refactor(core): 优化类型提示与代码风格
本次提交对项目代码进行了广泛的重构,主要集中在以下几个方面:
1. **类型提示现代化**:
- 将 `typing` 模块中的 `Optional[T]`、`List[T]`、`Dict[K, V]` 等旧式类型提示更新为现代的 `T | None`、`list[T]`、`dict[K, V]` 语法。
- 这提高了代码的可读性,并与较新 Python 版本的风格保持一致。
2. **代码风格统一**:
- 移除了多余的空行和不必要的空格,使代码更加紧凑和规范。
- 统一了部分日志输出的格式,增强了日志的可读性。
3. **导入语句优化**:
- 调整了部分模块的 `import` 语句顺序,使其符合 PEP 8 规范。
这些更改不涉及任何功能性变动,旨在提升代码库的整体质量、可维护性和开发体验。
This commit is contained in:
@@ -9,24 +9,25 @@ from pathlib import Path
|
||||
project_root = Path(__file__).parent.parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
from sqlalchemy import select, func
|
||||
from sqlalchemy import func, select
|
||||
|
||||
from src.common.database.sqlalchemy_database_api import get_db_session
|
||||
from src.common.database.sqlalchemy_models import Expression
|
||||
|
||||
|
||||
async def check_database():
|
||||
"""检查表达方式数据库状态"""
|
||||
|
||||
|
||||
print("=" * 60)
|
||||
print("表达方式数据库诊断报告")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
async with get_db_session() as session:
|
||||
# 1. 统计总数
|
||||
total_count = await session.execute(select(func.count()).select_from(Expression))
|
||||
total = total_count.scalar()
|
||||
print(f"\n📊 总表达方式数量: {total}")
|
||||
|
||||
|
||||
if total == 0:
|
||||
print("\n⚠️ 数据库为空!")
|
||||
print("\n可能的原因:")
|
||||
@@ -38,7 +39,7 @@ async def check_database():
|
||||
print("- 查看日志中是否有表达学习相关的错误")
|
||||
print("- 确认聊天流的 learn_expression 配置为 true")
|
||||
return
|
||||
|
||||
|
||||
# 2. 按 chat_id 统计
|
||||
print("\n📝 按聊天流统计:")
|
||||
chat_counts = await session.execute(
|
||||
@@ -47,7 +48,7 @@ async def check_database():
|
||||
)
|
||||
for chat_id, count in chat_counts:
|
||||
print(f" - {chat_id}: {count} 个表达方式")
|
||||
|
||||
|
||||
# 3. 按 type 统计
|
||||
print("\n📝 按类型统计:")
|
||||
type_counts = await session.execute(
|
||||
@@ -56,7 +57,7 @@ async def check_database():
|
||||
)
|
||||
for expr_type, count in type_counts:
|
||||
print(f" - {expr_type}: {count} 个")
|
||||
|
||||
|
||||
# 4. 检查 situation 和 style 字段是否有空值
|
||||
print("\n🔍 字段完整性检查:")
|
||||
null_situation = await session.execute(
|
||||
@@ -69,30 +70,30 @@ async def check_database():
|
||||
.select_from(Expression)
|
||||
.where(Expression.style == None)
|
||||
)
|
||||
|
||||
|
||||
null_sit_count = null_situation.scalar()
|
||||
null_sty_count = null_style.scalar()
|
||||
|
||||
|
||||
print(f" - situation 为空: {null_sit_count} 个")
|
||||
print(f" - style 为空: {null_sty_count} 个")
|
||||
|
||||
|
||||
if null_sit_count > 0 or null_sty_count > 0:
|
||||
print(" ⚠️ 发现空值!这会导致匹配失败")
|
||||
|
||||
|
||||
# 5. 显示一些样例数据
|
||||
print("\n📋 样例数据 (前10条):")
|
||||
samples = await session.execute(
|
||||
select(Expression)
|
||||
.limit(10)
|
||||
)
|
||||
|
||||
|
||||
for i, expr in enumerate(samples.scalars(), 1):
|
||||
print(f"\n [{i}] Chat: {expr.chat_id}")
|
||||
print(f" Type: {expr.type}")
|
||||
print(f" Situation: {expr.situation}")
|
||||
print(f" Style: {expr.style}")
|
||||
print(f" Count: {expr.count}")
|
||||
|
||||
|
||||
# 6. 检查 style 字段的唯一值
|
||||
print("\n📋 Style 字段样例 (前20个):")
|
||||
unique_styles = await session.execute(
|
||||
@@ -100,13 +101,13 @@ async def check_database():
|
||||
.distinct()
|
||||
