diff --git a/changelogs/changelog.md b/changelogs/changelog.md
index fd7cdda76..d9759ea11 100644
--- a/changelogs/changelog.md
+++ b/changelogs/changelog.md
@@ -8,12 +8,19 @@
- 精简代码结构,优化文件夹组织
- 新增详细统计系统
-#### 思维流系统(实验性功能)
+#### 思维流系统
- 新增思维流作为实验功能
- 思维流大核+小核架构
- 思维流回复意愿模式
- 优化思维流自动启停机制,提升资源利用效率
- 思维流与日程系统联动,实现动态日程生成
+- 优化心流运行逻辑和思考时间计算
+- 添加错误检测机制
+- 修复心流无法观察群消息的问题
+
+#### 回复系统
+- 优化回复逻辑,添加回复前思考机制
+- 移除推理模型在回复中的使用
#### 记忆系统优化
- 优化记忆抽取策略
@@ -92,6 +99,9 @@
- 优化代码风格和格式
- 完善异常处理机制
- 优化日志输出格式
+- 版本硬编码,新增配置自动更新功能
+- 更新日程生成器功能
+- 优化了统计信息,会在控制台显示统计信息
### 主要改进方向
1. 完善思维流系统功能
diff --git a/changelogs/changelog_config.md b/changelogs/changelog_config.md
index e2a989d8d..32912f691 100644
--- a/changelogs/changelog_config.md
+++ b/changelogs/changelog_config.md
@@ -1,5 +1,14 @@
# Changelog
+## [1.0.3] - 2025-3-31
+### Added
+- 新增了心流相关配置项:
+ - `heartflow` 配置项,用于控制心流功能
+
+### Removed
+- 移除了 `response` 配置项中的 `model_r1_probability` 和 `model_v3_probability` 选项
+- 移除了次级推理模型相关配置
+
## [1.0.1] - 2025-3-30
### Added
- 增加了流式输出控制项 `stream`
diff --git a/src/heart_flow/heartflow.py b/src/heart_flow/heartflow.py
index 8637d2071..c34def599 100644
--- a/src/heart_flow/heartflow.py
+++ b/src/heart_flow/heartflow.py
@@ -106,7 +106,7 @@ class Heartflow:
self.current_mind = reponse
logger.info(f"麦麦的总体脑内状态:{self.current_mind}")
# logger.info("麦麦想了想,当前活动:")
- await bot_schedule.move_doing(self.current_mind)
+ # await bot_schedule.move_doing(self.current_mind)
for _, subheartflow in self._subheartflows.items():
subheartflow.main_heartflow_info = reponse
diff --git a/src/heart_flow/observation.py b/src/heart_flow/observation.py
index fb84ea5c4..b2ad3ce6f 100644
--- a/src/heart_flow/observation.py
+++ b/src/heart_flow/observation.py
@@ -33,7 +33,7 @@ class ChattingObservation(Observation):
self.sub_observe = None
self.llm_summary = LLM_request(
- model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="outer_world"
+ model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
)
# 进行一次观察 返回观察结果observe_info
@@ -52,9 +52,9 @@ class ChattingObservation(Observation):
new_messages_str = ""
for msg in new_messages:
if "detailed_plain_text" in msg:
- new_messages_str += f"{msg['detailed_plain_text']}\n"
+ new_messages_str += f"{msg['detailed_plain_text']}"
- print(f"new_messages_str:{new_messages_str}")
+ # print(f"new_messages_str:{new_messages_str}")
# 将新消息添加到talking_message,同时保持列表长度不超过20条
self.talking_message.extend(new_messages)
@@ -112,7 +112,7 @@ class ChattingObservation(Observation):
# 基于已经有的talking_summary,和新的talking_message,生成一个summary
# print(f"更新聊天总结:{self.talking_summary}")
prompt = ""
- prompt = f"你正在参与一个qq群聊的讨论,这个群之前在聊的内容是:{self.observe_info}\n"
+ prompt = f"你正在参与一个qq群聊的讨论,你记得这个群之前在聊的内容是:{self.observe_info}\n"
prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n"
prompt += """以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,
以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n"""
diff --git a/src/heart_flow/sub_heartflow.py b/src/heart_flow/sub_heartflow.py
index 8989e3b64..5aa69a6f6 100644
--- a/src/heart_flow/sub_heartflow.py
+++ b/src/heart_flow/sub_heartflow.py
@@ -87,13 +87,10 @@ class SubHeartflow:
self.is_active = True
self.last_active_time = current_time # 更新最后激活时间
- observation = self.observations[0]
- await observation.observe()
-
self.current_state.update_current_state_info()
- await self.do_a_thinking()
- await self.judge_willing()
+ # await self.do_a_thinking()
+ # await self.judge_willing()
await asyncio.sleep(global_config.sub_heart_flow_update_interval)
# 检查是否超过10分钟没有激活
@@ -107,7 +104,7 @@ class SubHeartflow:
observation = self.observations[0]
chat_observe_info = observation.observe_info
- print(f"chat_observe_info:{chat_observe_info}")
+ # print(f"chat_observe_info:{chat_observe_info}")
# 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
@@ -144,8 +141,57 @@ class SubHeartflow:
self.current_mind = reponse
logger.debug(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的脑内状态:{self.current_mind}")
+
+ async def do_observe(self):
+ observation = self.observations[0]
+ await observation.observe()
+
+ async def do_thinking_before_reply(self, message_txt):
+ current_thinking_info = self.current_mind
+ mood_info = self.current_state.mood
+ # mood_info = "你很生气,很愤怒"
+ observation = self.observations[0]
+ chat_observe_info = observation.observe_info
+ # print(f"chat_observe_info:{chat_observe_info}")
- async def do_after_reply(self, reply_content, chat_talking_prompt):
+ # 调取记忆
+ related_memory = await HippocampusManager.get_instance().get_memory_from_text(
+ text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
+ )
+
+ if related_memory:
+ related_memory_info = ""
+ for memory in related_memory:
+ related_memory_info += memory[1]
