fix(knowledge): 修复知识库嵌入生成中的并发处理问题
原有的多线程 (`ThreadPoolExecutor`) 嵌入生成方式已被重构为完全异步的并发模型。 旧的实现为每个线程创建新的 `asyncio` 事件循环来运行协程,这种模式效率低下且不稳定,容易引发难以调试的并发问题。 新的实现统一在单个事件循环中处理所有异步任务,使用 `asyncio.Semaphore` 控制并发等级,并通过 `asyncio.gather` 高效地执行批量嵌入请求。此更改显著提高了代码的稳定性、性能和可维护性。 BREAKING CHANGE: `EmbeddingStore` 和 `EmbeddingManager` 中的多个核心方法(如 `store_new_data_set`, `check_embedding_model_consistency`, `batch_insert_strs` 等)已从同步方法更改为异步方法。所有对这些方法的调用现在都必须使用 `await`。
This commit is contained in:
@@ -302,7 +302,7 @@ async def import_data(openie_obj: OpenIE | None = None):
|
||||
else:
|
||||
logger.info(f"去重完成,发现 {len(new_raw_paragraphs)} 个新段落。")
|
||||
logger.info("开始生成 Embedding...")
|
||||
embed_manager.store_new_data_set(new_raw_paragraphs, new_triple_list_data)
|
||||
await embed_manager.store_new_data_set(new_raw_paragraphs, new_triple_list_data)
|
||||
embed_manager.rebuild_faiss_index()
|
||||
embed_manager.save_to_file()
|
||||
logger.info("Embedding 处理完成!")
|
||||
|
||||
@@ -30,7 +30,7 @@ from .utils.hash import get_sha256
|
||||
install(extra_lines=3)
|
||||
|
||||
# 多线程embedding配置常量
|
||||
DEFAULT_MAX_WORKERS = 3 # 默认最大线程数
|
||||
DEFAULT_MAX_WORKERS = 1 # 默认最大线程数
|
||||
DEFAULT_CHUNK_SIZE = 5 # 默认每个线程处理的数据块大小
|
||||
MIN_CHUNK_SIZE = 1 # 最小分块大小
|
||||
MAX_CHUNK_SIZE = 50 # 最大分块大小
|
||||
@@ -125,160 +125,63 @@ class EmbeddingStore:
|
||||
self.idx2hash = None
|
||||
|
||||
@staticmethod
|
||||
def _get_embedding(s: str) -> list[float]:
|
||||
"""获取字符串的嵌入向量,使用完全同步的方式避免事件循环问题"""
|
||||
# 创建新的事件循环并在完成后立即关闭
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
|
||||
async def _get_embedding_async(llm, s: str) -> list[float]:
|
||||
"""异步、安全地获取单个字符串的嵌入向量"""
|
||||
try:
|
||||
# 创建新的LLMRequest实例
|
||||
from src.config.config import model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
|
||||
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
|
||||
|
||||
# 使用新的事件循环运行异步方法
|
||||
embedding, _ = loop.run_until_complete(llm.get_embedding(s))
|
||||
|
||||
embedding, _ = await llm.get_embedding(s)
|
||||
if embedding and len(embedding) > 0:
|
||||
return embedding
|
||||
else:
|
||||
logger.error(f"获取嵌入失败: {s}")
|
||||
return []
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取嵌入时发生异常: {s}, 错误: {e}")
|
||||
return []
|
||||
finally:
|
||||
# 确保事件循环被正确关闭
|
||||
try:
|
||||
loop.close()
|
||||
except Exception:
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
def _get_embeddings_batch_threaded(
|
||||
strs: list[str], chunk_size: int = 10, max_workers: int = 10, progress_callback=None
|
||||
@staticmethod
|
||||
async def _get_embeddings_batch_async(
|
||||
strs: list[str], chunk_size: int = 10, max_workers: int = 4, progress_callback=None
|
||||
) -> list[tuple[str, list[float]]]:
|
||||
"""使用多线程批量获取嵌入向量
|
||||
|
||||
Args:
|
||||
strs: 要获取嵌入的字符串列表
|
||||
chunk_size: 每个线程处理的数据块大小
|
||||
max_workers: 最大线程数
|
||||
progress_callback: 进度回调函数,接收一个参数表示完成的数量
|
||||
|
||||
Returns:
|
||||
包含(原始字符串, 嵌入向量)的元组列表,保持与输入顺序一致
|
||||
"""
|
||||
异步、并发地批量获取嵌入向量。
|
||||
使用asyncio.Semaphore来控制并发数,确保所有操作在同一个事件循环中。
|
||||
"""
|
||||
if not strs:
|
||||
return []
|
||||
|
||||
# 分块
|
||||
chunks = []
|
||||
for i in range(0, len(strs), chunk_size):
|
||||
chunk = strs[i : i + chunk_size]
|
||||
chunks.append((i, chunk)) # 保存起始索引以维持顺序
|
||||
|
||||
# 结果存储,使用字典按索引存储以保证顺序
|
||||
results = {}
|
||||
|
||||
def process_chunk(chunk_data):
|
||||
"""处理单个数据块的函数"""
|
||||
start_idx, chunk_strs = chunk_data
|
||||
chunk_results = []
|
||||
|
||||
# 为每个线程创建独立的LLMRequest实例
|
||||
from src.config.config import model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
|
||||
try:
|
||||
# 创建线程专用的LLM实例
|
||||
semaphore = asyncio.Semaphore(max_workers)
|
||||
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
|
||||
results = {}
|
||||
|
||||
for i, s in enumerate(chunk_strs):
|
||||
try:
|
||||
# 在线程中创建独立的事件循环
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
try:
|
||||
embedding = loop.run_until_complete(llm.get_embedding(s))
|
||||
finally:
|
||||
loop.close()
|
||||
|
||||
if embedding and len(embedding) > 0:
|
||||
chunk_results.append((start_idx + i, s, embedding[0])) # embedding[0] 是实际的向量
|
||||
else:
|
||||
logger.error(f"获取嵌入失败: {s}")
|
||||
chunk_results.append((start_idx + i, s, []))
|
||||
|
||||
# 每完成一个嵌入立即更新进度
|
||||
async def _get_embedding_with_semaphore(s: str):
|
||||
async with semaphore:
|
||||
embedding = await EmbeddingStore._get_embedding_async(llm, s)
|
||||
results[s] = embedding
|
||||
if progress_callback:
|
||||
progress_callback(1)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取嵌入时发生异常: {s}, 错误: {e}")
|
||||
chunk_results.append((start_idx + i, s, []))
|
||||
tasks = [_get_embedding_with_semaphore(s) for s in strs]
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
# 即使失败也要更新进度
|
||||
if progress_callback:
|
||||
progress_callback(1)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"创建LLM实例失败: {e}")
|
||||
# 如果创建LLM实例失败,返回空结果
|
||||
for i, s in enumerate(chunk_strs):
|
||||
chunk_results.append((start_idx + i, s, []))
|
||||
# 即使失败也要更新进度
|
||||
if progress_callback:
|
||||
progress_callback(1)
|
||||
|
||||
return chunk_results
|
||||
|
||||
# 使用线程池处理
|
||||
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
# 提交所有任务
|
||||
future_to_chunk = {executor.submit(process_chunk, chunk): chunk for chunk in chunks}
|
||||
|
||||
# 收集结果(进度已在process_chunk中实时更新)
|
||||
for future in as_completed(future_to_chunk):
|
||||
try:
|
||||
chunk_results = future.result()
|
||||
for idx, s, embedding in chunk_results:
|
||||
results[idx] = (s, embedding)
|
||||
except Exception as e:
|
||||
chunk = future_to_chunk[future]
|
||||
logger.error(f"处理数据块时发生异常: {chunk}, 错误: {e}")
|
||||
# 为失败的块添加空结果
|
||||
start_idx, chunk_strs = chunk
|
||||
for i, s in enumerate(chunk_strs):
|
||||
results[start_idx + i] = (s, [])
|
||||
|
||||
# 按原始顺序返回结果
|
||||
ordered_results = []
|
||||
for i in range(len(strs)):
|
||||
if i in results:
|
||||
ordered_results.append(results[i])
|
||||
else:
|
||||
# 防止遗漏
|
||||
ordered_results.append((strs[i], []))
|
||||
|
||||
return ordered_results
|
||||
# 按照原始顺序返回结果
|
||||
return [(s, results.get(s, [])) for s in strs]
|
||||
|
||||
@staticmethod
|
||||
def get_test_file_path():
|
||||
return EMBEDDING_TEST_FILE
|
||||
|
||||
def save_embedding_test_vectors(self):
|
||||
"""保存测试字符串的嵌入到本地(使用多线程优化)"""
|
||||
async def save_embedding_test_vectors(self):
|
||||
"""保存测试字符串的嵌入到本地(异步单线程)"""
|
||||
logger.info("开始保存测试字符串的嵌入向量...")
