fix(knowledge): 修复知识库嵌入生成中的并发处理问题

原有的多线程 (`ThreadPoolExecutor`) 嵌入生成方式已被重构为完全异步的并发模型。

旧的实现为每个线程创建新的 `asyncio` 事件循环来运行协程,这种模式效率低下且不稳定,容易引发难以调试的并发问题。

新的实现统一在单个事件循环中处理所有异步任务,使用 `asyncio.Semaphore` 控制并发等级,并通过 `asyncio.gather` 高效地执行批量嵌入请求。此更改显著提高了代码的稳定性、性能和可维护性。

BREAKING CHANGE: `EmbeddingStore` 和 `EmbeddingManager` 中的多个核心方法(如 `store_new_data_set`, `check_embedding_model_consistency`, `batch_insert_strs` 等)已从同步方法更改为异步方法。所有对这些方法的调用现在都必须使用 `await`。
This commit is contained in:
tt-P607
2025-10-23 11:42:35 +08:00
parent 2c5dc64e1f
commit a94bd57912
2 changed files with 66 additions and 171 deletions

View File

@@ -302,7 +302,7 @@ async def import_data(openie_obj: OpenIE | None = None):
else:
logger.info(f"去重完成,发现 {len(new_raw_paragraphs)} 个新段落。")
logger.info("开始生成 Embedding...")
embed_manager.store_new_data_set(new_raw_paragraphs, new_triple_list_data)
await embed_manager.store_new_data_set(new_raw_paragraphs, new_triple_list_data)
embed_manager.rebuild_faiss_index()
embed_manager.save_to_file()
logger.info("Embedding 处理完成!")