+ else:
+ related_memory_info = ""
+
+ # print(f"相关记忆:{related_memory_info}")
+
+ schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
+
+ prompt = ""
+ # prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
+ prompt += f"你{self.personality_info}\n"
+ prompt += f"你刚刚在做的事情是:{schedule_info}\n"
+ if related_memory_info:
+ prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
+ prompt += f"刚刚你的想法是{current_thinking_info}。\n"
+ prompt += "-----------------------------------\n"
+ prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n"
+ prompt += f"你现在{mood_info}\n"
+ prompt += f"你注意到有人刚刚说:{message_txt}\n"
+ prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
+ prompt += "记得结合上述的消息,要记得维持住你的人设,注意自己的名字,关注有人刚刚说的内容,不要思考太多:"
+ reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
+
+ self.update_current_mind(reponse)
+
+ self.current_mind = reponse
+ logger.debug(f"prompt:\n{prompt}\n")
+ logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
+
+ async def do_thinking_after_reply(self, reply_content, chat_talking_prompt):
print("麦麦回复之后脑袋转起来了")
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
@@ -155,10 +201,10 @@ class SubHeartflow:
message_new_info = chat_talking_prompt
reply_info = reply_content
- schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
+ # schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
prompt = ""
- prompt += f"你现在正在做的事情是:{schedule_info}\n"
+ # prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += f"你{self.personality_info}\n"
prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n"
prompt += f"刚刚你的想法是{current_thinking_info}。"
diff --git a/src/plugins/chat/bot.py b/src/plugins/chat/bot.py
index e01a928d5..ac6d4d2c9 100644
--- a/src/plugins/chat/bot.py
+++ b/src/plugins/chat/bot.py
@@ -47,6 +47,39 @@ class ChatBot:
if not self._started:
self._started = True
+ async def _create_thinking_message(self, message, chat, userinfo, messageinfo):
+ """创建思考消息
+
+ Args:
+ message: 接收到的消息
+ chat: 聊天流对象
+ userinfo: 用户信息对象
+ messageinfo: 消息信息对象
+
+ Returns:
+ str: thinking_id
+ """
+ bot_user_info = UserInfo(
+ user_id=global_config.BOT_QQ,
+ user_nickname=global_config.BOT_NICKNAME,
+ platform=messageinfo.platform,
+ )
+
+ thinking_time_point = round(time.time(), 2)
+ thinking_id = "mt" + str(thinking_time_point)
+ thinking_message = MessageThinking(
+ message_id=thinking_id,
+ chat_stream=chat,
+ bot_user_info=bot_user_info,
+ reply=message,
+ thinking_start_time=thinking_time_point,
+ )
+
+ message_manager.add_message(thinking_message)
+ willing_manager.change_reply_willing_sent(chat)
+
+ return thinking_id
+
async def message_process(self, message_data: str) -> None:
"""处理转化后的统一格式消息
1. 过滤消息
@@ -56,6 +89,8 @@ class ChatBot:
5. 更新关系
6. 更新情绪
"""
+ timing_results = {} # 用于收集所有计时结果
+ response_set = None # 初始化response_set变量
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
@@ -75,10 +110,7 @@ class ChatBot:
# 创建 心流与chat的观察
heartflow.create_subheartflow(chat.stream_id)
- timer1 = time.time()
await message.process()
- timer2 = time.time()
- logger.debug(f"2消息处理时间: {timer2 - timer1}秒")
# 过滤词/正则表达式过滤
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
@@ -94,7 +126,7 @@ class ChatBot:
message.processed_plain_text, fast_retrieval=True
)
timer2 = time.time()
- logger.debug(f"3记忆激活时间: {timer2 - timer1}秒")
+ timing_results["记忆激活"] = timer2 - timer1
is_mentioned = is_mentioned_bot_in_message(message)
@@ -118,7 +150,7 @@ class ChatBot:
sender_id=str(message.message_info.user_info.user_id),
)
timer2 = time.time()
- logger.debug(f"4计算意愿激活时间: {timer2 - timer1}秒")
+ timing_results["意愿激活"] = timer2 - timer1
# 神秘的消息流数据结构处理
if chat.group_info:
@@ -138,12 +170,30 @@ class ChatBot:
if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys():
reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"]
+ do_reply = False
# 开始组织语言
if random() < reply_probability:
+ do_reply = True
+
timer1 = time.time()
- response_set, thinking_id = await self._generate_response_from_message(message, chat, userinfo, messageinfo)
+ thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
timer2 = time.time()
- logger.info(f"5生成回复时间: {timer2 - timer1}秒")
+ timing_results["创建思考消息"] = timer2 - timer1
+
+ timer1 = time.time()
+ await heartflow.get_subheartflow(chat.stream_id).do_observe()
+ timer2 = time.time()
+ timing_results["观察"] = timer2 - timer1
+
+ timer1 = time.time()
+ await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(message.processed_plain_text)
+ timer2 = time.time()
+ timing_results["思考前脑内状态"] = timer2 - timer1
+
+ timer1 = time.time()
+ response_set = await self.gpt.generate_response(message)
+ timer2 = time.time()
+ timing_results["生成回复"] = timer2 - timer1
if not response_set:
logger.info("为什么生成回复失败?")