.limit(20)
|
||||
)
|
||||
|
||||
|
||||
styles = [s for s in unique_styles.scalars()]
|
||||
for style in styles:
|
||||
print(f" - {style}")
|
||||
|
||||
|
||||
print(f"\n (共 {len(styles)} 个不同的 style)")
|
||||
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("诊断完成")
|
||||
print("=" * 60)
|
||||
|
||||
@@ -9,27 +9,28 @@ project_root = Path(__file__).parent.parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from src.common.database.sqlalchemy_database_api import get_db_session
|
||||
from src.common.database.sqlalchemy_models import Expression
|
||||
|
||||
|
||||
async def analyze_style_fields():
|
||||
"""分析 style 字段的内容"""
|
||||
|
||||
|
||||
print("=" * 60)
|
||||
print("Style 字段内容分析")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
async with get_db_session() as session:
|
||||
# 获取所有表达方式
|
||||
result = await session.execute(select(Expression).limit(30))
|
||||
expressions = result.scalars().all()
|
||||
|
||||
|
||||
print(f"\n总共检查 {len(expressions)} 条记录\n")
|
||||
|
||||
|
||||
# 按类型分类
|
||||
style_examples = []
|
||||
|
||||
|
||||
for expr in expressions:
|
||||
if expr.type == "style":
|
||||
style_examples.append({
|
||||
@@ -37,7 +38,7 @@ async def analyze_style_fields():
|
||||
"style": expr.style,
|
||||
"length": len(expr.style) if expr.style else 0
|
||||
})
|
||||
|
||||
|
||||
print("📋 Style 类型样例 (前15条):")
|
||||
print("="*60)
|
||||
for i, ex in enumerate(style_examples[:15], 1):
|
||||
@@ -45,17 +46,17 @@ async def analyze_style_fields():
|
||||
print(f" Situation: {ex['situation']}")
|
||||
print(f" Style: {ex['style']}")
|
||||
print(f" 长度: {ex['length']} 字符")
|
||||
|
||||
|
||||
# 判断是具体表达还是风格描述
|
||||
if ex['length'] <= 20 and any(word in ex['style'] for word in ['简洁', '短句', '陈述', '疑问', '感叹', '省略', '完整']):
|
||||
if ex["length"] <= 20 and any(word in ex["style"] for word in ["简洁", "短句", "陈述", "疑问", "感叹", "省略", "完整"]):
|
||||
style_type = "✓ 风格描述"
|
||||
elif ex['length'] <= 10:
|
||||
elif ex["length"] <= 10:
|
||||
style_type = "? 可能是具体表达(较短)"
|
||||
else:
|
||||
style_type = "✗ 具体表达内容"
|
||||
|
||||
|
||||
print(f" 类型判断: {style_type}")
|
||||
|
||||
|
||||
print("\n" + "="*60)
|
||||
print("分析完成")
|
||||
print("="*60)
|
||||
|
||||
@@ -16,28 +16,28 @@ logger = get_logger("debug_style_learner")
|
||||
|
||||
def check_style_learner_status(chat_id: str):
|
||||
"""检查指定 chat_id 的 StyleLearner 状态"""
|
||||
|
||||
|
||||
print("=" * 60)
|
||||
print(f"StyleLearner 状态诊断 - Chat ID: {chat_id}")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
# 获取 learner
|
||||
learner = style_learner_manager.get_learner(chat_id)
|
||||
|
||||
|
||||
# 1. 基本信息
|
||||
print(f"\n📊 基本信息:")
|
||||
print("\n📊 基本信息:")
|
||||
print(f" Chat ID: {learner.chat_id}")
|
||||
print(f" 风格数量: {len(learner.style_to_id)}")
|
||||
print(f" 下一个ID: {learner.next_style_id}")
|
||||
print(f" 最大风格数: {learner.max_styles}")
|
||||
|
||||
|
||||
# 2. 学习统计
|
||||
print(f"\n📈 学习统计:")
|
||||
print("\n📈 学习统计:")
|
||||
print(f" 总样本数: {learner.learning_stats['total_samples']}")
|
||||
print(f" 最后更新: {learner.learning_stats.get('last_update', 'N/A')}")
|
||||
|
||||
|
||||
# 3. 风格列表(前20个)
|
||||
print(f"\n📋 已学习的风格 (前20个):")
|
||||
print("\n📋 已学习的风格 (前20个):")
|
||||
all_styles = learner.get_all_styles()
|
||||
if not all_styles:
|
||||
print(" ⚠️ 没有任何风格!模型尚未训练")
|
||||
@@ -47,9 +47,9 @@ def check_style_learner_status(chat_id: str):
|
||||
situation = learner.id_to_situation.get(style_id, "N/A")
|
||||
print(f" [{i}] {style}")
|
||||
print(f" (ID: {style_id}, Situation: {situation})")
|
||||
|
||||
|
||||
# 4. 测试预测
|
||||
print(f"\n🔮 测试预测功能:")
|
||||
print("\n🔮 测试预测功能:")
|
||||
if not all_styles:
|
||||
print(" ⚠️ 无法测试,模型没有训练数据")
|
||||
else:
|
||||
@@ -58,19 +58,19 @@ def check_style_learner_status(chat_id: str):
|
||||
"讨论游戏",
|
||||
"表达赞同"
|
||||
]
|
||||
|
||||
|
||||
for test_sit in test_situations:
|
||||
print(f"\n 测试输入: '{test_sit}'")
|
||||
best_style, scores = learner.predict_style(test_sit, top_k=3)
|
||||
|
||||
|
||||
if best_style:
|
||||
print(f" ✓ 最佳匹配: {best_style}")
|
||||
print(f" Top 3:")
|
||||
print(" Top 3:")
|
||||
for style, score in list(scores.items())[:3]:
|
||||
print(f" - {style}: {score:.4f}")
|
||||
else:
|
||||
print(f" ✗ 预测失败")
|
||||
|
||||
print(" ✗ 预测失败")
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("诊断完成")
|
||||
print("=" * 60)
|
||||
@@ -82,7 +82,7 @@ if __name__ == "__main__":
|
||||
"52fb94af9f500a01e023ea780e43606e", # 有78个表达方式
|
||||
"46c8714c8a9b7ee169941fe99fcde07d", # 有22个表达方式
|
||||
]
|
||||
|
||||
|
||||
for chat_id in test_chat_ids:
|
||||
check_style_learner_status(chat_id)
|
||||
print("\n")
|
||||
|
||||
@@ -201,15 +201,16 @@ class RelationshipEnergyCalculator(EnergyCalculator):
|
||||
|
||||
# 从数据库获取聊天流兴趣分数
|
||||
try:
|
||||
from sqlalchemy import select
|
||||
|
||||
from src.common.database.sqlalchemy_database_api import get_db_session
|
||||
from src.common.database.sqlalchemy_models import ChatStreams
|
||||
from sqlalchemy import select
|
||||
|
||||
async with get_db_session() as session:
|
||||
stmt = select(ChatStreams).where(ChatStreams.stream_id == stream_id)
|
||||
result = await session.execute(stmt)
|
||||
stream = result.scalar_one_or_none()
|
||||
|
||||
|
||||
if stream and stream.stream_interest_score is not None:
|
||||
interest_score = float(stream.stream_interest_score)
|
||||
logger.debug(f"使用聊天流兴趣度计算关系能量: {interest_score:.3f}")
|
||||
|
||||
@@ -5,14 +5,14 @@
|
||||
import difflib
|
||||
import random
|
||||
import re
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
logger = get_logger("express_utils")
|
||||
|
||||
|
||||
def filter_message_content(content: Optional[str]) -> str:
|
||||
def filter_message_content(content: str | None) -> str:
|
||||
"""
|
||||
过滤消息内容,移除回复、@、图片等格式
|
||||
|
||||
@@ -51,7 +51,7 @@ def calculate_similarity(text1: str, text2: str) -> float:
|
||||
return difflib.SequenceMatcher(None, text1, text2).ratio()
|
||||
|
||||
|
||||
def weighted_sample(population: List[Dict], k: int, weight_key: Optional[str] = None) -> List[Dict]:
|
||||
def weighted_sample(population: list[dict], k: int, weight_key: str | None = None) -> list[dict]:
|
||||
"""
|
||||
加权随机抽样函数
|
||||
|
||||
@@ -108,7 +108,7 @@ def normalize_text(text: str) -> str:
|
||||
return text.strip()
|
||||
|
||||
|
||||
def extract_keywords(text: str, max_keywords: int = 10) -> List[str]:
|
||||
