Merge branch 'refactor' of https://github.com/SengokuCola/MaiMBot into refactor

This commit is contained in:
tcmofashi
2025-04-01 03:15:23 +08:00
18 changed files with 388 additions and 213 deletions

View File

@@ -8,12 +8,19 @@
- 精简代码结构,优化文件夹组织 - 精简代码结构,优化文件夹组织
- 新增详细统计系统 - 新增详细统计系统
#### 思维流系统(实验性功能) #### 思维流系统
- 新增思维流作为实验功能 - 新增思维流作为实验功能
- 思维流大核+小核架构 - 思维流大核+小核架构
- 思维流回复意愿模式 - 思维流回复意愿模式
- 优化思维流自动启停机制,提升资源利用效率 - 优化思维流自动启停机制,提升资源利用效率
- 思维流与日程系统联动,实现动态日程生成 - 思维流与日程系统联动,实现动态日程生成
- 优化心流运行逻辑和思考时间计算
- 添加错误检测机制
- 修复心流无法观察群消息的问题
#### 回复系统
- 优化回复逻辑,添加回复前思考机制
- 移除推理模型在回复中的使用
#### 记忆系统优化 #### 记忆系统优化
- 优化记忆抽取策略 - 优化记忆抽取策略
@@ -92,6 +99,9 @@
- 优化代码风格和格式 - 优化代码风格和格式
- 完善异常处理机制 - 完善异常处理机制
- 优化日志输出格式 - 优化日志输出格式
- 版本硬编码,新增配置自动更新功能
- 更新日程生成器功能
- 优化了统计信息,会在控制台显示统计信息
### 主要改进方向 ### 主要改进方向
1. 完善思维流系统功能 1. 完善思维流系统功能

View File

@@ -1,5 +1,14 @@
# Changelog # Changelog
## [1.0.3] - 2025-3-31
### Added
- 新增了心流相关配置项:
- `heartflow` 配置项,用于控制心流功能
### Removed
- 移除了 `response` 配置项中的 `model_r1_probability``model_v3_probability` 选项
- 移除了次级推理模型相关配置
## [1.0.1] - 2025-3-30 ## [1.0.1] - 2025-3-30
### Added ### Added
- 增加了流式输出控制项 `stream` - 增加了流式输出控制项 `stream`

View File

@@ -106,7 +106,7 @@ class Heartflow:
self.current_mind = reponse self.current_mind = reponse
logger.info(f"麦麦的总体脑内状态:{self.current_mind}") logger.info(f"麦麦的总体脑内状态:{self.current_mind}")
# logger.info("麦麦想了想,当前活动:") # logger.info("麦麦想了想,当前活动:")
await bot_schedule.move_doing(self.current_mind) # await bot_schedule.move_doing(self.current_mind)
for _, subheartflow in self._subheartflows.items(): for _, subheartflow in self._subheartflows.items():
subheartflow.main_heartflow_info = reponse subheartflow.main_heartflow_info = reponse

View File

@@ -33,7 +33,7 @@ class ChattingObservation(Observation):
self.sub_observe = None self.sub_observe = None
self.llm_summary = LLM_request( self.llm_summary = LLM_request(
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="outer_world" model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
) )
# 进行一次观察 返回观察结果observe_info # 进行一次观察 返回观察结果observe_info
@@ -52,9 +52,9 @@ class ChattingObservation(Observation):
new_messages_str = "" new_messages_str = ""
for msg in new_messages: for msg in new_messages:
if "detailed_plain_text" in msg: if "detailed_plain_text" in msg:
new_messages_str += f"{msg['detailed_plain_text']}\n" new_messages_str += f"{msg['detailed_plain_text']}"
print(f"new_messages_str{new_messages_str}") # print(f"new_messages_str{new_messages_str}")
# 将新消息添加到talking_message同时保持列表长度不超过20条 # 将新消息添加到talking_message同时保持列表长度不超过20条
self.talking_message.extend(new_messages) self.talking_message.extend(new_messages)
@@ -112,7 +112,7 @@ class ChattingObservation(Observation):
# 基于已经有的talking_summary和新的talking_message生成一个summary # 基于已经有的talking_summary和新的talking_message生成一个summary
# print(f"更新聊天总结:{self.talking_summary}") # print(f"更新聊天总结:{self.talking_summary}")
prompt = "" prompt = ""
prompt = f"你正在参与一个qq群聊的讨论这个群之前在聊的内容是{self.observe_info}\n" prompt = f"你正在参与一个qq群聊的讨论你记得这个群之前在聊的内容是:{self.observe_info}\n"
prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n" prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n"
prompt += """以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容, prompt += """以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,
以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n""" 以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n"""

View File

@@ -87,13 +87,10 @@ class SubHeartflow:
self.is_active = True self.is_active = True
self.last_active_time = current_time # 更新最后激活时间 self.last_active_time = current_time # 更新最后激活时间
observation = self.observations[0]
await observation.observe()
self.current_state.update_current_state_info() self.current_state.update_current_state_info()
await self.do_a_thinking() # await self.do_a_thinking()
await self.judge_willing() # await self.judge_willing()
await asyncio.sleep(global_config.sub_heart_flow_update_interval) await asyncio.sleep(global_config.sub_heart_flow_update_interval)
# 检查是否超过10分钟没有激活 # 检查是否超过10分钟没有激活
@@ -107,7 +104,7 @@ class SubHeartflow:
observation = self.observations[0] observation = self.observations[0]
chat_observe_info = observation.observe_info chat_observe_info = observation.observe_info
print(f"chat_observe_info{chat_observe_info}") # print(f"chat_observe_info{chat_observe_info}")
# 调取记忆 # 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text( related_memory = await HippocampusManager.get_instance().get_memory_from_text(
@@ -145,7 +142,56 @@ class SubHeartflow:
logger.debug(f"prompt:\n{prompt}\n") logger.debug(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的脑内状态:{self.current_mind}") logger.info(f"麦麦的脑内状态:{self.current_mind}")
async def do_after_reply(self, reply_content, chat_talking_prompt): async def do_observe(self):
observation = self.observations[0]
await observation.observe()
async def do_thinking_before_reply(self, message_txt):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# mood_info = "你很生气,很愤怒"
observation = self.observations[0]
chat_observe_info = observation.observe_info
# print(f"chat_observe_info{chat_observe_info}")
# 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
if related_memory:
related_memory_info = ""
for memory in related_memory:
related_memory_info += memory[1]
else:
related_memory_info = ""
# print(f"相关记忆:{related_memory_info}")
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += f"{self.personality_info}\n"
prompt += f"你刚刚在做的事情是:{schedule_info}\n"
if related_memory_info:
prompt += f"你想起来你之前见过的回忆:{related_memory_info}\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
prompt += f"刚刚你的想法是{current_thinking_info}\n"
prompt += "-----------------------------------\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
prompt += f"你现在{mood_info}\n"
prompt += f"你注意到有人刚刚说:{message_txt}\n"
prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
prompt += "记得结合上述的消息,要记得维持住你的人设,注意自己的名字,关注有人刚刚说的内容,不要思考太多:"
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
self.update_current_mind(reponse)
self.current_mind = reponse
logger.debug(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
async def do_thinking_after_reply(self, reply_content, chat_talking_prompt):
print("麦麦回复之后脑袋转起来了") print("麦麦回复之后脑袋转起来了")
current_thinking_info = self.current_mind current_thinking_info = self.current_mind
mood_info = self.current_state.mood mood_info = self.current_state.mood
@@ -155,10 +201,10 @@ class SubHeartflow:
message_new_info = chat_talking_prompt message_new_info = chat_talking_prompt
reply_info = reply_content reply_info = reply_content
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False) # schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
prompt = "" prompt = ""
prompt += f"你现在正在做的事情是:{schedule_info}\n" # prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += f"{self.personality_info}\n" prompt += f"{self.personality_info}\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n" prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
prompt += f"刚刚你的想法是{current_thinking_info}" prompt += f"刚刚你的想法是{current_thinking_info}"

View File

@@ -47,6 +47,39 @@ class ChatBot:
if not self._started: if not self._started:
self._started = True self._started = True
async def _create_thinking_message(self, message, chat, userinfo, messageinfo):
"""创建思考消息
Args:
message: 接收到的消息
chat: 聊天流对象
userinfo: 用户信息对象
messageinfo: 消息信息对象
Returns:
str: thinking_id
"""
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=messageinfo.platform,
)
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
reply=message,
thinking_start_time=thinking_time_point,
)
message_manager.add_message(thinking_message)
willing_manager.change_reply_willing_sent(chat)
return thinking_id
async def message_process(self, message_data: str) -> None: async def message_process(self, message_data: str) -> None:
"""处理转化后的统一格式消息 """处理转化后的统一格式消息
1. 过滤消息 1. 过滤消息
@@ -56,6 +89,8 @@ class ChatBot:
5. 更新关系 5. 更新关系
6. 更新情绪 6. 更新情绪
""" """
timing_results = {} # 用于收集所有计时结果
response_set = None # 初始化response_set变量
message = MessageRecv(message_data) message = MessageRecv(message_data)
groupinfo = message.message_info.group_info groupinfo = message.message_info.group_info
@@ -75,10 +110,7 @@ class ChatBot:
# 创建 心流与chat的观察 # 创建 心流与chat的观察
heartflow.create_subheartflow(chat.stream_id) heartflow.create_subheartflow(chat.stream_id)
timer1 = time.time()
await message.process() await message.process()
timer2 = time.time()
logger.debug(f"2消息处理时间: {timer2 - timer1}")
# 过滤词/正则表达式过滤 # 过滤词/正则表达式过滤
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex( if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
@@ -94,7 +126,7 @@ class ChatBot:
message.processed_plain_text, fast_retrieval=True message.processed_plain_text, fast_retrieval=True
) )
timer2 = time.time() timer2 = time.time()
logger.debug(f"3记忆激活时间: {timer2 - timer1}") timing_results["记忆激活"] = timer2 - timer1
is_mentioned = is_mentioned_bot_in_message(message) is_mentioned = is_mentioned_bot_in_message(message)
@@ -118,7 +150,7 @@ class ChatBot:
sender_id=str(message.message_info.user_info.user_id), sender_id=str(message.message_info.user_info.user_id),
) )
timer2 = time.time() timer2 = time.time()
logger.debug(f"4计算意愿激活时间: {timer2 - timer1}") timing_results["意愿激活"] = timer2 - timer1
# 神秘的消息流数据结构处理 # 神秘的消息流数据结构处理
if chat.group_info: if chat.group_info:
@@ -138,12 +170,30 @@ class ChatBot:
if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys(): if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys():
reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"] reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"]
do_reply = False
# 开始组织语言 # 开始组织语言
if random() < reply_probability: if random() < reply_probability:
do_reply = True
timer1 = time.time() timer1 = time.time()
response_set, thinking_id = await self._generate_response_from_message(message, chat, userinfo, messageinfo) thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
timer2 = time.time() timer2 = time.time()
logger.info(f"5生成回复时间: {timer2 - timer1}") timing_results["创建思考消息"] = timer2 - timer1
timer1 = time.time()
await heartflow.get_subheartflow(chat.stream_id).do_observe()
timer2 = time.time()
timing_results["观察"] = timer2 - timer1
timer1 = time.time()
await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(message.processed_plain_text)
timer2 = time.time()
timing_results["思考前脑内状态"] = timer2 - timer1
timer1 = time.time()
response_set = await self.gpt.generate_response(message)
timer2 = time.time()
timing_results["生成回复"] = timer2 - timer1
if not response_set: if not response_set:
logger.info("为什么生成回复失败?") logger.info("为什么生成回复失败?")
@@ -153,56 +203,25 @@ class ChatBot:
timer1 = time.time() timer1 = time.time()
await self._send_response_messages(message, chat, response_set, thinking_id) await self._send_response_messages(message, chat, response_set, thinking_id)
timer2 = time.time() timer2 = time.time()
logger.info(f"7发送消息时间: {timer2 - timer1}") timing_results["发送消息"] = timer2 - timer1
# 处理表情包 # 处理表情包
timer1 = time.time() timer1 = time.time()
await self._handle_emoji(message, chat, response_set) await self._handle_emoji(message, chat, response_set)
timer2 = time.time() timer2 = time.time()
logger.debug(f"8处理表情包时间: {timer2 - timer1}") timing_results["处理表情包"] = timer2 - timer1
timer1 = time.time() timer1 = time.time()
await self._update_using_response(message, response_set) await self._update_using_response(message, response_set)
timer2 = time.time() timer2 = time.time()
logger.info(f"6更新htfl时间: {timer2 - timer1}") timing_results["更新心流"] = timer2 - timer1
# 更新情绪和关系 # 在最后统一输出所有计时结果
# await self._update_emotion_and_relationship(message, chat, response_set) if do_reply:
timing_str = " | ".join([f"{step}: {duration:.2f}" for step, duration in timing_results.items()])
async def _generate_response_from_message(self, message, chat, userinfo, messageinfo): trigger_msg = message.processed_plain_text
"""生成回复内容 response_msg = " ".join(response_set) if response_set else "无回复"
logger.info(f"触发消息: {trigger_msg[:20]}... | 生成消息: {response_msg[:20]}... | 性能计时: {timing_str}")
Args:
message: 接收到的消息
chat: 聊天流对象
userinfo: 用户信息对象
messageinfo: 消息信息对象
Returns:
tuple: (response, raw_content) 回复内容和原始内容
"""
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=messageinfo.platform,
)
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
reply=message,
thinking_start_time=thinking_time_point,
)
message_manager.add_message(thinking_message)
willing_manager.change_reply_willing_sent(chat)
response_set = await self.gpt.generate_response(message)
return response_set, thinking_id
async def _update_using_response(self, message, response_set): async def _update_using_response(self, message, response_set):
# 更新心流状态 # 更新心流状态
@@ -213,7 +232,7 @@ class ChatBot:
stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
) )
await heartflow.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt) await heartflow.get_subheartflow(stream_id).do_thinking_after_reply(response_set, chat_talking_prompt)
async def _send_response_messages(self, message, chat, response_set, thinking_id): async def _send_response_messages(self, message, chat, response_set, thinking_id):
container = message_manager.get_container(chat.stream_id) container = message_manager.get_container(chat.stream_id)

View File

@@ -1,4 +1,3 @@
import random
import time import time
from typing import List, Optional, Tuple, Union from typing import List, Optional, Tuple, Union
@@ -30,7 +29,7 @@ class ResponseGenerator:
request_type="response", request_type="response",
) )
self.model_normal = LLM_request( self.model_normal = LLM_request(
model=global_config.llm_normal, temperature=0.7, max_tokens=3000, request_type="response" model=global_config.llm_normal, temperature=0.8, max_tokens=256, request_type="response"
) )
self.model_sum = LLM_request( self.model_sum = LLM_request(
@@ -42,20 +41,26 @@ class ResponseGenerator:
async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]: async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数""" """根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型 # 从global_config中获取模型概率值并选择模型
if random.random() < global_config.MODEL_R1_PROBABILITY: # if random.random() < global_config.MODEL_R1_PROBABILITY:
self.current_model_type = "深深地" # self.current_model_type = "深深地"
current_model = self.model_reasoning # current_model = self.model_reasoning
else: # else:
self.current_model_type = "浅浅的" # self.current_model_type = "浅浅的"
current_model = self.model_normal # current_model = self.model_normal
# logger.info(
# f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
# ) # noqa: E501
logger.info( logger.info(
f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}" f"思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
) # noqa: E501 )
current_model = self.model_normal
model_response = await self._generate_response_with_model(message, current_model) model_response = await self._generate_response_with_model(message, current_model)
print(f"raw_content: {model_response}") # print(f"raw_content: {model_response}")
if model_response: if model_response:
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}") logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
@@ -126,8 +131,6 @@ class ResponseGenerator:
"user": sender_name, "user": sender_name,
"message": message.processed_plain_text, "message": message.processed_plain_text,
"model": self.current_model_name, "model": self.current_model_name,
# 'reasoning_check': reasoning_content_check,
# 'response_check': content_check,
"reasoning": reasoning_content, "reasoning": reasoning_content,
"response": content, "response": content,
"prompt": prompt, "prompt": prompt,

View File

@@ -188,11 +188,11 @@ class MessageManager:
# print(message_earliest.is_head) # print(message_earliest.is_head)
# print(message_earliest.update_thinking_time()) # print(message_earliest.update_thinking_time())
# print(message_earliest.is_private_message()) # print(message_earliest.is_private_message())
# thinking_time = message_earliest.update_thinking_time() thinking_time = message_earliest.update_thinking_time()
# print(thinking_time) print(thinking_time)
if ( if (
message_earliest.is_head message_earliest.is_head
and message_earliest.update_thinking_time() > 50 and message_earliest.update_thinking_time() > 18
and not message_earliest.is_private_message() # 避免在私聊时插入reply and not message_earliest.is_private_message() # 避免在私聊时插入reply
): ):
logger.debug(f"设置回复消息{message_earliest.processed_plain_text}") logger.debug(f"设置回复消息{message_earliest.processed_plain_text}")
@@ -215,11 +215,11 @@ class MessageManager:
try: try:
# print(msg.is_head) # print(msg.is_head)
# print(msg.update_thinking_time()) print(msg.update_thinking_time())
# print(msg.is_private_message()) # print(msg.is_private_message())
if ( if (
msg.is_head msg.is_head
and msg.update_thinking_time() > 50 and msg.update_thinking_time() > 18
and not msg.is_private_message() # 避免在私聊时插入reply and not msg.is_private_message() # 避免在私聊时插入reply
): ):
logger.debug(f"设置回复消息{msg.processed_plain_text}") logger.debug(f"设置回复消息{msg.processed_plain_text}")

View File

@@ -24,27 +24,9 @@ class PromptBuilder:
async def _build_prompt( async def _build_prompt(
self, chat_stream, message_txt: str, sender_name: str = "某人", stream_id: Optional[int] = None self, chat_stream, message_txt: str, sender_name: str = "某人", stream_id: Optional[int] = None
) -> tuple[str, str]: ) -> tuple[str, str]:
# 关系(载入当前聊天记录里部分人的关系)
# who_chat_in_group = [chat_stream]
# who_chat_in_group += get_recent_group_speaker(
# stream_id,
# (chat_stream.user_info.user_id, chat_stream.user_info.platform),
# limit=global_config.MAX_CONTEXT_SIZE,
# )
# outer_world_info = outer_world.outer_world_info
current_mind_info = heartflow.get_subheartflow(stream_id).current_mind current_mind_info = heartflow.get_subheartflow(stream_id).current_mind
# relation_prompt = ""
# for person in who_chat_in_group:
# relation_prompt += relationship_manager.build_relationship_info(person)
# relation_prompt_all = (
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
# )
# 开始构建prompt # 开始构建prompt
# 心情 # 心情
@@ -71,25 +53,6 @@ class PromptBuilder:
chat_talking_prompt = chat_talking_prompt chat_talking_prompt = chat_talking_prompt
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}") # print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
# 使用新的记忆获取方法
memory_prompt = ""
start_time = time.time()
# 调用 hippocampus 的 get_relevant_memories 方法
relevant_memories = await HippocampusManager.get_instance().get_memory_from_text(
text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=2, fast_retrieval=False
)
memory_str = ""
for _topic, memories in relevant_memories:
memory_str += f"{memories}\n"
if relevant_memories:
# 格式化记忆内容
memory_prompt = f"你回忆起:\n{memory_str}\n"
end_time = time.time()
logger.info(f"回忆耗时: {(end_time - start_time):.3f}")
# 类型 # 类型
if chat_in_group: if chat_in_group:
chat_target = "你正在qq群里聊天下面是群里在聊的内容" chat_target = "你正在qq群里聊天下面是群里在聊的内容"
@@ -146,19 +109,18 @@ class PromptBuilder:
涉及政治敏感以及违法违规的内容请规避。""" 涉及政治敏感以及违法违规的内容请规避。"""
logger.info("开始构建prompt") logger.info("开始构建prompt")
prompt = f""" prompt = f"""
{prompt_info} {prompt_info}
{memory_prompt}
你刚刚脑子里在想:
{current_mind_info}
{chat_target} {chat_target}
{chat_talking_prompt} {chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,{mood_prompt}\n 你刚刚脑子里在想:
{current_mind_info}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)}{prompt_personality} 你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)}{prompt_personality}
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些, 你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger} 尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景, 请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。 请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
{moderation_prompt}不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。""" {moderation_prompt}不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。"""

View File

@@ -32,7 +32,7 @@ class ImageManager:
self._ensure_description_collection() self._ensure_description_collection()
self._ensure_image_dir() self._ensure_image_dir()
self._initialized = True self._initialized = True
self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=1000, request_type="image") self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300, request_type="image")
def _ensure_image_dir(self): def _ensure_image_dir(self):
"""确保图像存储目录存在""" """确保图像存储目录存在"""
@@ -171,7 +171,7 @@ class ImageManager:
# 调用AI获取描述 # 调用AI获取描述
prompt = ( prompt = (
"请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。" "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多100个字。"
) )
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format) description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)

View File

@@ -25,7 +25,7 @@ logger = get_module_logger("config", config=config_config)
#考虑到实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码 #考虑到实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
mai_version_main = "0.6.0" mai_version_main = "0.6.0"
mai_version_fix = "mmc-2" mai_version_fix = "mmc-3"
mai_version = f"{mai_version_main}-{mai_version_fix}" mai_version = f"{mai_version_main}-{mai_version_fix}"
def update_config(): def update_config():
@@ -231,7 +231,7 @@ class BotConfig:
# 模型配置 # 模型配置
llm_reasoning: Dict[str, str] = field(default_factory=lambda: {}) llm_reasoning: Dict[str, str] = field(default_factory=lambda: {})
llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {}) # llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
llm_normal: Dict[str, str] = field(default_factory=lambda: {}) llm_normal: Dict[str, str] = field(default_factory=lambda: {})
llm_topic_judge: Dict[str, str] = field(default_factory=lambda: {}) llm_topic_judge: Dict[str, str] = field(default_factory=lambda: {})
llm_summary_by_topic: Dict[str, str] = field(default_factory=lambda: {}) llm_summary_by_topic: Dict[str, str] = field(default_factory=lambda: {})
@@ -370,9 +370,9 @@ class BotConfig:
response_config = parent["response"] response_config = parent["response"]
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY) config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY) config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get( # config.MODEL_R1_DISTILL_PROBABILITY = response_config.get(
"model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY # "model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY
) # )
config.max_response_length = response_config.get("max_response_length", config.max_response_length) config.max_response_length = response_config.get("max_response_length", config.max_response_length)
def willing(parent: dict): def willing(parent: dict):
@@ -397,7 +397,7 @@ class BotConfig:
config_list = [ config_list = [
"llm_reasoning", "llm_reasoning",
"llm_reasoning_minor", # "llm_reasoning_minor",
"llm_normal", "llm_normal",
"llm_topic_judge", "llm_topic_judge",
"llm_summary_by_topic", "llm_summary_by_topic",

View File

@@ -697,6 +697,11 @@ class ParahippocampalGyrus:
start_time = time.time() start_time = time.time()
logger.info("[遗忘] 开始检查数据库...") logger.info("[遗忘] 开始检查数据库...")
# 验证百分比参数
if not 0 <= percentage <= 1:
logger.warning(f"[遗忘] 无效的遗忘百分比: {percentage}, 使用默认值 0.005")
percentage = 0.005
all_nodes = list(self.memory_graph.G.nodes()) all_nodes = list(self.memory_graph.G.nodes())
all_edges = list(self.memory_graph.G.edges()) all_edges = list(self.memory_graph.G.edges())
@@ -704,11 +709,21 @@ class ParahippocampalGyrus:
logger.info("[遗忘] 记忆图为空,无需进行遗忘操作") logger.info("[遗忘] 记忆图为空,无需进行遗忘操作")
return return
check_nodes_count = max(1, int(len(all_nodes) * percentage)) # 确保至少检查1个节点和边且不超过总数
check_edges_count = max(1, int(len(all_edges) * percentage)) check_nodes_count = max(1, min(len(all_nodes), int(len(all_nodes) * percentage)))
check_edges_count = max(1, min(len(all_edges), int(len(all_edges) * percentage)))
# 只有在有足够的节点和边时才进行采样
if len(all_nodes) >= check_nodes_count and len(all_edges) >= check_edges_count:
try:
nodes_to_check = random.sample(all_nodes, check_nodes_count) nodes_to_check = random.sample(all_nodes, check_nodes_count)
edges_to_check = random.sample(all_edges, check_edges_count) edges_to_check = random.sample(all_edges, check_edges_count)
except ValueError as e:
logger.error(f"[遗忘] 采样错误: {str(e)}")
return
else:
logger.info("[遗忘] 没有足够的节点或边进行遗忘操作")
return
# 使用列表存储变化信息 # 使用列表存储变化信息
edge_changes = { edge_changes = {

View File

@@ -58,8 +58,18 @@ class MemoryBuildScheduler:
weight2 (float): 第二个分布的权重 weight2 (float): 第二个分布的权重
total_samples (int): 要生成的总时间点数量 total_samples (int): 要生成的总时间点数量
""" """
# 验证参数
if total_samples <= 0:
raise ValueError("total_samples 必须大于0")
if weight1 < 0 or weight2 < 0:
raise ValueError("权重必须为非负数")
if std_hours1 < 0 or std_hours2 < 0:
raise ValueError("标准差必须为非负数")
# 归一化权重 # 归一化权重
total_weight = weight1 + weight2 total_weight = weight1 + weight2
if total_weight == 0:
raise ValueError("权重总和不能为0")
self.weight1 = weight1 / total_weight self.weight1 = weight1 / total_weight
self.weight2 = weight2 / total_weight self.weight2 = weight2 / total_weight
@@ -73,12 +83,11 @@ class MemoryBuildScheduler:
def generate_time_samples(self): def generate_time_samples(self):
"""生成混合分布的时间采样点""" """生成混合分布的时间采样点"""
# 根据权重计算每个分布的样本数 # 根据权重计算每个分布的样本数
samples1 = int(self.total_samples * self.weight1) samples1 = max(1, int(self.total_samples * self.weight1))
samples2 = self.total_samples - samples1 samples2 = max(1, self.total_samples - samples1) # 确保 samples2 至少为1
# 生成两个正态分布的小时偏移 # 生成两个正态分布的小时偏移
hours_offset1 = np.random.normal(loc=self.n_hours1, scale=self.std_hours1, size=samples1) hours_offset1 = np.random.normal(loc=self.n_hours1, scale=self.std_hours1, size=samples1)
hours_offset2 = np.random.normal(loc=self.n_hours2, scale=self.std_hours2, size=samples2) hours_offset2 = np.random.normal(loc=self.n_hours2, scale=self.std_hours2, size=samples2)
# 合并两个分布的偏移 # 合并两个分布的偏移

View File

@@ -285,6 +285,7 @@ class LLM_request:
usage = None # 初始化usage变量避免未定义错误 usage = None # 初始化usage变量避免未定义错误
async for line_bytes in response.content: async for line_bytes in response.content:
try:
line = line_bytes.decode("utf-8").strip() line = line_bytes.decode("utf-8").strip()
if not line: if not line:
continue continue
@@ -318,6 +319,12 @@ class LLM_request:
except Exception as e: except Exception as e:
logger.exception(f"解析流式输出错误: {str(e)}") logger.exception(f"解析流式输出错误: {str(e)}")
except GeneratorExit:
logger.warning("流式输出被中断")
break
except Exception as e:
logger.error(f"处理流式输出时发生错误: {str(e)}")
break
content = accumulated_content content = accumulated_content
think_match = re.search(r"<think>(.*?)</think>", content, re.DOTALL) think_match = re.search(r"<think>(.*?)</think>", content, re.DOTALL)
if think_match: if think_match:

View File

@@ -176,13 +176,13 @@ class ScheduleGenerator:
logger.warning(f"未找到{today_str}的日程记录") logger.warning(f"未找到{today_str}的日程记录")
async def move_doing(self, mind_thinking: str = ""): async def move_doing(self, mind_thinking: str = ""):
try:
current_time = datetime.datetime.now() current_time = datetime.datetime.now()
if mind_thinking: if mind_thinking:
doing_prompt = self.construct_doing_prompt(current_time, mind_thinking) doing_prompt = self.construct_doing_prompt(current_time, mind_thinking)
else: else:
doing_prompt = self.construct_doing_prompt(current_time) doing_prompt = self.construct_doing_prompt(current_time)
# print(doing_prompt)
doing_response, _ = await self.llm_scheduler_doing.generate_response_async(doing_prompt) doing_response, _ = await self.llm_scheduler_doing.generate_response_async(doing_prompt)
self.today_done_list.append((current_time, doing_response)) self.today_done_list.append((current_time, doing_response))
@@ -191,6 +191,12 @@ class ScheduleGenerator:
logger.info(f"当前活动: {doing_response}") logger.info(f"当前活动: {doing_response}")
return doing_response return doing_response
except GeneratorExit:
logger.warning("日程生成被中断")
return "日程生成被中断"
except Exception as e:
logger.error(f"生成日程时发生错误: {str(e)}")
return "生成日程时发生错误"
async def get_task_from_time_to_time(self, start_time: str, end_time: str): async def get_task_from_time_to_time(self, start_time: str, end_time: str):
"""获取指定时间范围内的任务列表 """获取指定时间范围内的任务列表