@@ -153,56 +203,25 @@ class ChatBot:
timer1 = time.time()
await self._send_response_messages(message, chat, response_set, thinking_id)
timer2 = time.time()
- logger.info(f"7发送消息时间: {timer2 - timer1}秒")
+ timing_results["发送消息"] = timer2 - timer1
# 处理表情包
timer1 = time.time()
await self._handle_emoji(message, chat, response_set)
timer2 = time.time()
- logger.debug(f"8处理表情包时间: {timer2 - timer1}秒")
+ timing_results["处理表情包"] = timer2 - timer1
timer1 = time.time()
await self._update_using_response(message, response_set)
timer2 = time.time()
- logger.info(f"6更新htfl时间: {timer2 - timer1}秒")
+ timing_results["更新心流"] = timer2 - timer1
- # 更新情绪和关系
- # await self._update_emotion_and_relationship(message, chat, response_set)
-
- async def _generate_response_from_message(self, message, chat, userinfo, messageinfo):
- """生成回复内容
-
- Args:
- message: 接收到的消息
- chat: 聊天流对象
- userinfo: 用户信息对象
- messageinfo: 消息信息对象
-
- Returns:
- tuple: (response, raw_content) 回复内容和原始内容
- """
- bot_user_info = UserInfo(
- user_id=global_config.BOT_QQ,
- user_nickname=global_config.BOT_NICKNAME,
- platform=messageinfo.platform,
- )
-
- thinking_time_point = round(time.time(), 2)
- thinking_id = "mt" + str(thinking_time_point)
- thinking_message = MessageThinking(
- message_id=thinking_id,
- chat_stream=chat,
- bot_user_info=bot_user_info,
- reply=message,
- thinking_start_time=thinking_time_point,
- )
-
- message_manager.add_message(thinking_message)
- willing_manager.change_reply_willing_sent(chat)
-
- response_set = await self.gpt.generate_response(message)
-
- return response_set, thinking_id
+ # 在最后统一输出所有计时结果
+ if do_reply:
+ timing_str = " | ".join([f"{step}: {duration:.2f}秒" for step, duration in timing_results.items()])
+ trigger_msg = message.processed_plain_text
+ response_msg = " ".join(response_set) if response_set else "无回复"
+ logger.info(f"触发消息: {trigger_msg[:20]}... | 生成消息: {response_msg[:20]}... | 性能计时: {timing_str}")
async def _update_using_response(self, message, response_set):
# 更新心流状态
@@ -213,7 +232,7 @@ class ChatBot:
stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
)
- await heartflow.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt)
+ await heartflow.get_subheartflow(stream_id).do_thinking_after_reply(response_set, chat_talking_prompt)
async def _send_response_messages(self, message, chat, response_set, thinking_id):
container = message_manager.get_container(chat.stream_id)
diff --git a/src/plugins/chat/llm_generator.py b/src/plugins/chat/llm_generator.py
index f551dcca7..b0c9a59e2 100644
--- a/src/plugins/chat/llm_generator.py
+++ b/src/plugins/chat/llm_generator.py
@@ -1,4 +1,3 @@
-import random
import time
from typing import List, Optional, Tuple, Union
@@ -30,7 +29,7 @@ class ResponseGenerator:
request_type="response",
)
self.model_normal = LLM_request(
- model=global_config.llm_normal, temperature=0.7, max_tokens=3000, request_type="response"
+ model=global_config.llm_normal, temperature=0.8, max_tokens=256, request_type="response"
)
self.model_sum = LLM_request(
@@ -42,20 +41,26 @@ class ResponseGenerator:
async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型
- if random.random() < global_config.MODEL_R1_PROBABILITY:
- self.current_model_type = "深深地"
- current_model = self.model_reasoning
- else:
- self.current_model_type = "浅浅的"
- current_model = self.model_normal
+ # if random.random() < global_config.MODEL_R1_PROBABILITY:
+ # self.current_model_type = "深深地"
+ # current_model = self.model_reasoning
+ # else:
+ # self.current_model_type = "浅浅的"
+ # current_model = self.model_normal
+ # logger.info(
+ # f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
+ # ) # noqa: E501
+
+
logger.info(
- f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
- ) # noqa: E501
+ f"思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
+ )
+ current_model = self.model_normal
model_response = await self._generate_response_with_model(message, current_model)
- print(f"raw_content: {model_response}")
+ # print(f"raw_content: {model_response}")
if model_response:
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
@@ -126,8 +131,6 @@ class ResponseGenerator:
"user": sender_name,
"message": message.processed_plain_text,