|
||||
|
||||
# 使用多线程批量获取测试字符串的嵌入
|
||||
embedding_results = self._get_embeddings_batch_threaded(
|
||||
embedding_results = await self._get_embeddings_batch_async(
|
||||
EMBEDDING_TEST_STRINGS,
|
||||
chunk_size=min(self.chunk_size, len(EMBEDDING_TEST_STRINGS)),
|
||||
max_workers=min(self.max_workers, len(EMBEDDING_TEST_STRINGS)),
|
||||
chunk_size=self.chunk_size,
|
||||
max_workers=self.max_workers,
|
||||
)
|
||||
|
||||
# 构建测试向量字典
|
||||
@@ -288,8 +191,9 @@ class EmbeddingStore:
|
||||
test_vectors[str(idx)] = embedding
|
||||
else:
|
||||
logger.error(f"获取测试字符串嵌入失败: {s}")
|
||||
# 使用原始单线程方法作为后备
|
||||
test_vectors[str(idx)] = self._get_embedding(s)
|
||||
# Since _get_embedding is problematic, we just fail here
|
||||
test_vectors[str(idx)] = []
|
||||
|
||||
|
||||
with open(self.get_test_file_path(), "w", encoding="utf-8") as f:
|
||||
f.write(orjson.dumps(test_vectors, option=orjson.OPT_INDENT_2).decode("utf-8"))
|
||||
@@ -304,28 +208,27 @@ class EmbeddingStore:
|
||||
with open(path, encoding="utf-8") as f:
|
||||
return orjson.loads(f.read())
|
||||
|
||||
def check_embedding_model_consistency(self):
|
||||
"""校验当前模型与本地嵌入模型是否一致(使用多线程优化)"""
|
||||
async def check_embedding_model_consistency(self):
|
||||
"""校验当前模型与本地嵌入模型是否一致(异步单线程)"""
|
||||
local_vectors = self.load_embedding_test_vectors()
|
||||
if local_vectors is None:
|
||||
logger.warning("未检测到本地嵌入模型测试文件,将保存当前模型的测试嵌入。")
|
||||
self.save_embedding_test_vectors()
|
||||
await self.save_embedding_test_vectors()
|
||||
return True
|
||||
|
||||
# 检查本地向量完整性
|
||||
for idx in range(len(EMBEDDING_TEST_STRINGS)):
|
||||
if local_vectors.get(str(idx)) is None:
|
||||
logger.warning("本地嵌入模型测试文件缺失部分测试字符串,将重新保存。")
|
||||
self.save_embedding_test_vectors()
|
||||
await self.save_embedding_test_vectors()
|
||||
return True
|
||||
|
||||
logger.info("开始检验嵌入模型一致性...")
|
||||
|
||||
# 使用多线程批量获取当前模型的嵌入
|
||||
embedding_results = self._get_embeddings_batch_threaded(
|
||||
embedding_results = await self._get_embeddings_batch_async(
|
||||
EMBEDDING_TEST_STRINGS,
|
||||
chunk_size=min(self.chunk_size, len(EMBEDDING_TEST_STRINGS)),
|
||||
max_workers=min(self.max_workers, len(EMBEDDING_TEST_STRINGS)),
|
||||
chunk_size=self.chunk_size,
|
||||
max_workers=self.max_workers,
|
||||
)
|
||||
|
||||
# 检查一致性
|
||||
@@ -343,8 +246,8 @@ class EmbeddingStore:
|
||||
logger.info("嵌入模型一致性校验通过。")
|
||||
return True
|
||||
|
||||
def batch_insert_strs(self, strs: list[str], times: int) -> None:
|
||||
"""向库中存入字符串(使用多线程优化)"""
|
||||
async def batch_insert_strs(self, strs: list[str], times: int) -> None:
|
||||
"""向库中存入字符串(异步单线程)"""
|
||||
if not strs:
|
||||
return
|
||||
|
||||
@@ -383,33 +286,18 @@ class EmbeddingStore:
|
||||
progress.update(task, advance=already_processed)
|
||||
|
||||
if new_strs:
|
||||
# 使用实例配置的参数,智能调整分块和线程数
|
||||
optimal_chunk_size = max(
|
||||
MIN_CHUNK_SIZE,
|
||||
min(
|
||||
self.chunk_size, len(new_strs) // self.max_workers if self.max_workers > 0 else self.chunk_size
|
||||
),
|
||||
)
|
||||
optimal_max_workers = min(
|
||||
self.max_workers,
|
||||
max(MIN_WORKERS, len(new_strs) // optimal_chunk_size if optimal_chunk_size > 0 else 1),
|
||||
)
|
||||
|
||||
logger.debug(f"使用多线程处理: chunk_size={optimal_chunk_size}, max_workers={optimal_max_workers}")
|
||||
|
||||
# 定义进度更新回调函数
|
||||
def update_progress(count):
|
||||
progress.update(task, advance=count)
|
||||
|
||||
# 批量获取嵌入,并实时更新进度
|
||||
embedding_results = self._get_embeddings_batch_threaded(
|
||||
embedding_results = await self._get_embeddings_batch_async(
|
||||
new_strs,
|
||||
chunk_size=optimal_chunk_size,
|
||||
max_workers=optimal_max_workers,
|
||||
chunk_size=self.chunk_size,
|
||||
max_workers=self.max_workers,
|
||||
progress_callback=update_progress,
|
||||
)
|
||||
|
||||
# 存入结果(不再需要在这里更新进度,因为已经在回调中更新了)
|
||||
# 存入结果
|
||||
for s, embedding in embedding_results:
|
||||
item_hash = self.namespace + "-" + get_sha256(s)
|
||||
if embedding: # 只有成功获取到嵌入才存入
|
||||
@@ -499,6 +387,13 @@ class EmbeddingStore:
|
||||
for key in self.store:
|
||||
array.append(self.store[key].embedding)
|
||||
self.idx2hash[str(len(array) - 1)] = key
|
||||
|
||||
if not array:
|
||||
logger.warning(f"在 {self.namespace} 中没有找到可用于构建Faiss索引的嵌入向量。")
|
||||
embedding_dim = resolve_embedding_dimension(global_config.lpmm_knowledge.embedding_dimension) or 1
|
||||
self.faiss_index = faiss.IndexFlatIP(embedding_dim)
|
||||
return
|
||||
|
||||
embeddings = np.array(array, dtype=np.float32)
|
||||
# L2归一化
|
||||
faiss.normalize_L2(embeddings)
|
||||
@@ -569,30 +464,30 @@ class EmbeddingManager:
|
||||
)
|
||||
self.stored_pg_hashes = set()
|
||||
|
||||
def check_all_embedding_model_consistency(self):
|
||||
async def check_all_embedding_model_consistency(self):
|
||||
"""对所有嵌入库做模型一致性校验"""
|
||||
return self.paragraphs_embedding_store.check_embedding_model_consistency()
|
||||
return await self.paragraphs_embedding_store.check_embedding_model_consistency()
|
||||
|
||||
def _store_pg_into_embedding(self, raw_paragraphs: dict[str, str]):
|
||||
async def _store_pg_into_embedding(self, raw_paragraphs: dict[str, str]):
|
||||
"""将段落编码存入Embedding库"""
|
||||
self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()), times=1)
|
||||
await self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()), times=1)
|
||||
|
||||
def _store_ent_into_embedding(self, triple_list_data: dict[str, list[list[str]]]):
|
||||
async def _store_ent_into_embedding(self, triple_list_data: dict[str, list[list[str]]]):
|
||||
"""将实体编码存入Embedding库"""
|
||||
entities = set()
|
||||
for triple_list in triple_list_data.values():
|
||||
for triple in triple_list:
|
||||
entities.add(triple[0])
|
||||
entities.add(triple[2])
|
||||
self.entities_embedding_store.batch_insert_strs(list(entities), times=2)
|
||||
await self.entities_embedding_store.batch_insert_strs(list(entities), times=2)
|
||||
|
||||
def _store_rel_into_embedding(self, triple_list_data: dict[str, list[list[str]]]):
|
||||
async def _store_rel_into_embedding(self, triple_list_data: dict[str, list[list[str]]]):
|
||||
"""将关系编码存入Embedding库"""
|
||||
graph_triples = [] # a list of unique relation triple (in tuple) from all chunks
|
||||
for triples in triple_list_data.values():
|
||||
graph_triples.extend([tuple(t) for t in triples])
|
||||
graph_triples = list(set(graph_triples))
|
||||
self.relation_embedding_store.batch_insert_strs([str(triple) for triple in graph_triples], times=3)
|
||||
await self.relation_embedding_store.batch_insert_strs([str(triple) for triple in graph_triples], times=3)
|
||||
|
||||
def load_from_file(self):
|
||||
"""从文件加载"""
|
||||
@@ -602,17 +497,17 @@ class EmbeddingManager:
|
||||
# 从段落库中获取已存储的hash
|
||||
self.stored_pg_hashes = set(self.paragraphs_embedding_store.store.keys())
|
||||
|
||||
def store_new_data_set(
|
||||
async def store_new_data_set(
|
||||
self,
|
||||
raw_paragraphs: dict[str, str],
|
||||
triple_list_data: dict[str, list[list[str]]],
|
||||
):
|
||||
if not self.check_all_embedding_model_consistency():
|
||||
if not await self.check_all_embedding_model_consistency():
|
||||
raise Exception("嵌入模型与本地存储不一致,请检查模型设置或清空嵌入库后重试。")
|
||||
"""存储新的数据集"""
|
||||
self._store_pg_into_embedding(raw_paragraphs)
|
||||
self._store_ent_into_embedding(triple_list_data)
|
||||
self._store_rel_into_embedding(triple_list_data)
|
||||
await self._store_pg_into_embedding(raw_paragraphs)
|
||||
await self._store_ent_into_embedding(triple_list_data)
|
||||
await self._store_rel_into_embedding(triple_list_data)
|
||||
self.stored_pg_hashes.update(raw_paragraphs.keys())
|
||||
|
||||
def save_to_file(self):
|
||||
|
||||
Reference in New Issue
Block a user