View File

@@ -20,6 +20,7 @@ class LLMStatistics:
self.output_file = output_file self.output_file = output_file
self.running = False self.running = False
self.stats_thread = None self.stats_thread = None
self.console_thread = None
self._init_database() self._init_database()
def _init_database(self): def _init_database(self):
@@ -32,15 +33,22 @@ class LLMStatistics:
"""启动统计线程""" """启动统计线程"""
if not self.running: if not self.running:
self.running = True self.running = True
# 启动文件统计线程
self.stats_thread = threading.Thread(target=self._stats_loop) self.stats_thread = threading.Thread(target=self._stats_loop)
self.stats_thread.daemon = True self.stats_thread.daemon = True
self.stats_thread.start() self.stats_thread.start()
# 启动控制台输出线程
self.console_thread = threading.Thread(target=self._console_output_loop)
self.console_thread.daemon = True
self.console_thread.start()
def stop(self): def stop(self):
"""停止统计线程""" """停止统计线程"""
self.running = False self.running = False
if self.stats_thread: if self.stats_thread:
self.stats_thread.join() self.stats_thread.join()
if self.console_thread:
self.console_thread.join()
def _record_online_time(self): def _record_online_time(self):
"""记录在线时间""" """记录在线时间"""
@@ -126,10 +134,19 @@ class LLMStatistics:
messages_cursor = db.messages.find({"time": {"$gte": start_time.timestamp()}}) messages_cursor = db.messages.find({"time": {"$gte": start_time.timestamp()}})
for doc in messages_cursor: for doc in messages_cursor:
stats["total_messages"] += 1 stats["total_messages"] += 1
user_id = str(doc.get("user_info", {}).get("user_id", "unknown")) # user_id = str(doc.get("user_info", {}).get("user_id", "unknown"))
chat_id = str(doc.get("chat_id", "unknown")) chat_info = doc.get("chat_info", {})
user_info = doc.get("user_info", {})
group_info = chat_info.get("group_info") if chat_info else {}
# print(f"group_info: {group_info}")
group_name = "unknown"
if group_info:
group_name = group_info["group_name"]
if user_info and group_name == "unknown":
group_name = user_info["user_nickname"]
# print(f"group_name: {group_name}")
stats["messages_by_user"][user_id] += 1 stats["messages_by_user"][user_id] += 1
stats["messages_by_chat"][chat_id] += 1 stats["messages_by_chat"][group_name] += 1
return stats return stats
@@ -201,17 +218,74 @@ class LLMStatistics:
) )
output.append("") output.append("")
# 添加消息统计 # 添加聊天统计
output.append("消息统计:") output.append("群组统计:")
output.append(("用户ID 消息数量")) output.append(("群组名称 消息数量"))
for user_id, count in sorted(stats["messages_by_user"].items()): for group_name, count in sorted(stats["messages_by_chat"].items()):
output.append(f"{user_id[:32]:<32} {count:>10}") output.append(f"{group_name[:32]:<32} {count:>10}")
return "\n".join(output)
def _format_stats_section_lite(self, stats: Dict[str, Any], title: str) -> str:
"""格式化统计部分的输出"""
output = []
output.append("\n" + "-" * 84)
output.append(f"{title}")
output.append("-" * 84)
# output.append(f"总请求数: {stats['total_requests']}")
if stats["total_requests"] > 0:
# output.append(f"总Token数: {stats['total_tokens']}")
output.append(f"总花费: {stats['total_cost']:.4f}¥")
# output.append(f"在线时间: {stats['online_time_minutes']}分钟")
output.append(f"总消息数: {stats['total_messages']}\n")
data_fmt = "{:<32} {:>10} {:>14} {:>13.4f} ¥"
# 按模型统计
output.append("按模型统计:")
output.append(("模型名称 调用次数 Token总量 累计花费"))
for model_name, count in sorted(stats["requests_by_model"].items()):
tokens = stats["tokens_by_model"][model_name]
cost = stats["costs_by_model"][model_name]
output.append(
data_fmt.format(model_name[:32] + ".." if len(model_name) > 32 else model_name, count, tokens, cost)
)
output.append("") output.append("")
output.append("聊天统计:") # 按请求类型统计
output.append(("聊天ID 消息数量")) # output.append("按请求类型统计:")
for chat_id, count in sorted(stats["messages_by_chat"].items()): # output.append(("模型名称 调用次数 Token总量 累计花费"))
output.append(f"{chat_id[:32]:<32} {count:>10}") # for req_type, count in sorted(stats["requests_by_type"].items()):
# tokens = stats["tokens_by_type"][req_type]
# cost = stats["costs_by_type"][req_type]
# output.append(
# data_fmt.format(req_type[:22] + ".." if len(req_type) > 24 else req_type, count, tokens, cost)
# )
# output.append("")
# 修正用户统计列宽
# output.append("按用户统计:")
# output.append(("用户ID 调用次数 Token总量 累计花费"))
# for user_id, count in sorted(stats["requests_by_user"].items()):
# tokens = stats["tokens_by_user"][user_id]
# cost = stats["costs_by_user"][user_id]
# output.append(
# data_fmt.format(
# user_id[:22], # 不再添加省略号保持原始ID
# count,
# tokens,
# cost,
# )
# )
# output.append("")
# 添加聊天统计
output.append("群组统计:")
output.append(("群组名称 消息数量"))
for group_name, count in sorted(stats["messages_by_chat"].items()):
output.append(f"{group_name[:32]:<32} {count:>10}")
return "\n".join(output) return "\n".join(output)
@@ -237,8 +311,30 @@ class LLMStatistics:
with open(self.output_file, "w", encoding="utf-8") as f: with open(self.output_file, "w", encoding="utf-8") as f:
f.write("\n".join(output)) f.write("\n".join(output))
def _console_output_loop(self):
"""控制台输出循环每5分钟输出一次最近1小时的统计"""
while self.running:
# 等待5分钟
for _ in range(300): # 5分钟 = 300秒
if not self.running:
break
time.sleep(1)
try:
# 收集最近1小时的统计数据
now = datetime.now()
hour_stats = self._collect_statistics_for_period(now - timedelta(hours=1))
# 使用logger输出
stats_output = self._format_stats_section_lite(hour_stats, "最近1小时统计详细信息见根目录文件llm_statistics.txt")
logger.info("\n" + stats_output + "\n" + "=" * 50)
except Exception:
logger.exception("控制台统计数据输出失败")
def _stats_loop(self): def _stats_loop(self):
"""统计循环,每1分钟运行一次""" """统计循环,每5分钟运行一次"""
while self.running: while self.running:
try: try:
# 记录在线时间 # 记录在线时间
@@ -250,7 +346,7 @@ class LLMStatistics:
logger.exception("统计数据处理失败") logger.exception("统计数据处理失败")
# 等待5分钟 # 等待5分钟
for _ in range(30): # 5分钟 = 300秒 for _ in range(300): # 5分钟 = 300秒
if not self.running: if not self.running:
break break
time.sleep(1) time.sleep(1)