def extract_keywords(text: str, max_keywords: int = 10) -> list[str]:
|
||||
"""
|
||||
简单的关键词提取(基于词频)
|
||||
|
||||
@@ -135,7 +135,7 @@ def extract_keywords(text: str, max_keywords: int = 10) -> List[str]:
|
||||
return words[:max_keywords]
|
||||
|
||||
|
||||
def format_expression_pair(situation: str, style: str, index: Optional[int] = None) -> str:
|
||||
def format_expression_pair(situation: str, style: str, index: int | None = None) -> str:
|
||||
"""
|
||||
格式化表达方式对
|
||||
|
||||
@@ -153,7 +153,7 @@ def format_expression_pair(situation: str, style: str, index: Optional[int] = No
|
||||
return f'当"{situation}"时,使用"{style}"'
|
||||
|
||||
|
||||
def parse_expression_pair(text: str) -> Optional[tuple[str, str]]:
|
||||
def parse_expression_pair(text: str) -> tuple[str, str] | None:
|
||||
"""
|
||||
解析表达方式对文本
|
||||
|
||||
@@ -170,7 +170,7 @@ def parse_expression_pair(text: str) -> Optional[tuple[str, str]]:
|
||||
return None
|
||||
|
||||
|
||||
def batch_filter_duplicates(expressions: List[Dict[str, Any]], key_fields: List[str]) -> List[Dict[str, Any]]:
|
||||
def batch_filter_duplicates(expressions: list[dict[str, Any]], key_fields: list[str]) -> list[dict[str, Any]]:
|
||||
"""
|
||||
批量去重表达方式
|
||||
|
||||
@@ -219,8 +219,8 @@ def calculate_time_weight(last_active_time: float, current_time: float, half_lif
|
||||
|
||||
|
||||
def merge_expressions_from_multiple_chats(
|
||||
expressions_dict: Dict[str, List[Dict[str, Any]]], max_total: int = 100
|
||||
) -> List[Dict[str, Any]]:
|
||||
expressions_dict: dict[str, list[dict[str, Any]]], max_total: int = 100
|
||||
) -> list[dict[str, Any]]:
|
||||
"""
|
||||
合并多个聊天室的表达方式
|
||||
|
||||
|
||||
@@ -438,9 +438,9 @@ class ExpressionLearner:
|
||||
try:
|
||||
# 获取 StyleLearner 实例
|
||||
learner = style_learner_manager.get_learner(chat_id)
|
||||
|
||||
|
||||
logger.info(f"开始训练 StyleLearner: chat_id={chat_id}, 样本数={len(expr_list)}")
|
||||
|
||||
|
||||
# 为每个学习到的表达方式训练模型
|
||||
# 使用 situation 作为输入,style 作为目标
|
||||
# 这是最符合语义的方式:场景 -> 表达方式
|
||||
@@ -448,25 +448,25 @@ class ExpressionLearner:
|
||||
for expr in expr_list:
|
||||
situation = expr["situation"]
|
||||
style = expr["style"]
|
||||
|
||||
|
||||
# 训练映射关系: situation -> style
|
||||
if learner.learn_mapping(situation, style):
|
||||
success_count += 1
|
||||
else:
|
||||
logger.warning(f"训练失败: {situation} -> {style}")
|
||||
|
||||
|
||||
logger.info(
|
||||
f"StyleLearner 训练完成: {success_count}/{len(expr_list)} 成功, "
|
||||
f"当前风格总数={len(learner.get_all_styles())}, "
|
||||
f"总样本数={learner.learning_stats['total_samples']}"
|
||||
)
|
||||
|
||||
|
||||
# 保存模型
|
||||
if learner.save(style_learner_manager.model_save_path):
|
||||
logger.info(f"StyleLearner 模型保存成功: {chat_id}")
|
||||
else:
|
||||
logger.error(f"StyleLearner 模型保存失败: {chat_id}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"训练 StyleLearner 失败: {e}", exc_info=True)
|
||||
|
||||
@@ -527,7 +527,7 @@ class ExpressionLearner:
|
||||
logger.debug(f"学习{type_str}的response: {response}")
|
||||
|
||||
expressions: list[tuple[str, str, str]] = self.parse_expression_response(response, chat_id)
|
||||
|
||||
|
||||
if not expressions:
|
||||
logger.warning(f"从LLM响应中未能解析出任何{type_str}。请检查LLM输出格式是否正确。")