"model": self.current_model_name,
- # 'reasoning_check': reasoning_content_check,
- # 'response_check': content_check,
"reasoning": reasoning_content,
"response": content,
"prompt": prompt,
diff --git a/src/plugins/chat/message_sender.py b/src/plugins/chat/message_sender.py
index 5d8c07e0b..378ee6864 100644
--- a/src/plugins/chat/message_sender.py
+++ b/src/plugins/chat/message_sender.py
@@ -188,11 +188,11 @@ class MessageManager:
# print(message_earliest.is_head)
# print(message_earliest.update_thinking_time())
# print(message_earliest.is_private_message())
- # thinking_time = message_earliest.update_thinking_time()
- # print(thinking_time)
+ thinking_time = message_earliest.update_thinking_time()
+ print(thinking_time)
if (
message_earliest.is_head
- and message_earliest.update_thinking_time() > 50
+ and message_earliest.update_thinking_time() > 18
and not message_earliest.is_private_message() # 避免在私聊时插入reply
):
logger.debug(f"设置回复消息{message_earliest.processed_plain_text}")
@@ -215,11 +215,11 @@ class MessageManager:
try:
# print(msg.is_head)
- # print(msg.update_thinking_time())
+ print(msg.update_thinking_time())
# print(msg.is_private_message())
if (
msg.is_head
- and msg.update_thinking_time() > 50
+ and msg.update_thinking_time() > 18
and not msg.is_private_message() # 避免在私聊时插入reply
):
logger.debug(f"设置回复消息{msg.processed_plain_text}")
diff --git a/src/plugins/chat/prompt_builder.py b/src/plugins/chat/prompt_builder.py
index 499aaa5fe..cc048fc70 100644
--- a/src/plugins/chat/prompt_builder.py
+++ b/src/plugins/chat/prompt_builder.py
@@ -24,27 +24,9 @@ class PromptBuilder:
async def _build_prompt(
self, chat_stream, message_txt: str, sender_name: str = "某人", stream_id: Optional[int] = None
) -> tuple[str, str]:
- # 关系(载入当前聊天记录里部分人的关系)
- # who_chat_in_group = [chat_stream]
- # who_chat_in_group += get_recent_group_speaker(
- # stream_id,
- # (chat_stream.user_info.user_id, chat_stream.user_info.platform),
- # limit=global_config.MAX_CONTEXT_SIZE,
- # )
-
- # outer_world_info = outer_world.outer_world_info
-
+
current_mind_info = heartflow.get_subheartflow(stream_id).current_mind
- # relation_prompt = ""
- # for person in who_chat_in_group:
- # relation_prompt += relationship_manager.build_relationship_info(person)
-
- # relation_prompt_all = (
- # f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
- # f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
- # )
-
# 开始构建prompt
# 心情
@@ -71,25 +53,6 @@ class PromptBuilder:
chat_talking_prompt = chat_talking_prompt
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
- # 使用新的记忆获取方法
- memory_prompt = ""
- start_time = time.time()
-
- # 调用 hippocampus 的 get_relevant_memories 方法
- relevant_memories = await HippocampusManager.get_instance().get_memory_from_text(
- text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=2, fast_retrieval=False
- )
- memory_str = ""
- for _topic, memories in relevant_memories:
- memory_str += f"{memories}\n"
-
- if relevant_memories:
- # 格式化记忆内容
- memory_prompt = f"你回忆起:\n{memory_str}\n"
-
- end_time = time.time()
- logger.info(f"回忆耗时: {(end_time - start_time):.3f}秒")
-
# 类型
if chat_in_group:
chat_target = "你正在qq群里聊天,下面是群里在聊的内容:"
@@ -146,19 +109,18 @@ class PromptBuilder:
涉及政治敏感以及违法违规的内容请规避。"""
logger.info("开始构建prompt")
+
prompt = f"""
{prompt_info}
-{memory_prompt}
-你刚刚脑子里在想:
-{current_mind_info}
-
{chat_target}
{chat_talking_prompt}
-现在"{sender_name}"说的:{message_txt}。引起了你的注意,{mood_prompt}\n
+你刚刚脑子里在想:
+{current_mind_info}
+现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)},{prompt_personality}。
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
-请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,
+请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
{moderation_prompt}不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。"""
diff --git a/src/plugins/chat/utils_image.py b/src/plugins/chat/utils_image.py
index e74ce2890..729c8e1f8 100644
--- a/src/plugins/chat/utils_image.py
+++ b/src/plugins/chat/utils_image.py
@@ -32,7 +32,7 @@ class ImageManager:
self._ensure_description_collection()
self._ensure_image_dir()
self._initialized = True
- self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=1000, request_type="image")
+ self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300, request_type="image")
def _ensure_image_dir(self):
"""确保图像存储目录存在"""
@@ -171,7 +171,7 @@ class ImageManager:
# 调用AI获取描述
prompt = (
- "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
+ "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多100个字。"
)
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
diff --git a/src/plugins/config/config.py b/src/plugins/config/config.py
index a4a38dc1a..41ef7a3e8 100644
--- a/src/plugins/config/config.py
+++ b/src/plugins/config/config.py
@@ -25,7 +25,7 @@ logger = get_module_logger("config", config=config_config)
#考虑到,实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
mai_version_main = "0.6.0"
-mai_version_fix = "mmc-2"
+mai_version_fix = "mmc-3"
mai_version = f"{mai_version_main}-{mai_version_fix}"
def update_config():
@@ -231,7 +231,7 @@ class BotConfig:
# 模型配置
llm_reasoning: Dict[str, str] = field(default_factory=lambda: {})
- llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
+ # llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
llm_normal: Dict[str, str] = field(default_factory=lambda: {})
llm_topic_judge: Dict[str, str] = field(default_factory=lambda: {})
llm_summary_by_topic: Dict[str, str] = field(default_factory=lambda: {})
@@ -370,9 +370,9 @@ class BotConfig:
response_config = parent["response"]
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
- config.MODEL_R1_DISTILL_PROBABILITY = response_config.get(
- "model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY
- )
+ # config.MODEL_R1_DISTILL_PROBABILITY = response_config.get(
+ # "model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY
+ # )
config.max_response_length = response_config.get("max_response_length", config.max_response_length)
def willing(parent: dict):
@@ -397,7 +397,7 @@ class BotConfig:
config_list = [
"llm_reasoning",
- "llm_reasoning_minor",
+ # "llm_reasoning_minor",
"llm_normal",
"llm_topic_judge",
"llm_summary_by_topic",
diff --git a/src/plugins/memory_system/Hippocampus.py b/src/plugins/memory_system/Hippocampus.py
index aff35f002..717cebe17 100644
--- a/src/plugins/memory_system/Hippocampus.py
+++ b/src/plugins/memory_system/Hippocampus.py
@@ -697,6 +697,11 @@ class ParahippocampalGyrus:
start_time = time.time()
logger.info("[遗忘] 开始检查数据库...")
+ # 验证百分比参数
+ if not 0 <= percentage <= 1:
+ logger.warning(f"[遗忘] 无效的遗忘百分比: {percentage}, 使用默认值 0.005")
+ percentage = 0.005
+
all_nodes = list(self.memory_graph.G.nodes())
all_edges = list(self.memory_graph.G.edges())
@@ -704,11 +709,21 @@ class ParahippocampalGyrus:
logger.info("[遗忘] 记忆图为空,无需进行遗忘操作")
return
- check_nodes_count = max(1, int(len(all_nodes) * percentage))
- check_edges_count = max(1, int(len(all_edges) * percentage))
+ # 确保至少检查1个节点和边,且不超过总数
+ check_nodes_count = max(1, min(len(all_nodes), int(len(all_nodes) * percentage)))
+ check_edges_count = max(1, min(len(all_edges), int(len(all_edges) * percentage)))
- nodes_to_check = random.sample(all_nodes, check_nodes_count)
- edges_to_check = random.sample(all_edges, check_edges_count)
+ # 只有在有足够的节点和边时才进行采样
+ if len(all_nodes) >= check_nodes_count and len(all_edges) >= check_edges_count:
+ try:
+ nodes_to_check = random.sample(all_nodes, check_nodes_count)
+ edges_to_check = random.sample(all_edges, check_edges_count)
+ except ValueError as e:
+ logger.error(f"[遗忘] 采样错误: {str(e)}")
+ return
+ else:
+ logger.info("[遗忘] 没有足够的节点或边进行遗忘操作")
+ return
# 使用列表存储变化信息
edge_changes = {
diff --git a/src/plugins/memory_system/sample_distribution.py b/src/plugins/memory_system/sample_distribution.py
index 29218d21f..5dae2f266 100644
--- a/src/plugins/memory_system/sample_distribution.py
+++ b/src/plugins/memory_system/sample_distribution.py
@@ -58,8 +58,18 @@ class MemoryBuildScheduler:
weight2 (float): 第二个分布的权重
total_samples (int): 要生成的总时间点数量
"""
+ # 验证参数
+ if total_samples <= 0:
+ raise ValueError("total_samples 必须大于0")
+ if weight1 < 0 or weight2 < 0:
+ raise ValueError("权重必须为非负数")
+ if std_hours1 < 0 or std_hours2 < 0:
+ raise ValueError("标准差必须为非负数")
+
# 归一化权重
total_weight = weight1 + weight2
+ if total_weight == 0:
+ raise ValueError("权重总和不能为0")