View File

@@ -1,5 +1,5 @@
[inner] [inner]
version = "1.0.2" version = "1.0.3"
#以下是给开发人员阅读的,一般用户不需要阅读 #以下是给开发人员阅读的,一般用户不需要阅读
@@ -53,7 +53,7 @@ schedule_temperature = 0.5 # 日程表温度建议0.5-1.0
nonebot-qq="http://127.0.0.1:18002/api/message" nonebot-qq="http://127.0.0.1:18002/api/message"
[heartflow] # 注意可能会消耗大量token请谨慎开启 [heartflow] # 注意可能会消耗大量token请谨慎开启
enable = false enable = false #该选项未启用
sub_heart_flow_update_interval = 60 # 子心流更新频率,间隔 单位秒 sub_heart_flow_update_interval = 60 # 子心流更新频率,间隔 单位秒
sub_heart_flow_freeze_time = 120 # 子心流冻结时间,超过这个时间没有回复,子心流会冻结,间隔 单位秒 sub_heart_flow_freeze_time = 120 # 子心流冻结时间,超过这个时间没有回复,子心流会冻结,间隔 单位秒
sub_heart_flow_stop_time = 600 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒 sub_heart_flow_stop_time = 600 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
@@ -63,9 +63,9 @@ heart_flow_update_interval = 300 # 心流更新频率,间隔 单位秒
[message] [message]
max_context_size = 15 # 麦麦获得的上文数量建议15,太短太长都会导致脑袋尖尖 max_context_size = 12 # 麦麦获得的上文数量建议12,太短太长都会导致脑袋尖尖
emoji_chance = 0.2 # 麦麦使用表情包的概率 emoji_chance = 0.2 # 麦麦使用表情包的概率
thinking_timeout = 120 # 麦麦最长思考时间,超过这个时间的思考会放弃 thinking_timeout = 60 # 麦麦最长思考时间,超过这个时间的思考会放弃
max_response_length = 256 # 麦麦回答的最大token数 max_response_length = 256 # 麦麦回答的最大token数
ban_words = [ ban_words = [
# "403","张三" # "403","张三"
@@ -87,10 +87,9 @@ response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听
down_frequency_rate = 3 # 降低回复频率的群组回复意愿降低系数 除法 down_frequency_rate = 3 # 降低回复频率的群组回复意愿降低系数 除法
emoji_response_penalty = 0.1 # 表情包回复惩罚系数设为0为不回复单个表情包减少单独回复表情包的概率 emoji_response_penalty = 0.1 # 表情包回复惩罚系数设为0为不回复单个表情包减少单独回复表情包的概率
[response] [response] #这些选项已无效
model_r1_probability = 0.8 # 麦麦回答时选择主要回复模型1 模型的概率 model_r1_probability = 0 # 麦麦回答时选择主要回复模型1 模型的概率
model_v3_probability = 0.1 # 麦麦回答时选择次要回复模型2 模型的概率 model_v3_probability = 1.0 # 麦麦回答时选择次要回复模型2 模型的概率
model_r1_distill_probability = 0.1 # 麦麦回答时选择次要回复模型3 模型的概率
[emoji] [emoji]
check_interval = 15 # 检查破损表情包的时间间隔(分钟) check_interval = 15 # 检查破损表情包的时间间隔(分钟)
@@ -159,22 +158,16 @@ enable_friend_chat = false # 是否启用好友聊天
# stream = <true|false> : 用于指定模型是否是使用流式输出 # stream = <true|false> : 用于指定模型是否是使用流式输出
# 如果不指定,则该项是 False # 如果不指定,则该项是 False
[model.llm_reasoning] #回复模型1 主要回复模型 [model.llm_reasoning] #暂时未使用
name = "Pro/deepseek-ai/DeepSeek-R1" name = "Pro/deepseek-ai/DeepSeek-R1"
# name = "Qwen/QwQ-32B" # name = "Qwen/QwQ-32B"
provider = "SILICONFLOW" provider = "SILICONFLOW"
pri_in = 4 #模型的输入价格(非必填,可以记录消耗) pri_in = 4 #模型的输入价格(非必填,可以记录消耗)
pri_out = 16 #模型的输出价格(非必填,可以记录消耗) pri_out = 16 #模型的输出价格(非必填,可以记录消耗)
[model.llm_reasoning_minor] #回复模型3 次要回复模型
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
provider = "SILICONFLOW"
pri_in = 1.26 #模型的输入价格(非必填,可以记录消耗)
pri_out = 1.26 #模型的输出价格(非必填,可以记录消耗)
#非推理模型 #非推理模型
[model.llm_normal] #V3 回复模型2 次要回复模型 [model.llm_normal] #V3 回复模型1 主要回复模型
name = "Pro/deepseek-ai/DeepSeek-V3" name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW" provider = "SILICONFLOW"
pri_in = 2 #模型的输入价格(非必填,可以记录消耗) pri_in = 2 #模型的输入价格(非必填,可以记录消耗)

View File

@@ -1,5 +1,5 @@
HOST=127.0.0.1 HOST=127.0.0.1
PORT=8080 PORT=8000
# 插件配置 # 插件配置
PLUGINS=["src2.plugins.chat"] PLUGINS=["src2.plugins.chat"]