|
||||
logger.info(f"LLM完整响应:\n{response}")
|
||||
@@ -542,26 +542,26 @@ class ExpressionLearner:
|
||||
"""
|
||||
expressions: list[tuple[str, str, str]] = []
|
||||
failed_lines = []
|
||||
|
||||
|
||||
for line_num, line in enumerate(response.splitlines(), 1):
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
|
||||
|
||||
# 替换中文引号为英文引号,便于统一处理
|
||||
line_normalized = line.replace('"', '"').replace('"', '"').replace("'", '"').replace("'", '"')
|
||||
|
||||
|
||||
# 查找"当"和下一个引号
|
||||
idx_when = line_normalized.find('当"')
|
||||
if idx_when == -1:
|
||||
# 尝试不带引号的格式: 当xxx时
|
||||
idx_when = line_normalized.find('当')
|
||||
idx_when = line_normalized.find("当")
|
||||
if idx_when == -1:
|
||||
failed_lines.append((line_num, line, "找不到'当'关键字"))
|
||||
continue
|
||||
|
||||
|
||||
# 提取"当"和"时"之间的内容
|
||||
idx_shi = line_normalized.find('时', idx_when)
|
||||
idx_shi = line_normalized.find("时", idx_when)
|
||||
if idx_shi == -1:
|
||||
failed_lines.append((line_num, line, "找不到'时'关键字"))
|
||||
continue
|
||||
@@ -575,20 +575,20 @@ class ExpressionLearner:
|
||||
continue
|
||||
situation = line_normalized[idx_quote1 + 1 : idx_quote2]
|
||||
search_start = idx_quote2
|
||||
|
||||
|
||||
# 查找"使用"或"可以"
|
||||
idx_use = line_normalized.find('使用"', search_start)
|
||||
if idx_use == -1:
|
||||
idx_use = line_normalized.find('可以"', search_start)
|
||||
if idx_use == -1:
|
||||
# 尝试不带引号的格式
|
||||
idx_use = line_normalized.find('使用', search_start)
|
||||
idx_use = line_normalized.find("使用", search_start)
|
||||
if idx_use == -1:
|
||||
idx_use = line_normalized.find('可以', search_start)
|
||||
idx_use = line_normalized.find("可以", search_start)
|
||||
if idx_use == -1:
|
||||
failed_lines.append((line_num, line, "找不到'使用'或'可以'关键字"))
|
||||
continue
|
||||
|
||||
|
||||
# 提取剩余部分作为style
|
||||
style = line_normalized[idx_use + 2:].strip('"\'"",。')
|
||||
if not style:
|
||||
@@ -610,24 +610,24 @@ class ExpressionLearner:
|
||||
style = line_normalized[idx_quote3 + 1:].strip('"\'""')
|
||||
else:
|
||||
style = line_normalized[idx_quote3 + 1 : idx_quote4]
|
||||
|
||||
|
||||
# 清理并验证
|
||||
situation = situation.strip()
|
||||
style = style.strip()
|
||||
|
||||
|
||||
if not situation or not style:
|
||||
failed_lines.append((line_num, line, f"situation或style为空: situation='{situation}', style='{style}'"))
|
||||
continue
|
||||
|
||||
|
||||
expressions.append((chat_id, situation, style))
|
||||
|
||||
|
||||
# 记录解析失败的行
|
||||
if failed_lines:
|
||||
logger.warning(f"解析表达方式时有 {len(failed_lines)} 行失败:")
|
||||
for line_num, line, reason in failed_lines[:5]: # 只显示前5个
|
||||
logger.warning(f" 行{line_num}: {reason}")
|
||||
logger.debug(f" 原文: {line}")
|
||||
|
||||
|
||||
if not expressions:
|
||||
logger.warning(f"LLM返回了内容但无法解析任何表达方式。响应预览:\n{response[:500]}")
|
||||
else:
|
||||
|
||||
@@ -267,11 +267,11 @@ class ExpressionSelector:
|
||||
chat_info = "\n".join([f"{msg.get('sender', 'Unknown')}: {msg.get('content', '')}" for msg in chat_history])
|
||||
else:
|
||||
chat_info = chat_history
|
||||
|
||||
|
||||
# 根据配置选择模式
|
||||
mode = global_config.expression.mode
|
||||
logger.debug(f"[ExpressionSelector] 使用模式: {mode}")