View File

@@ -30,7 +30,7 @@ from .utils.hash import get_sha256
install(extra_lines=3)
# 多线程embedding配置常量
DEFAULT_MAX_WORKERS = 3 # 默认最大线程数
DEFAULT_MAX_WORKERS = 1 # 默认最大线程数
DEFAULT_CHUNK_SIZE = 5 # 默认每个线程处理的数据块大小
MIN_CHUNK_SIZE = 1 # 最小分块大小
MAX_CHUNK_SIZE = 50 # 最大分块大小
@@ -125,160 +125,63 @@ class EmbeddingStore:
self.idx2hash = None
@staticmethod
def _get_embedding(s: str) -> list[float]:
"""获取字符串的嵌入向量,使用完全同步的方式避免事件循环问题"""
# 创建新的事件循环并在完成后立即关闭
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
async def _get_embedding_async(llm, s: str) -> list[float]:
"""异步、安全地获取单个字符串的嵌入向量"""
try:
# 创建新的LLMRequest实例
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
# 使用新的事件循环运行异步方法
embedding, _ = loop.run_until_complete(llm.get_embedding(s))
embedding, _ = await llm.get_embedding(s)
if embedding and len(embedding) > 0:
return embedding
else:
logger.error(f"获取嵌入失败: {s}")
return []
except Exception as e:
logger.error(f"获取嵌入时发生异常: {s}, 错误: {e}")
return []
finally:
# 确保事件循环被正确关闭
try:
loop.close()
except Exception:
...
@staticmethod
def _get_embeddings_batch_threaded(
strs: list[str], chunk_size: int = 10, max_workers: int = 10, progress_callback=None
@staticmethod
async def _get_embeddings_batch_async(
strs: list[str], chunk_size: int = 10, max_workers: int = 4, progress_callback=None
) -> list[tuple[str, list[float]]]:
"""使用多线程批量获取嵌入向量
Args:
strs: 要获取嵌入的字符串列表
chunk_size: 每个线程处理的数据块大小
max_workers: 最大线程数
progress_callback: 进度回调函数,接收一个参数表示完成的数量
Returns:
包含(原始字符串, 嵌入向量)的元组列表,保持与输入顺序一致
"""
异步、并发地批量获取嵌入向量。
使用asyncio.Semaphore来控制并发数确保所有操作在同一个事件循环中。
"""
if not strs:
return []
# 分块
chunks = []
for i in range(0, len(strs), chunk_size):
chunk = strs[i : i + chunk_size]
chunks.append((i, chunk)) # 保存起始索引以维持顺序
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
# 结果存储,使用字典按索引存储以保证顺序
semaphore = asyncio.Semaphore(max_workers)
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
results = {}
def process_chunk(chunk_data):
"""处理单个数据块的函数"""
start_idx, chunk_strs = chunk_data
chunk_results = []
async def _get_embedding_with_semaphore(s: str):
async with semaphore:
embedding = await EmbeddingStore._get_embedding_async(llm, s)
results[s] = embedding
if progress_callback:
progress_callback(1)
# 为每个线程创建独立的LLMRequest实例
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
tasks = [_get_embedding_with_semaphore(s) for s in strs]
await asyncio.gather(*tasks)
try:
# 创建线程专用的LLM实例
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
for i, s in enumerate(chunk_strs):
try:
# 在线程中创建独立的事件循环
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
embedding = loop.run_until_complete(llm.get_embedding(s))
finally:
loop.close()
if embedding and len(embedding) > 0:
chunk_results.append((start_idx + i, s, embedding[0])) # embedding[0] 是实际的向量
else:
logger.error(f"获取嵌入失败: {s}")
chunk_results.append((start_idx + i, s, []))
# 每完成一个嵌入立即更新进度
if progress_callback:
progress_callback(1)
except Exception as e:
logger.error(f"获取嵌入时发生异常: {s}, 错误: {e}")
chunk_results.append((start_idx + i, s, []))
# 即使失败也要更新进度
if progress_callback:
progress_callback(1)
except Exception as e:
logger.error(f"创建LLM实例失败: {e}")
# 如果创建LLM实例失败返回空结果
for i, s in enumerate(chunk_strs):
chunk_results.append((start_idx + i, s, []))
# 即使失败也要更新进度
if progress_callback:
progress_callback(1)
return chunk_results
# 使用线程池处理
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# 提交所有任务
future_to_chunk = {executor.submit(process_chunk, chunk): chunk for chunk in chunks}
# 收集结果进度已在process_chunk中实时更新
for future in as_completed(future_to_chunk):
try:
chunk_results = future.result()
for idx, s, embedding in chunk_results:
results[idx] = (s, embedding)
except Exception as e:
chunk = future_to_chunk[future]
logger.error(f"处理数据块时发生异常: {chunk}, 错误: {e}")
# 为失败的块添加空结果
start_idx, chunk_strs = chunk
for i, s in enumerate(chunk_strs):
results[start_idx + i] = (s, [])
# 按原始顺序返回结果
ordered_results = []
for i in range(len(strs)):
if i in results:
ordered_results.append(results[i])
else:
# 防止遗漏
ordered_results.append((strs[i], []))
return ordered_results
# 按照原始顺序返回结果
return [(s, results.get(s, [])) for s in strs]
@staticmethod
def get_test_file_path():
return EMBEDDING_TEST_FILE
def save_embedding_test_vectors(self):
"""保存测试字符串的嵌入到本地(使用多线程优化"""
async def save_embedding_test_vectors(self):
"""保存测试字符串的嵌入到本地(异步单线程"""
logger.info("开始保存测试字符串的嵌入向量...")
# 使用多线程批量获取测试字符串的嵌入
embedding_results = self._get_embeddings_batch_threaded(
embedding_results = await self._get_embeddings_batch_async(
EMBEDDING_TEST_STRINGS,
chunk_size=min(self.chunk_size, len(EMBEDDING_TEST_STRINGS)),
max_workers=min(self.max_workers, len(EMBEDDING_TEST_STRINGS)),
chunk_size=self.chunk_size,
max_workers=self.max_workers,
)
# 构建测试向量字典
@@ -288,8 +191,9 @@ class EmbeddingStore:
test_vectors[str(idx)] = embedding
else:
logger.error(f"获取测试字符串嵌入失败: {s}")
# 使用原始单线程方法作为后备
test_vectors[str(idx)] = self._get_embedding(s)
# Since _get_embedding is problematic, we just fail here
test_vectors[str(idx)] = []
with open(self.get_test_file_path(), "w", encoding="utf-8") as f:
f.write(orjson.dumps(test_vectors, option=orjson.OPT_INDENT_2).decode("utf-8"))
@@ -304,28 +208,27 @@ class EmbeddingStore:
with open(path, encoding="utf-8") as f:
return orjson.loads(f.read())
def check_embedding_model_consistency(self):
"""校验当前模型与本地嵌入模型是否一致(使用多线程优化"""
async def check_embedding_model_consistency(self):
"""校验当前模型与本地嵌入模型是否一致(异步单线程"""
local_vectors = self.load_embedding_test_vectors()
if local_vectors is None:
logger.warning("未检测到本地嵌入模型测试文件,将保存当前模型的测试嵌入。")
self.save_embedding_test_vectors()
await self.save_embedding_test_vectors()
return True
# 检查本地向量完整性
for idx in range(len(EMBEDDING_TEST_STRINGS)):
if local_vectors.get(str(idx)) is None:
logger.warning("本地嵌入模型测试文件缺失部分测试字符串,将重新保存。")
self.save_embedding_test_vectors()
await self.save_embedding_test_vectors()
return True
logger.info("开始检验嵌入模型一致性...")
# 使用多线程批量获取当前模型的嵌入
embedding_results = self._get_embeddings_batch_threaded(
embedding_results = await self._get_embeddings_batch_async(
EMBEDDING_TEST_STRINGS,
chunk_size=min(self.chunk_size, len(EMBEDDING_TEST_STRINGS)),
max_workers=min(self.max_workers, len(EMBEDDING_TEST_STRINGS)),
chunk_size=self.chunk_size,
max_workers=self.max_workers,
)
# 检查一致性
@@ -343,8 +246,8 @@ class EmbeddingStore:
logger.info("嵌入模型一致性校验通过。")
return True
def batch_insert_strs(self, strs: list[str], times: int) -> None:
"""向库中存入字符串(使用多线程优化"""
async def batch_insert_strs(self, strs: list[str], times: int) -> None:
"""向库中存入字符串(异步单线程"""
if not strs:
return
@@ -383,33 +286,18 @@ class EmbeddingStore:
progress.update(task, advance=already_processed)
if new_strs:
# 使用实例配置的参数,智能调整分块和线程数
optimal_chunk_size = max(
MIN_CHUNK_SIZE,
min(
self.chunk_size, len(new_strs) // self.max_workers if self.max_workers > 0 else self.chunk_size
),
)
optimal_max_workers = min(
self.max_workers,
max(MIN_WORKERS, len(new_strs) // optimal_chunk_size if optimal_chunk_size > 0 else 1),
)
logger.debug(f"使用多线程处理: chunk_size={optimal_chunk_size}, max_workers={optimal_max_workers}")
# 定义进度更新回调函数
def update_progress(count):
progress.update(task, advance=count)
# 批量获取嵌入,并实时更新进度
embedding_results = self._get_embeddings_batch_threaded(
embedding_results = await self._get_embeddings_batch_async(
new_strs,
chunk_size=optimal_chunk_size,
max_workers=optimal_max_workers,
chunk_size=self.chunk_size,
max_workers=self.max_workers,
progress_callback=update_progress,
)
# 存入结果(不再需要在这里更新进度,因为已经在回调中更新了)
# 存入结果
for s, embedding in embedding_results:
item_hash = self.namespace + "-" + get_sha256(s)
if embedding: # 只有成功获取到嵌入才存入
@@ -499,6 +387,13 @@ class EmbeddingStore:
for key in self.store:
array.append(self.store[key].embedding)
self.idx2hash[str(len(array) - 1)] = key
if not array:
logger.warning(f"{self.namespace} 中没有找到可用于构建Faiss索引的嵌入向量。")
embedding_dim = resolve_embedding_dimension(global_config.lpmm_knowledge.embedding_dimension) or 1
self.faiss_index = faiss.IndexFlatIP(embedding_dim)
return
embeddings = np.array(array, dtype=np.float32)
# L2归一化
faiss.normalize_L2(embeddings)
@@ -569,30 +464,30 @@ class EmbeddingManager:
)
self.stored_pg_hashes = set()
def check_all_embedding_model_consistency(self):
async def check_all_embedding_model_consistency(self):
"""对所有嵌入库做模型一致性校验"""
return self.paragraphs_embedding_store.check_embedding_model_consistency()
return await self.paragraphs_embedding_store.check_embedding_model_consistency()
def _store_pg_into_embedding(self, raw_paragraphs: dict[str, str]):
async def _store_pg_into_embedding(self, raw_paragraphs: dict[str, str]):
"""将段落编码存入Embedding库"""
self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()), times=1)
await self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()), times=1)
def _store_ent_into_embedding(self, triple_list_data: dict[str, list[list[str]]]):
async def _store_ent_into_embedding(self, triple_list_data: dict[str, list[list[str]]]):
"""将实体编码存入Embedding库"""
entities = set()
for triple_list in triple_list_data.values():
for triple in triple_list:
entities.add(triple[0])
entities.add(triple[2])
self.entities_embedding_store.batch_insert_strs(list(entities), times=2)
await self.entities_embedding_store.batch_insert_strs(list(entities), times=2)
def _store_rel_into_embedding(self, triple_list_data: dict[str, list[list[str]]]):
async def _store_rel_into_embedding(self, triple_list_data: dict[str, list[list[str]]]):
"""将关系编码存入Embedding库"""
graph_triples = [] # a list of unique relation triple (in tuple) from all chunks
for triples in triple_list_data.values():
graph_triples.extend([tuple(t) for t in triples])
graph_triples = list(set(graph_triples))
self.relation_embedding_store.batch_insert_strs([str(triple) for triple in graph_triples], times=3)
await self.relation_embedding_store.batch_insert_strs([str(triple) for triple in graph_triples], times=3)
def load_from_file(self):
"""从文件加载"""
@@ -602,17 +497,17 @@ class EmbeddingManager:
# 从段落库中获取已存储的hash
self.stored_pg_hashes = set(self.paragraphs_embedding_store.store.keys())
def store_new_data_set(
async def store_new_data_set(
self,
raw_paragraphs: dict[str, str],
triple_list_data: dict[str, list[list[str]]],
):
if not self.check_all_embedding_model_consistency():
if not await self.check_all_embedding_model_consistency():
raise Exception("嵌入模型与本地存储不一致,请检查模型设置或清空嵌入库后重试。")
"""存储新的数据集"""
self._store_pg_into_embedding(raw_paragraphs)
self._store_ent_into_embedding(triple_list_data)
self._store_rel_into_embedding(triple_list_data)
await self._store_pg_into_embedding(raw_paragraphs)
await self._store_ent_into_embedding(triple_list_data)
await self._store_rel_into_embedding(triple_list_data)
self.stored_pg_hashes.update(raw_paragraphs.keys())
def save_to_file(self):