self.weight1 = weight1 / total_weight
self.weight2 = weight2 / total_weight
@@ -73,12 +83,11 @@ class MemoryBuildScheduler:
def generate_time_samples(self):
"""生成混合分布的时间采样点"""
# 根据权重计算每个分布的样本数
- samples1 = int(self.total_samples * self.weight1)
- samples2 = self.total_samples - samples1
+ samples1 = max(1, int(self.total_samples * self.weight1))
+ samples2 = max(1, self.total_samples - samples1) # 确保 samples2 至少为1
# 生成两个正态分布的小时偏移
hours_offset1 = np.random.normal(loc=self.n_hours1, scale=self.std_hours1, size=samples1)
-
hours_offset2 = np.random.normal(loc=self.n_hours2, scale=self.std_hours2, size=samples2)
# 合并两个分布的偏移
diff --git a/src/plugins/models/utils_model.py b/src/plugins/models/utils_model.py
index 51f34a077..263e11618 100644
--- a/src/plugins/models/utils_model.py
+++ b/src/plugins/models/utils_model.py
@@ -285,39 +285,46 @@ class LLM_request:
usage = None # 初始化usage变量,避免未定义错误
async for line_bytes in response.content:
- line = line_bytes.decode("utf-8").strip()
- if not line:
- continue
- if line.startswith("data:"):
- data_str = line[5:].strip()
- if data_str == "[DONE]":
- break
- try:
- chunk = json.loads(data_str)
- if flag_delta_content_finished:
- chunk_usage = chunk.get("usage", None)
- if chunk_usage:
- usage = chunk_usage # 获取token用量
- else:
- delta = chunk["choices"][0]["delta"]
- delta_content = delta.get("content")
- if delta_content is None:
- delta_content = ""
- accumulated_content += delta_content
- # 检测流式输出文本是否结束
- finish_reason = chunk["choices"][0].get("finish_reason")
- if delta.get("reasoning_content", None):
- reasoning_content += delta["reasoning_content"]
- if finish_reason == "stop":
+ try:
+ line = line_bytes.decode("utf-8").strip()
+ if not line:
+ continue
+ if line.startswith("data:"):
+ data_str = line[5:].strip()
+ if data_str == "[DONE]":
+ break
+ try:
+ chunk = json.loads(data_str)
+ if flag_delta_content_finished:
chunk_usage = chunk.get("usage", None)
if chunk_usage:
- usage = chunk_usage
- break
- # 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk
- flag_delta_content_finished = True
+ usage = chunk_usage # 获取token用量
+ else:
+ delta = chunk["choices"][0]["delta"]
+ delta_content = delta.get("content")
+ if delta_content is None:
+ delta_content = ""
+ accumulated_content += delta_content
+ # 检测流式输出文本是否结束
+ finish_reason = chunk["choices"][0].get("finish_reason")
+ if delta.get("reasoning_content", None):
+ reasoning_content += delta["reasoning_content"]
+ if finish_reason == "stop":
+ chunk_usage = chunk.get("usage", None)
+ if chunk_usage:
+ usage = chunk_usage
+ break
+ # 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk
+ flag_delta_content_finished = True
- except Exception as e:
- logger.exception(f"解析流式输出错误: {str(e)}")
+ except Exception as e:
+ logger.exception(f"解析流式输出错误: {str(e)}")
+ except GeneratorExit:
+ logger.warning("流式输出被中断")
+ break
+ except Exception as e:
+ logger.error(f"处理流式输出时发生错误: {str(e)}")
+ break
content = accumulated_content
think_match = re.search(r"(.*?)", content, re.DOTALL)
if think_match:
diff --git a/src/plugins/schedule/schedule_generator.py b/src/plugins/schedule/schedule_generator.py
index ae46ae8c2..a6a312624 100644
--- a/src/plugins/schedule/schedule_generator.py
+++ b/src/plugins/schedule/schedule_generator.py
@@ -176,21 +176,27 @@ class ScheduleGenerator:
logger.warning(f"未找到{today_str}的日程记录")
async def move_doing(self, mind_thinking: str = ""):
- current_time = datetime.datetime.now()
- if mind_thinking:
- doing_prompt = self.construct_doing_prompt(current_time, mind_thinking)
- else:
- doing_prompt = self.construct_doing_prompt(current_time)
+ try:
+ current_time = datetime.datetime.now()
+ if mind_thinking:
+ doing_prompt = self.construct_doing_prompt(current_time, mind_thinking)
+ else:
+ doing_prompt = self.construct_doing_prompt(current_time)
- # print(doing_prompt)
- doing_response, _ = await self.llm_scheduler_doing.generate_response_async(doing_prompt)
- self.today_done_list.append((current_time, doing_response))
+ doing_response, _ = await self.llm_scheduler_doing.generate_response_async(doing_prompt)
+ self.today_done_list.append((current_time, doing_response))
- await self.update_today_done_list()
+ await self.update_today_done_list()
- logger.info(f"当前活动: {doing_response}")
+ logger.info(f"当前活动: {doing_response}")
- return doing_response
+ return doing_response
+ except GeneratorExit:
+ logger.warning("日程生成被中断")
+ return "日程生成被中断"
+ except Exception as e:
+ logger.error(f"生成日程时发生错误: {str(e)}")
+ return "生成日程时发生错误"
async def get_task_from_time_to_time(self, start_time: str, end_time: str):
"""获取指定时间范围内的任务列表
diff --git a/src/plugins/utils/statistic.py b/src/plugins/utils/statistic.py
index 8e9ebb2cb..529793837 100644
--- a/src/plugins/utils/statistic.py
+++ b/src/plugins/utils/statistic.py
@@ -20,6 +20,7 @@ class LLMStatistics:
self.output_file = output_file
self.running = False
self.stats_thread = None
+ self.console_thread = None
self._init_database()
def _init_database(self):
@@ -32,15 +33,22 @@ class LLMStatistics:
"""启动统计线程"""
if not self.running:
self.running = True
+ # 启动文件统计线程
self.stats_thread = threading.Thread(target=self._stats_loop)
self.stats_thread.daemon = True
self.stats_thread.start()
+ # 启动控制台输出线程
+ self.console_thread = threading.Thread(target=self._console_output_loop)
+ self.console_thread.daemon = True
+ self.console_thread.start()
def stop(self):
"""停止统计线程"""
self.running = False
if self.stats_thread:
self.stats_thread.join()
+ if self.console_thread:
+ self.console_thread.join()
def _record_online_time(self):
"""记录在线时间"""
@@ -126,10 +134,19 @@ class LLMStatistics:
messages_cursor = db.messages.find({"time": {"$gte": start_time.timestamp()}})
for doc in messages_cursor:
stats["total_messages"] += 1
- user_id = str(doc.get("user_info", {}).get("user_id", "unknown"))
- chat_id = str(doc.get("chat_id", "unknown"))
- stats["messages_by_user"][user_id] += 1
- stats["messages_by_chat"][chat_id] += 1
+ # user_id = str(doc.get("user_info", {}).get("user_id", "unknown"))
+ chat_info = doc.get("chat_info", {})
+ user_info = doc.get("user_info", {})
+ group_info = chat_info.get("group_info") if chat_info else {}
+ # print(f"group_info: {group_info}")
+ group_name = "unknown"
+ if group_info:
+ group_name = group_info["group_name"]
+ if user_info and group_name == "unknown":
+ group_name = user_info["user_nickname"]
+ # print(f"group_name: {group_name}")
+ stats["messages_by_user"][user_id] += 1
+ stats["messages_by_chat"][group_name] += 1
return stats
@@ -201,17 +218,74 @@ class LLMStatistics:
)
output.append("")
- # 添加消息统计
- output.append("消息统计:")
- output.append(("用户ID 消息数量"))
- for user_id, count in sorted(stats["messages_by_user"].items()):
- output.append(f"{user_id[:32]:<32} {count:>10}")
+ # 添加聊天统计
+ output.append("群组统计:")
+ output.append(("群组名称 消息数量"))
+ for group_name, count in sorted(stats["messages_by_chat"].items()):
+ output.append(f"{group_name[:32]:<32} {count:>10}")
+
+ return "\n".join(output)
+
+ def _format_stats_section_lite(self, stats: Dict[str, Any], title: str) -> str:
+ """格式化统计部分的输出"""
+ output = []
+
+ output.append("\n" + "-" * 84)
+ output.append(f"{title}")
+ output.append("-" * 84)
+
+ # output.append(f"总请求数: {stats['total_requests']}")
+ if stats["total_requests"] > 0:
+ # output.append(f"总Token数: {stats['total_tokens']}")
+ output.append(f"总花费: {stats['total_cost']:.4f}¥")
+ # output.append(f"在线时间: {stats['online_time_minutes']}分钟")
+ output.append(f"总消息数: {stats['total_messages']}\n")
+
+ data_fmt = "{:<32} {:>10} {:>14} {:>13.4f} ¥"
+
+ # 按模型统计
+ output.append("按模型统计:")
+ output.append(("模型名称 调用次数 Token总量 累计花费"))
+ for model_name, count in sorted(stats["requests_by_model"].items()):
+ tokens = stats["tokens_by_model"][model_name]
+ cost = stats["costs_by_model"][model_name]
+ output.append(
+ data_fmt.format(model_name[:32] + ".." if len(model_name) > 32 else model_name, count, tokens, cost)
+ )
output.append("")
- output.append("聊天统计:")
- output.append(("聊天ID 消息数量"))
- for chat_id, count in sorted(stats["messages_by_chat"].items()):
- output.append(f"{chat_id[:32]:<32} {count:>10}")
+ # 按请求类型统计
+ # output.append("按请求类型统计:")
+ # output.append(("模型名称 调用次数 Token总量 累计花费"))
+ # for req_type, count in sorted(stats["requests_by_type"].items()):
+ # tokens = stats["tokens_by_type"][req_type]
+ # cost = stats["costs_by_type"][req_type]
+ # output.append(
+ # data_fmt.format(req_type[:22] + ".." if len(req_type) > 24 else req_type, count, tokens, cost)
+ # )
+ # output.append("")
+
+ # 修正用户统计列宽
+ # output.append("按用户统计:")
+ # output.append(("用户ID 调用次数 Token总量 累计花费"))
+ # for user_id, count in sorted(stats["requests_by_user"].items()):
+ # tokens = stats["tokens_by_user"][user_id]
+ # cost = stats["costs_by_user"][user_id]
+ # output.append(
+ # data_fmt.format(
+ # user_id[:22], # 不再添加省略号,保持原始ID
+ # count,
+ # tokens,
+ # cost,
+ # )
+ # )
+ # output.append("")
+
+ # 添加聊天统计
+ output.append("群组统计:")
+ output.append(("群组名称 消息数量"))
+ for group_name, count in sorted(stats["messages_by_chat"].items()):
+ output.append(f"{group_name[:32]:<32} {count:>10}")
return "\n".join(output)
@@ -237,8 +311,30 @@ class LLMStatistics:
with open(self.output_file, "w", encoding="utf-8") as f:
f.write("\n".join(output))
+ def _console_output_loop(self):
+ """控制台输出循环,每5分钟输出一次最近1小时的统计"""
+ while self.running:
+ # 等待5分钟
+ for _ in range(300): # 5分钟 = 300秒
+ if not self.running:
+ break
+ time.sleep(1)
+ try:
+ # 收集最近1小时的统计数据
+ now = datetime.now()
+ hour_stats = self._collect_statistics_for_period(now - timedelta(hours=1))
+
+ # 使用logger输出
+ stats_output = self._format_stats_section_lite(hour_stats, "最近1小时统计:详细信息见根目录文件:llm_statistics.txt")
+ logger.info("\n" + stats_output + "\n" + "=" * 50)
+
+ except Exception:
+ logger.exception("控制台统计数据输出失败")
+
+
+
def _stats_loop(self):
- """统计循环,每1分钟运行一次"""
+ """统计循环,每5分钟运行一次"""
while self.running:
try:
# 记录在线时间
@@ -250,7 +346,7 @@ class LLMStatistics:
logger.exception("统计数据处理失败")
# 等待5分钟
- for _ in range(30): # 5分钟 = 300秒
+ for _ in range(300): # 5分钟 = 300秒
if not self.running:
break
time.sleep(1)
diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml
index d952aaa4f..5a13710e5 100644
--- a/template/bot_config_template.toml
+++ b/template/bot_config_template.toml
@@ -1,5 +1,5 @@
[inner]
-version = "1.0.2"
+version = "1.0.3"
#以下是给开发人员阅读的,一般用户不需要阅读
@@ -53,7 +53,7 @@ schedule_temperature = 0.5 # 日程表温度,建议0.5-1.0
nonebot-qq="http://127.0.0.1:18002/api/message"
[heartflow] # 注意:可能会消耗大量token,请谨慎开启
-enable = false
+enable = false #该选项未启用
sub_heart_flow_update_interval = 60 # 子心流更新频率,间隔 单位秒
sub_heart_flow_freeze_time = 120 # 子心流冻结时间,超过这个时间没有回复,子心流会冻结,间隔 单位秒
sub_heart_flow_stop_time = 600 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
@@ -63,9 +63,9 @@ heart_flow_update_interval = 300 # 心流更新频率,间隔 单位秒
[message]
-max_context_size = 15 # 麦麦获得的上文数量,建议15,太短太长都会导致脑袋尖尖
+max_context_size = 12 # 麦麦获得的上文数量,建议12,太短太长都会导致脑袋尖尖
emoji_chance = 0.2 # 麦麦使用表情包的概率
-thinking_timeout = 120 # 麦麦最长思考时间,超过这个时间的思考会放弃
+thinking_timeout = 60 # 麦麦最长思考时间,超过这个时间的思考会放弃
max_response_length = 256 # 麦麦回答的最大token数
ban_words = [
# "403","张三"
@@ -87,10 +87,9 @@ response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听
down_frequency_rate = 3 # 降低回复频率的群组回复意愿降低系数 除法
emoji_response_penalty = 0.1 # 表情包回复惩罚系数,设为0为不回复单个表情包,减少单独回复表情包的概率
-[response]
-model_r1_probability = 0.8 # 麦麦回答时选择主要回复模型1 模型的概率
-model_v3_probability = 0.1 # 麦麦回答时选择次要回复模型2 模型的概率
-model_r1_distill_probability = 0.1 # 麦麦回答时选择次要回复模型3 模型的概率
+[response] #这些选项已无效
+model_r1_probability = 0 # 麦麦回答时选择主要回复模型1 模型的概率
+model_v3_probability = 1.0 # 麦麦回答时选择次要回复模型2 模型的概率
[emoji]
check_interval = 15 # 检查破损表情包的时间间隔(分钟)
@@ -159,22 +158,16 @@ enable_friend_chat = false # 是否启用好友聊天
# stream = : 用于指定模型是否是使用流式输出
# 如果不指定,则该项是 False
-[model.llm_reasoning] #回复模型1 主要回复模型
+[model.llm_reasoning] #暂时未使用
name = "Pro/deepseek-ai/DeepSeek-R1"
# name = "Qwen/QwQ-32B"
provider = "SILICONFLOW"
pri_in = 4 #模型的输入价格(非必填,可以记录消耗)
pri_out = 16 #模型的输出价格(非必填,可以记录消耗)
-[model.llm_reasoning_minor] #回复模型3 次要回复模型
-name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
-provider = "SILICONFLOW"
-pri_in = 1.26 #模型的输入价格(非必填,可以记录消耗)
-pri_out = 1.26 #模型的输出价格(非必填,可以记录消耗)
-
#非推理模型
-[model.llm_normal] #V3 回复模型2 次要回复模型
+[model.llm_normal] #V3 回复模型1 主要回复模型
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2 #模型的输入价格(非必填,可以记录消耗)
diff --git a/template/template.env b/template/template.env
index 934a331d0..06e9b07ec 100644
--- a/template/template.env
+++ b/template/template.env
@@ -1,5 +1,5 @@
HOST=127.0.0.1
-PORT=8080
+PORT=8000
# 插件配置
PLUGINS=["src2.plugins.chat"]