|
||||
|
||||
|
||||
if mode == "exp_model":
|
||||
return await self._select_expressions_model_only(
|
||||
chat_id=chat_id,
|
||||
@@ -288,7 +288,7 @@ class ExpressionSelector:
|
||||
max_num=max_num,
|
||||
min_num=min_num
|
||||
)
|
||||
|
||||
|
||||
async def _select_expressions_classic(
|
||||
self,
|
||||
chat_id: str,
|
||||
@@ -298,7 +298,7 @@ class ExpressionSelector:
|
||||
min_num: int = 5,
|
||||
) -> list[dict[str, Any]]:
|
||||
"""经典模式:随机抽样 + LLM评估"""
|
||||
logger.debug(f"[Classic模式] 使用LLM评估表达方式")
|
||||
logger.debug("[Classic模式] 使用LLM评估表达方式")
|
||||
return await self.select_suitable_expressions_llm(
|
||||
chat_id=chat_id,
|
||||
chat_info=chat_info,
|
||||
@@ -306,7 +306,7 @@ class ExpressionSelector:
|
||||
min_num=min_num,
|
||||
target_message=target_message
|
||||
)
|
||||
|
||||
|
||||
async def _select_expressions_model_only(
|
||||
self,
|
||||
chat_id: str,
|
||||
@@ -316,22 +316,22 @@ class ExpressionSelector:
|
||||
min_num: int = 5,
|
||||
) -> list[dict[str, Any]]:
|
||||
"""模型预测模式:先提取情境,再使用StyleLearner预测表达风格"""
|
||||
logger.debug(f"[Exp_model模式] 使用情境提取 + StyleLearner预测表达方式")
|
||||
|
||||
logger.debug("[Exp_model模式] 使用情境提取 + StyleLearner预测表达方式")
|
||||
|
||||
# 检查是否允许在此聊天流中使用表达
|
||||
if not self.can_use_expression_for_chat(chat_id):
|
||||
logger.debug(f"聊天流 {chat_id} 不允许使用表达,返回空列表")
|
||||
return []
|
||||
|
||||
|
||||
# 步骤1: 提取聊天情境
|
||||
situations = await situation_extractor.extract_situations(
|
||||
chat_history=chat_info,
|
||||
target_message=target_message,
|
||||
max_situations=3
|
||||
)
|
||||
|
||||
|
||||
if not situations:
|
||||
logger.warning(f"无法提取聊天情境,回退到经典模式")
|
||||
logger.warning("无法提取聊天情境,回退到经典模式")
|
||||
return await self._select_expressions_classic(
|
||||
chat_id=chat_id,
|
||||
chat_info=chat_info,
|
||||
@@ -339,17 +339,17 @@ class ExpressionSelector:
|
||||
max_num=max_num,
|
||||
min_num=min_num
|
||||
)
|
||||
|
||||
|
||||
logger.info(f"[Exp_model模式] 步骤1完成 - 提取到 {len(situations)} 个情境: {situations}")
|
||||
|
||||
|
||||
# 步骤2: 使用 StyleLearner 为每个情境预测合适的表达方式
|
||||
learner = style_learner_manager.get_learner(chat_id)
|
||||
|
||||
|
||||
all_predicted_styles = {}
|
||||
for i, situation in enumerate(situations, 1):
|
||||
logger.debug(f"[Exp_model模式] 步骤2.{i} - 为情境预测风格: {situation}")
|
||||
best_style, scores = learner.predict_style(situation, top_k=max_num)
|
||||
|
||||
|
||||
if best_style and scores:
|
||||
logger.debug(f" 预测结果: best={best_style}, scores数量={len(scores)}")
|
||||
# 合并分数(取最高分)
|
||||
@@ -357,10 +357,10 @@ class ExpressionSelector:
|
||||
if style not in all_predicted_styles or score > all_predicted_styles[style]:
|
||||
all_predicted_styles[style] = score
|
||||
else:
|
||||
logger.debug(f" 该情境未返回预测结果")
|
||||
|
||||
logger.debug(" 该情境未返回预测结果")
|
||||
|
||||
if not all_predicted_styles:
|
||||
logger.warning(f"[Exp_model模式] StyleLearner未返回预测结果(可能模型未训练),回退到经典模式")
|
||||
logger.warning("[Exp_model模式] StyleLearner未返回预测结果(可能模型未训练),回退到经典模式")
|
||||
return await self._select_expressions_classic(
|
||||
chat_id=chat_id,
|
||||
chat_info=chat_info,
|
||||
@@ -368,22 +368,22 @@ class ExpressionSelector:
|
||||
max_num=max_num,
|
||||
min_num=min_num
|
||||
)
