current_count} -> {len(memory_items)})")
else:
self.memory_graph.G.remove_node(node)
node_changes['removed'] += 1
logger.info(f"\033[1;31m[节点移除]\033[0m {node}")
logger.info(f"[遗忘] 节点移除: {node}")
if any(count > 0 for count in edge_changes.values()) or any(count > 0 for count in node_changes.values()):
self.sync_memory_to_db()
logger.info("\n遗忘操作统计:")
logger.info(f"连接变化: {edge_changes['weakened']} 个减弱, {edge_changes['removed']} 个移除")
logger.info(f"节点变化: {node_changes['reduced']} 个减少记忆, {node_changes['removed']} 个移除")
logger.info("[遗忘] 统计信息:")
logger.info(f"[遗忘] 连接变化: {edge_changes['weakened']} 个减弱, {edge_changes['removed']} 个移除")
logger.info(f"[遗忘] 节点变化: {node_changes['reduced']} 个减少记忆, {node_changes['removed']} 个移除")
else:
logger.info("\n本次检查没有节点或连接满足遗忘条件")
logger.info("[遗忘] 本次检查没有节点或连接满足遗忘条件")
async def merge_memory(self, topic):
"""
对指定话题的记忆进行合并压缩
Args:
topic: 要合并的话题节点
"""
"""对指定话题的记忆进行合并压缩"""
# 获取节点的记忆项
memory_items = self.memory_graph.G.nodes[topic].get('memory_items', [])
if not isinstance(memory_items, list):
@@ -666,8 +675,8 @@ class Hippocampus:
# 拼接成文本
merged_text = "\n".join(selected_memories)
logger.debug(f"\n[合并记忆] 话题: {topic}")
logger.debug(f"选择的记忆:\n{merged_text}")
logger.debug(f"[合并] 话题: {topic}")
logger.debug(f"[合并] 选择的记忆:\n{merged_text}")
# 使用memory_compress生成新的压缩记忆
compressed_memories, _ = await self.memory_compress(selected_memories, 0.1)
@@ -679,11 +688,11 @@ class Hippocampus:
# 添加新的压缩记忆
for _, compressed_memory in compressed_memories:
memory_items.append(compressed_memory)
logger.info(f"添加压缩记忆: {compressed_memory}")
logger.info(f"[合并] 添加压缩记忆: {compressed_memory}")
# 更新节点的记忆项
self.memory_graph.G.nodes[topic]['memory_items'] = memory_items
logger.debug(f"完成记忆合并,当前记忆数量: {len(memory_items)}")
logger.debug(f"[合并] 完成记忆合并,当前记忆数量: {len(memory_items)}")
async def operation_merge_memory(self, percentage=0.1):
"""
@@ -813,7 +822,7 @@ class Hippocampus:
async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int:
"""计算输入文本对记忆的激活程度"""
logger.info(f"识别主题: {await self._identify_topics(text)}")
logger.info(f"[激活] 识别主题: {await self._identify_topics(text)}")
# 识别主题
identified_topics = await self._identify_topics(text)
@@ -824,7 +833,7 @@ class Hippocampus:
all_similar_topics = self._find_similar_topics(
identified_topics,
similarity_threshold=similarity_threshold,
debug_info="记忆激活"
debug_info="激活"
)
if not all_similar_topics:
@@ -845,7 +854,7 @@ class Hippocampus:
activation = int(score * 50 * penalty)
logger.info(
f"[记忆激活]单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}")
f"[激活] 单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}")
return activation
# 计算关键词匹配率,同时考虑内容数量
@@ -872,8 +881,8 @@ class Hippocampus:
matched_topics.add(input_topic)
adjusted_sim = sim * penalty
topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), adjusted_sim)
logger.info(
f"[记忆激活]主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})")
logger.debug(
f"[激活] 主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})")
# 计算主题匹配率和平均相似度
topic_match = len(matched_topics) / len(identified_topics)
@@ -882,7 +891,7 @@ class Hippocampus:
# 计算最终激活值
activation = int((topic_match + average_similarities) / 2 * 100)
logger.info(
f"[记忆激活]匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
f"[激活] 匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
return activation