perf(memory): 优化记忆系统数据库操作并修复并发问题

将消息记忆次数的更新方式从单次写入重构为批量更新,在记忆构建任务结束时统一执行,大幅减少数据库写入次数,显著提升性能。

此外,为 `HippocampusManager` 添加了异步锁,以防止记忆巩固和遗忘操作并发执行时产生竞争条件。同时,增加了节点去重逻辑,在插入数据库前检查重复的概念,确保数据一致性。
This commit is contained in:
minecraft1024a
2025-09-23 19:15:58 +08:00
parent 4630728760
commit ae738ef8cb
2 changed files with 45 additions and 24 deletions

View File

@@ -3,6 +3,7 @@ import datetime
import math
import random
import time
import asyncio
import re
import orjson
import jieba
@@ -789,7 +790,7 @@ class EntorhinalCortex:
self.hippocampus = hippocampus
self.memory_graph = hippocampus.memory_graph
async def get_memory_sample(self):
async def get_memory_sample(self) -> tuple[list, list[str]]:
"""从数据库获取记忆样本"""
# 硬编码:每条消息最大记忆次数
max_memorized_time_per_msg = 2
@@ -811,24 +812,27 @@ class EntorhinalCortex:
for _, readable_timestamp in zip(timestamps, readable_timestamps, strict=False):
logger.debug(f"回忆往事: {readable_timestamp}")
chat_samples = []
all_message_ids_to_update = []
for timestamp in timestamps:
if messages := await self.random_get_msg_snippet(
if result := await self.random_get_msg_snippet(
timestamp,
global_config.memory.memory_build_sample_length,
max_memorized_time_per_msg,
):
messages, message_ids_to_update = result
time_diff = (datetime.datetime.now().timestamp() - timestamp) / 3600
logger.info(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}")
chat_samples.append(messages)
all_message_ids_to_update.extend(message_ids_to_update)
else:
logger.debug(f"时间戳 {timestamp} 的消息无需记忆")
return chat_samples
return chat_samples, all_message_ids_to_update
@staticmethod
async def random_get_msg_snippet(
target_timestamp: float, chat_size: int, max_memorized_time_per_msg: int
) -> list | None:
) -> tuple[list, list[str]] | None:
# sourcery skip: invert-any-all, use-any, use-named-expression, use-next
"""从数据库中随机获取指定时间戳附近的消息片段 (使用 chat_message_builder)"""
time_window_seconds = random.randint(300, 1800) # 随机时间窗口5到30分钟
@@ -862,18 +866,9 @@ class EntorhinalCortex:
# 如果所有消息都有效
if all_valid:
# 更新数据库中的记忆次数
for message in messages:
# 确保在更新前获取最新的 memorized_times
current_memorized_times = message.get("memorized_times", 0)
async with get_db_session() as session:
await session.execute(
update(Messages)
.where(Messages.message_id == message["message_id"])
.values(memorized_times=current_memorized_times + 1)
)
await session.commit()
return messages # 直接返回原始的消息列表
# 返回消息和需要更新的message_id
message_ids_to_update = [msg["message_id"] for msg in messages]
return messages, message_ids_to_update
target_timestamp -= 120 # 如果第一次尝试失败,稍微向前调整时间戳再试
@@ -953,9 +948,19 @@ class EntorhinalCortex:
# 批量处理节点
if nodes_to_create:
# 在插入前进行去重检查
unique_nodes_to_create = []
seen_concepts = set(db_nodes.keys())
for node_data in nodes_to_create:
concept = node_data["concept"]
if concept not in seen_concepts:
unique_nodes_to_create.append(node_data)
seen_concepts.add(concept)
if unique_nodes_to_create:
batch_size = 100
for i in range(0, len(nodes_to_create), batch_size):
batch = nodes_to_create[i : i + batch_size]
for i in range(0, len(unique_nodes_to_create), batch_size):
batch = unique_nodes_to_create[i : i + batch_size]
await session.execute(insert(GraphNodes), batch)
if nodes_to_update:
@@ -1346,7 +1351,7 @@ class ParahippocampalGyrus:
# sourcery skip: merge-list-appends-into-extend
logger.info("------------------------------------开始构建记忆--------------------------------------")
start_time = time.time()
memory_samples = await self.hippocampus.entorhinal_cortex.get_memory_sample()
memory_samples, all_message_ids_to_update = await self.hippocampus.entorhinal_cortex.get_memory_sample()
all_added_nodes = []
all_connected_nodes = []
all_added_edges = []
@@ -1409,8 +1414,21 @@ class ParahippocampalGyrus:
if all_connected_nodes:
logger.info(f"强化连接节点: {', '.join(all_connected_nodes)}")
# 先同步记忆图
await self.hippocampus.entorhinal_cortex.sync_memory_to_db()
# 最后批量更新消息的记忆次数
if all_message_ids_to_update:
async with get_db_session() as session:
# 使用 in_ 操作符进行批量更新
await session.execute(
update(Messages)
.where(Messages.message_id.in_(all_message_ids_to_update))
.values(memorized_times=Messages.memorized_times + 1)
)
await session.commit()
logger.info(f"批量更新了 {len(all_message_ids_to_update)} 条消息的记忆次数")
end_time = time.time()
logger.info(f"---------------------记忆构建耗时: {end_time - start_time:.2f} 秒---------------------")
@@ -1617,6 +1635,7 @@ class HippocampusManager:
def __init__(self):
self._hippocampus: Hippocampus = None # type: ignore
self._initialized = False
self._db_lock = asyncio.Lock()
def initialize(self):
"""初始化海马体实例"""
@@ -1665,6 +1684,7 @@ class HippocampusManager:
"""遗忘记忆的公共接口"""
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
async with self._db_lock:
return await self._hippocampus.parahippocampal_gyrus.operation_forget_topic(percentage)
async def consolidate_memory(self):
@@ -1672,6 +1692,7 @@ class HippocampusManager:
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
# 使用 operation_build_memory 方法来整合记忆
async with self._db_lock:
return await self._hippocampus.parahippocampal_gyrus.operation_build_memory()
async def get_memory_from_text(

View File

@@ -339,7 +339,7 @@ class NoticeHandler:
message_id=raw_message.get("message_id",""),
emoji_id=like_emoji_id
)
seg_data = Seg(type="text",data=f"{user_name}使用Emoji表情{QQ_FACE.get(like_emoji_id,"")}回复了你的消息[{target_message_text}]")
seg_data = Seg(type="text",data=f"{user_name}使用Emoji表情{QQ_FACE.get(like_emoji_id, '')}回复了你的消息[{target_message_text}]")
return seg_data, user_info
async def handle_ban_notify(self, raw_message: dict, group_id: int) -> Tuple[Seg, UserInfo] | Tuple[None, None]: