From ae738ef8cb4f4ddb47ad9ef2075ab8fc2dee717e Mon Sep 17 00:00:00 2001 From: minecraft1024a Date: Tue, 23 Sep 2025 19:15:58 +0800 Subject: [PATCH] =?UTF-8?q?perf(memory):=20=E4=BC=98=E5=8C=96=E8=AE=B0?= =?UTF-8?q?=E5=BF=86=E7=B3=BB=E7=BB=9F=E6=95=B0=E6=8D=AE=E5=BA=93=E6=93=8D?= =?UTF-8?q?=E4=BD=9C=E5=B9=B6=E4=BF=AE=E5=A4=8D=E5=B9=B6=E5=8F=91=E9=97=AE?= =?UTF-8?q?=E9=A2=98?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 将消息记忆次数的更新方式从单次写入重构为批量更新,在记忆构建任务结束时统一执行,大幅减少数据库写入次数,显著提升性能。 此外,为 `HippocampusManager` 添加了异步锁,以防止记忆巩固和遗忘操作并发执行时产生竞争条件。同时,增加了节点去重逻辑,在插入数据库前检查重复的概念,确保数据一致性。 --- src/chat/memory_system/Hippocampus.py | 67 ++++++++++++------- .../src/recv_handler/notice_handler.py | 2 +- 2 files changed, 45 insertions(+), 24 deletions(-) diff --git a/src/chat/memory_system/Hippocampus.py b/src/chat/memory_system/Hippocampus.py index fcc8e65d2..ca726c1a8 100644 --- a/src/chat/memory_system/Hippocampus.py +++ b/src/chat/memory_system/Hippocampus.py @@ -3,6 +3,7 @@ import datetime import math import random import time +import asyncio import re import orjson import jieba @@ -789,7 +790,7 @@ class EntorhinalCortex: self.hippocampus = hippocampus self.memory_graph = hippocampus.memory_graph - async def get_memory_sample(self): + async def get_memory_sample(self) -> tuple[list, list[str]]: """从数据库获取记忆样本""" # 硬编码:每条消息最大记忆次数 max_memorized_time_per_msg = 2 @@ -811,24 +812,27 @@ class EntorhinalCortex: for _, readable_timestamp in zip(timestamps, readable_timestamps, strict=False): logger.debug(f"回忆往事: {readable_timestamp}") chat_samples = [] + all_message_ids_to_update = [] for timestamp in timestamps: - if messages := await self.random_get_msg_snippet( + if result := await self.random_get_msg_snippet( timestamp, global_config.memory.memory_build_sample_length, max_memorized_time_per_msg, ): + messages, message_ids_to_update = result time_diff = (datetime.datetime.now().timestamp() - timestamp) / 3600 logger.info(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}条") chat_samples.append(messages) + all_message_ids_to_update.extend(message_ids_to_update) else: logger.debug(f"时间戳 {timestamp} 的消息无需记忆") - return chat_samples + return chat_samples, all_message_ids_to_update @staticmethod async def random_get_msg_snippet( target_timestamp: float, chat_size: int, max_memorized_time_per_msg: int - ) -> list | None: + ) -> tuple[list, list[str]] | None: # sourcery skip: invert-any-all, use-any, use-named-expression, use-next """从数据库中随机获取指定时间戳附近的消息片段 (使用 chat_message_builder)""" time_window_seconds = random.randint(300, 1800) # 随机时间窗口,5到30分钟 @@ -862,18 +866,9 @@ class EntorhinalCortex: # 如果所有消息都有效 if all_valid: - # 更新数据库中的记忆次数 - for message in messages: - # 确保在更新前获取最新的 memorized_times - current_memorized_times = message.get("memorized_times", 0) - async with get_db_session() as session: - await session.execute( - update(Messages) - .where(Messages.message_id == message["message_id"]) - .values(memorized_times=current_memorized_times + 1) - ) - await session.commit() - return messages # 直接返回原始的消息列表 + # 返回消息和需要更新的message_id + message_ids_to_update = [msg["message_id"] for msg in messages] + return messages, message_ids_to_update target_timestamp -= 120 # 如果第一次尝试失败,稍微向前调整时间戳再试 @@ -953,10 +948,20 @@ class EntorhinalCortex: # 批量处理节点 if nodes_to_create: - batch_size = 100 - for i in range(0, len(nodes_to_create), batch_size): - batch = nodes_to_create[i : i + batch_size] - await session.execute(insert(GraphNodes), batch) + # 在插入前进行去重检查 + unique_nodes_to_create = [] + seen_concepts = set(db_nodes.keys()) + for node_data in nodes_to_create: + concept = node_data["concept"] + if concept not in seen_concepts: + unique_nodes_to_create.append(node_data) + seen_concepts.add(concept) + + if unique_nodes_to_create: + batch_size = 100 + for i in range(0, len(unique_nodes_to_create), batch_size): + batch = unique_nodes_to_create[i : i + batch_size] + await session.execute(insert(GraphNodes), batch) if nodes_to_update: batch_size = 100 @@ -1346,7 +1351,7 @@ class ParahippocampalGyrus: # sourcery skip: merge-list-appends-into-extend logger.info("------------------------------------开始构建记忆--------------------------------------") start_time = time.time() - memory_samples = await self.hippocampus.entorhinal_cortex.get_memory_sample() + memory_samples, all_message_ids_to_update = await self.hippocampus.entorhinal_cortex.get_memory_sample() all_added_nodes = [] all_connected_nodes = [] all_added_edges = [] @@ -1409,8 +1414,21 @@ class ParahippocampalGyrus: if all_connected_nodes: logger.info(f"强化连接节点: {', '.join(all_connected_nodes)}") + # 先同步记忆图 await self.hippocampus.entorhinal_cortex.sync_memory_to_db() + # 最后批量更新消息的记忆次数 + if all_message_ids_to_update: + async with get_db_session() as session: + # 使用 in_ 操作符进行批量更新 + await session.execute( + update(Messages) + .where(Messages.message_id.in_(all_message_ids_to_update)) + .values(memorized_times=Messages.memorized_times + 1) + ) + await session.commit() + logger.info(f"批量更新了 {len(all_message_ids_to_update)} 条消息的记忆次数") + end_time = time.time() logger.info(f"---------------------记忆构建耗时: {end_time - start_time:.2f} 秒---------------------") @@ -1617,6 +1635,7 @@ class HippocampusManager: def __init__(self): self._hippocampus: Hippocampus = None # type: ignore self._initialized = False + self._db_lock = asyncio.Lock() def initialize(self): """初始化海马体实例""" @@ -1665,14 +1684,16 @@ class HippocampusManager: """遗忘记忆的公共接口""" if not self._initialized: raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法") - return await self._hippocampus.parahippocampal_gyrus.operation_forget_topic(percentage) + async with self._db_lock: + return await self._hippocampus.parahippocampal_gyrus.operation_forget_topic(percentage) async def consolidate_memory(self): """整合记忆的公共接口""" if not self._initialized: raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法") # 使用 operation_build_memory 方法来整合记忆 - return await self._hippocampus.parahippocampal_gyrus.operation_build_memory() + async with self._db_lock: + return await self._hippocampus.parahippocampal_gyrus.operation_build_memory() async def get_memory_from_text( self, diff --git a/src/plugins/built_in/napcat_adapter_plugin/src/recv_handler/notice_handler.py b/src/plugins/built_in/napcat_adapter_plugin/src/recv_handler/notice_handler.py index 4a32657a7..58b7f23b9 100644 --- a/src/plugins/built_in/napcat_adapter_plugin/src/recv_handler/notice_handler.py +++ b/src/plugins/built_in/napcat_adapter_plugin/src/recv_handler/notice_handler.py @@ -339,7 +339,7 @@ class NoticeHandler: message_id=raw_message.get("message_id",""), emoji_id=like_emoji_id ) - seg_data = Seg(type="text",data=f"{user_name}使用Emoji表情{QQ_FACE.get(like_emoji_id,"")}回复了你的消息[{target_message_text}]") + seg_data = Seg(type="text",data=f"{user_name}使用Emoji表情{QQ_FACE.get(like_emoji_id, '')}回复了你的消息[{target_message_text}]") return seg_data, user_info async def handle_ban_notify(self, raw_message: dict, group_id: int) -> Tuple[Seg, UserInfo] | Tuple[None, None]: