feat:更好的回复信息收集器

This commit is contained in:
SengokuCola
2025-04-09 19:27:23 +08:00
parent 84c79c43a8
commit a889d9d222
9 changed files with 349 additions and 82 deletions

View File

@@ -200,7 +200,7 @@ class Heartflow:
logger.error(f"创建 subheartflow 失败: {e}")
return None
def get_subheartflow(self, observe_chat_id):
def get_subheartflow(self, observe_chat_id) -> SubHeartflow:
"""获取指定ID的SubHeartflow实例"""
return self._subheartflows.get(observe_chat_id)

View File

@@ -42,7 +42,7 @@ class SubHeartflow:
self.past_mind = []
self.current_state: CuttentState = CuttentState()
self.llm_model = LLM_request(
model=global_config.llm_sub_heartflow, temperature=0.7, max_tokens=600, request_type="sub_heart_flow"
model=global_config.llm_sub_heartflow, temperature=0.5, max_tokens=600, request_type="sub_heart_flow"
)
self.main_heartflow_info = ""
@@ -221,9 +221,9 @@ class SubHeartflow:
self.update_current_mind(reponse)
self.current_mind = reponse
logger.debug(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
return self.current_mind ,self.past_mind
async def do_thinking_after_reply(self, reply_content, chat_talking_prompt):
# print("麦麦回复之后脑袋转起来了")

View File

@@ -84,7 +84,7 @@ class ChatBot:
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
userinfo = message.message_info.user_info
logger.debug(f"处理消息:{str(message_data)[:80]}...")
logger.debug(f"处理消息:{str(message_data)[:120]}...")
if userinfo.user_id in global_config.ban_user_id:
logger.debug(f"用户{userinfo.user_id}被禁止回复")
@@ -106,11 +106,11 @@ class ChatBot:
await self._create_PFC_chat(message)
else:
if groupinfo.group_id in global_config.talk_allowed_groups:
logger.debug(f"开始群聊模式{str(message_data)[:50]}...")
# logger.debug(f"开始群聊模式{str(message_data)[:50]}...")
if global_config.response_mode == "heart_flow":
await self.think_flow_chat.process_message(message_data)
elif global_config.response_mode == "reasoning":
logger.debug(f"开始推理模式{str(message_data)[:50]}...")
# logger.debug(f"开始推理模式{str(message_data)[:50]}...")
await self.reasoning_chat.process_message(message_data)
else:
logger.error(f"未知的回复模式,请检查配置文件!!: {global_config.response_mode}")

View File

@@ -365,7 +365,7 @@ class MessageSet:
self.chat_stream = chat_stream
self.message_id = message_id
self.messages: List[MessageSending] = []
self.time = round(time.time(), 2)
self.time = round(time.time(), 3) # 保留3位小数
def add_message(self, message: MessageSending) -> None:
"""添加消息到集合"""

View File

@@ -96,40 +96,39 @@ class ResponseGenerator:
return None
# 保存到数据库
self._save_to_db(
message=message,
sender_name=sender_name,
prompt=prompt,
content=content,
reasoning_content=reasoning_content,
# reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
)
# self._save_to_db(
# message=message,
# sender_name=sender_name,
# prompt=prompt,
# content=content,
# reasoning_content=reasoning_content,
# # reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
# )
return content
# def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
# content: str, content_check: str, reasoning_content: str, reasoning_content_check: str):
def _save_to_db(
self,
message: MessageRecv,
sender_name: str,
prompt: str,
content: str,
reasoning_content: str,
):
"""保存对话记录到数据库"""
db.reasoning_logs.insert_one(
{
"time": time.time(),
"chat_id": message.chat_stream.stream_id,
"user": sender_name,
"message": message.processed_plain_text,
"model": self.current_model_name,
"reasoning": reasoning_content,
"response": content,
"prompt": prompt,
}
)
# def _save_to_db(
# self,
# message: MessageRecv,
# sender_name: str,
# prompt: str,
# content: str,
# reasoning_content: str,
# ):
# """保存对话记录到数据库"""
# db.reasoning_logs.insert_one(
# {
# "time": time.time(),
# "chat_id": message.chat_stream.stream_id,
# "user": sender_name,
# "message": message.processed_plain_text,
# "model": self.current_model_name,
# "reasoning": reasoning_content,
# "response": content,
# "prompt": prompt,
# }
# )
async def _get_emotion_tags(self, content: str, processed_plain_text: str):
"""提取情感标签,结合立场和情绪"""

View File

@@ -1,7 +1,8 @@
import time
from random import random
import re
import traceback
from typing import List
from ...memory_system.Hippocampus import HippocampusManager
from ...moods.moods import MoodManager
from ...config.config import global_config
@@ -19,6 +20,7 @@ from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ...chat.chat_stream import chat_manager
from ...person_info.relationship_manager import relationship_manager
from ...chat.message_buffer import message_buffer
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
# 定义日志配置
chat_config = LogConfig(
@@ -59,7 +61,11 @@ class ThinkFlowChat:
return thinking_id
async def _send_response_messages(self, message, chat, response_set, thinking_id):
async def _send_response_messages(self,
message,
chat,
response_set:List[str],
thinking_id) -> MessageSending:
"""发送回复消息"""
container = message_manager.get_container(chat.stream_id)
thinking_message = None
@@ -72,12 +78,13 @@ class ThinkFlowChat:
if not thinking_message:
logger.warning("未找到对应的思考消息,可能已超时被移除")
return
return None
thinking_start_time = thinking_message.thinking_start_time
message_set = MessageSet(chat, thinking_id)
mark_head = False
first_bot_msg = None
for msg in response_set:
message_segment = Seg(type="text", data=msg)
bot_message = MessageSending(
@@ -97,10 +104,12 @@ class ThinkFlowChat:
)
if not mark_head:
mark_head = True
first_bot_msg = bot_message
# print(f"thinking_start_time:{bot_message.thinking_start_time}")
message_set.add_message(bot_message)
message_manager.add_message(message_set)
return first_bot_msg
async def _handle_emoji(self, message, chat, response):
"""处理表情包"""
@@ -257,6 +266,8 @@ class ThinkFlowChat:
if random() < reply_probability:
try:
do_reply = True
# 创建思考消息
try:
@@ -266,6 +277,11 @@ class ThinkFlowChat:
timing_results["创建思考消息"] = timer2 - timer1
except Exception as e:
logger.error(f"心流创建思考消息失败: {e}")
logger.debug(f"创建捕捉器thinking_id:{thinking_id}")
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
try:
# 观察
@@ -275,36 +291,48 @@ class ThinkFlowChat:
timing_results["观察"] = timer2 - timer1
except Exception as e:
logger.error(f"心流观察失败: {e}")
info_catcher.catch_after_observe(timing_results["观察"])
# 思考前脑内状态
try:
timer1 = time.time()
await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(
current_mind,past_mind = await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(
message.processed_plain_text
)
timer2 = time.time()
timing_results["思考前脑内状态"] = timer2 - timer1
except Exception as e:
logger.error(f"心流思考前脑内状态失败: {e}")
info_catcher.catch_afer_shf_step(timing_results["思考前脑内状态"],past_mind,current_mind)
# 生成回复
timer1 = time.time()
response_set = await self.gpt.generate_response(message)
response_set = await self.gpt.generate_response(message,thinking_id)
timer2 = time.time()
timing_results["生成回复"] = timer2 - timer1
info_catcher.catch_after_generate_response(timing_results["生成回复"])
if not response_set:
logger.info("为什么生成回复失败?")
logger.info("回复生成失败,返回为空")
return
# 发送消息
try:
timer1 = time.time()
await self._send_response_messages(message, chat, response_set, thinking_id)
first_bot_msg = await self._send_response_messages(message, chat, response_set, thinking_id)
timer2 = time.time()
timing_results["发送消息"] = timer2 - timer1
except Exception as e:
logger.error(f"心流发送消息失败: {e}")
info_catcher.catch_after_response(timing_results["发送消息"],response_set,first_bot_msg)
info_catcher.done_catch()
# 处理表情包
try:
@@ -335,6 +363,7 @@ class ThinkFlowChat:
except Exception as e:
logger.error(f"心流处理消息失败: {e}")
logger.error(traceback.format_exc())
# 输出性能计时结果
if do_reply:

View File

@@ -9,6 +9,7 @@ from ...chat.message import MessageRecv, MessageThinking
from .think_flow_prompt_builder import prompt_builder
from ...chat.utils import process_llm_response
from src.common.logger import get_module_logger, LogConfig, LLM_STYLE_CONFIG
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
# 定义日志配置
llm_config = LogConfig(
@@ -32,15 +33,16 @@ class ResponseGenerator:
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"
async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]:
async def generate_response(self, message: MessageRecv,thinking_id:str) -> Optional[List[str]]:
"""根据当前模型类型选择对应的生成函数"""
logger.info(
f"思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
)
current_model = self.model_normal
model_response = await self._generate_response_with_model(message, current_model)
model_response = await self._generate_response_with_model(message, current_model,thinking_id)
# print(f"raw_content: {model_response}")
@@ -53,8 +55,11 @@ class ResponseGenerator:
logger.info(f"{self.current_model_type}思考,失败")
return None
async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request):
async def _generate_response_with_model(self, message: MessageRecv, model: LLM_request,thinking_id:str):
sender_name = ""
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
sender_name = (
f"[({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}]"
@@ -79,45 +84,51 @@ class ResponseGenerator:
try:
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
info_catcher.catch_after_llm_generated(
prompt=prompt,
response=content,
reasoning_content=reasoning_content,
model_name=self.current_model_name)
except Exception:
logger.exception("生成回复时出错")
return None
# 保存到数据库
self._save_to_db(
message=message,
sender_name=sender_name,
prompt=prompt,
content=content,
reasoning_content=reasoning_content,
# reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
)
# self._save_to_db(
# message=message,
# sender_name=sender_name,
# prompt=prompt,
# content=content,
# reasoning_content=reasoning_content,
# # reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
# )
return content
# def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
# content: str, content_check: str, reasoning_content: str, reasoning_content_check: str):
def _save_to_db(
self,
message: MessageRecv,
sender_name: str,
prompt: str,
content: str,
reasoning_content: str,
):
"""保存对话记录到数据库"""
db.reasoning_logs.insert_one(
{
"time": time.time(),
"chat_id": message.chat_stream.stream_id,
"user": sender_name,
"message": message.processed_plain_text,
"model": self.current_model_name,
"reasoning": reasoning_content,
"response": content,
"prompt": prompt,
}
)
# def _save_to_db(
# self,
# message: MessageRecv,
# sender_name: str,
# prompt: str,
# content: str,
# reasoning_content: str,
# ):
# """保存对话记录到数据库"""
# db.reasoning_logs.insert_one(
# {
# "time": time.time(),
# "chat_id": message.chat_stream.stream_id,
# "user": sender_name,
# "message": message.processed_plain_text,
# "model": self.current_model_name,
# "reasoning": reasoning_content,
# "response": content,
# "prompt": prompt,
# }
# )
async def _get_emotion_tags(self, content: str, processed_plain_text: str):
"""提取情感标签,结合立场和情绪"""
@@ -167,10 +178,10 @@ class ResponseGenerator:
logger.debug(f"获取情感标签时出错: {e}")
return "中立", "平静" # 出错时返回默认值
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
async def _process_response(self, content: str) -> List[str]:
"""处理响应内容,返回处理后的内容和情感标签"""
if not content:
return None, []
return None
processed_response = process_llm_response(content)

View File

@@ -0,0 +1,228 @@
from src.plugins.config.config import global_config
from src.plugins.chat.message import MessageRecv,MessageSending,Message
from src.common.database import db
import time
import traceback
from typing import List
class InfoCatcher:
def __init__(self):
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文
self.context_length = global_config.MAX_CONTEXT_SIZE
self.chat_history_in_thinking = [] # 思考期间的聊天内容
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文
self.chat_id = ""
self.response_mode = global_config.response_mode
self.trigger_response_text = ""
self.response_text = ""
self.trigger_response_time = 0
self.trigger_response_message = None
self.response_time = 0
self.response_messages = []
# 使用字典来存储 heartflow 模式的数据
self.heartflow_data = {
"heart_flow_prompt": "",
"sub_heartflow_before": "",
"sub_heartflow_now": "",
"sub_heartflow_after": "",
"sub_heartflow_model": "",
"prompt": "",
"response": "",
"model": ""
}
# 使用字典来存储 reasoning 模式的数据
self.reasoning_data = {
"thinking_log": "",
"prompt": "",
"response": "",
"model": ""
}
# 耗时
self.timing_results = {
"interested_rate_time": 0,
"sub_heartflow_observe_time": 0,
"sub_heartflow_step_time": 0,
"make_response_time": 0,
}
def catch_decide_to_response(self,message:MessageRecv):
# 搜集决定回复时的信息
self.trigger_response_message = message
self.trigger_response_text = message.detailed_plain_text
self.trigger_response_time = time.time()
self.chat_id = message.chat_stream.stream_id
self.chat_history = self.get_message_from_db_before_msg(message)
def catch_after_observe(self,obs_duration:float):#这里可以有更多信息
self.timing_results["sub_heartflow_observe_time"] = obs_duration
# def catch_shf
def catch_afer_shf_step(self,step_duration:float,past_mind:str,current_mind:str):
self.timing_results["sub_heartflow_step_time"] = step_duration
if len(past_mind) > 1:
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
self.heartflow_data["sub_heartflow_now"] = current_mind
else:
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
self.heartflow_data["sub_heartflow_now"] = current_mind
def catch_after_llm_generated(self,prompt:str,
response:str,
reasoning_content:str = "",
model_name:str = ""):
if self.response_mode == "heart_flow":
self.heartflow_data["prompt"] = prompt
self.heartflow_data["response"] = response
self.heartflow_data["model"] = model_name
elif self.response_mode == "reasoning":
self.reasoning_data["thinking_log"] = reasoning_content
self.reasoning_data["prompt"] = prompt
self.reasoning_data["response"] = response
self.reasoning_data["model"] = model_name
self.response_text = response
def catch_after_generate_response(self,response_duration:float):
self.timing_results["make_response_time"] = response_duration
def catch_after_response(self,response_duration:float,
response_message:List[str],
first_bot_msg:MessageSending):
self.timing_results["make_response_time"] = response_duration
self.response_time = time.time()
for msg in response_message:
self.response_messages.append(msg)
self.chat_history_in_thinking = self.get_message_from_db_between_msgs(self.trigger_response_message,first_bot_msg)
def get_message_from_db_between_msgs(self, message_start: Message, message_end: Message):
try:
# 从数据库中获取消息的时间戳
time_start = message_start.message_info.time
time_end = message_end.message_info.time
chat_id = message_start.chat_stream.stream_id
print(f"查询参数: time_start={time_start}, time_end={time_end}, chat_id={chat_id}")
# 查询数据库,获取 chat_id 相同且时间在 start 和 end 之间的数据
messages_between = db.messages.find(
{
"chat_id": chat_id,
"time": {"$gt": time_start, "$lt": time_end}
}
).sort("time", -1)
result = list(messages_between)
print(f"查询结果数量: {len(result)}")
if result:
print(f"第一条消息时间: {result[0]['time']}")
print(f"最后一条消息时间: {result[-1]['time']}")
return result
except Exception as e:
print(f"获取消息时出错: {str(e)}")
return []
def get_message_from_db_before_msg(self, message: MessageRecv):
# 从数据库中获取消息
message_id = message.message_info.message_id
chat_id = message.chat_stream.stream_id
# 查询数据库,获取 chat_id 相同且 message_id 小于当前消息的 30 条数据
messages_before = db.messages.find(
{"chat_id": chat_id, "message_id": {"$lt": message_id}}
).sort("time", -1).limit(self.context_length*3) #获取更多历史信息
return list(messages_before)
def message_list_to_dict(self, message_list):
#存储简化的聊天记录
result = []
for message in message_list:
if not isinstance(message, dict):
message = self.message_to_dict(message)
# print(message)
lite_message = {
"time": message["time"],
"user_nickname": message["user_info"]["user_nickname"],
"processed_plain_text": message["processed_plain_text"],
}
result.append(lite_message)
return result
def message_to_dict(self, message):
if not message:
return None
if isinstance(message, dict):
return message
return {
# "message_id": message.message_info.message_id,
"time": message.message_info.time,
"user_id": message.message_info.user_info.user_id,
"user_nickname": message.message_info.user_info.user_nickname,
"processed_plain_text": message.processed_plain_text,
# "detailed_plain_text": message.detailed_plain_text
}
def done_catch(self):
"""将收集到的信息存储到数据库的 thinking_log 集合中"""
try:
# 将消息对象转换为可序列化的字典
thinking_log_data = {
"chat_id": self.chat_id,
"response_mode": self.response_mode,
"trigger_text": self.trigger_response_text,
"response_text": self.response_text,
"trigger_info": {
"time": self.trigger_response_time,
"message": self.message_to_dict(self.trigger_response_message),
},
"response_info": {
"time": self.response_time,
"message": self.response_messages,
},
"timing_results": self.timing_results,
"chat_history": self.message_list_to_dict(self.chat_history),
"chat_history_in_thinking": self.message_list_to_dict(self.chat_history_in_thinking),
"chat_history_after_response": self.message_list_to_dict(self.chat_history_after_response)
}
# 根据不同的响应模式添加相应的数据
if self.response_mode == "heart_flow":
thinking_log_data["mode_specific_data"] = self.heartflow_data
elif self.response_mode == "reasoning":
thinking_log_data["mode_specific_data"] = self.reasoning_data
# 将数据插入到 thinking_log 集合中
db.thinking_log.insert_one(thinking_log_data)
return True
except Exception as e:
print(f"存储思考日志时出错: {str(e)}")
print(traceback.format_exc())
return False
class InfoCatcherManager:
def __init__(self):
self.info_catchers = {}
def get_info_catcher(self,thinking_id:str) -> InfoCatcher:
if thinking_id not in self.info_catchers:
self.info_catchers[thinking_id] = InfoCatcher()
return self.info_catchers[thinking_id]
info_catcher_manager = InfoCatcherManager()

View File

@@ -164,7 +164,7 @@ response_max_sentence_num = 4 # 回复允许的最大句子数
[remote] #发送统计信息,主要是看全球有多少只麦麦
enable = true
[experimental]
[experimental] #实验性功能,不一定完善或者根本不能用
enable_friend_chat = false # 是否启用好友聊天
pfc_chatting = false # 是否启用PFC聊天该功能仅作用于私聊与回复模式独立