|
||||
|
||||
|
||||
# 将分数字典转换为列表格式 [(style, score), ...]
|
||||
predicted_styles = sorted(all_predicted_styles.items(), key=lambda x: x[1], reverse=True)
|
||||
|
||||
|
||||
logger.info(f"[Exp_model模式] 步骤2完成 - 预测到 {len(predicted_styles)} 个风格, Top3: {predicted_styles[:3]}")
|
||||
|
||||
|
||||
# 步骤3: 根据预测的风格从数据库获取表达方式
|
||||
logger.debug(f"[Exp_model模式] 步骤3 - 从数据库查询表达方式")
|
||||
logger.debug("[Exp_model模式] 步骤3 - 从数据库查询表达方式")
|
||||
expressions = await self.get_model_predicted_expressions(
|
||||
chat_id=chat_id,
|
||||
predicted_styles=predicted_styles,
|
||||
max_num=max_num
|
||||
)
|
||||
|
||||
|
||||
if not expressions:
|
||||
logger.warning(f"[Exp_model模式] 未找到匹配预测风格的表达方式,回退到经典模式")
|
||||
logger.warning("[Exp_model模式] 未找到匹配预测风格的表达方式,回退到经典模式")
|
||||
return await self._select_expressions_classic(
|
||||
chat_id=chat_id,
|
||||
chat_info=chat_info,
|
||||
@@ -391,10 +391,10 @@ class ExpressionSelector:
|
||||
max_num=max_num,
|
||||
min_num=min_num
|
||||
)
|
||||
|
||||
|
||||
logger.info(f"[Exp_model模式] 成功! 返回 {len(expressions)} 个表达方式")
|
||||
return expressions
|
||||
|
||||
|
||||
async def get_model_predicted_expressions(
|
||||
self,
|
||||
chat_id: str,
|
||||
@@ -414,15 +414,15 @@ class ExpressionSelector:
|
||||
"""
|
||||
if not predicted_styles:
|
||||
return []
|
||||
|
||||
|
||||
# 提取风格名称(前3个最佳匹配)
|
||||
style_names = [style for style, _ in predicted_styles[:min(3, len(predicted_styles))]]
|
||||
logger.debug(f"预测最佳风格: {style_names[0] if style_names else 'None'}, Top3分数: {predicted_styles[:3]}")
|
||||
|
||||
|
||||
# 🔥 使用 get_related_chat_ids 获取所有相关的 chat_id(支持共享表达方式)
|
||||
related_chat_ids = self.get_related_chat_ids(chat_id)
|
||||
logger.info(f"查询相关的chat_ids ({len(related_chat_ids)}个): {related_chat_ids}")
|
||||
|
||||
|
||||
async with get_db_session() as session:
|
||||
# 🔍 先检查数据库中实际有哪些 chat_id 的数据
|
||||
db_chat_ids_result = await session.execute(
|
||||
@@ -432,7 +432,7 @@ class ExpressionSelector:
|
||||
)
|
||||
db_chat_ids = [cid for cid in db_chat_ids_result.scalars()]
|
||||
logger.info(f"数据库中有表达方式的chat_ids ({len(db_chat_ids)}个): {db_chat_ids}")
|
||||
|
||||
|
||||
# 获取所有相关 chat_id 的表达方式(用于模糊匹配)
|
||||
all_expressions_result = await session.execute(
|
||||
select(Expression)
|
||||
@@ -440,51 +440,51 @@ class ExpressionSelector:
|
||||
.where(Expression.type == "style")
|
||||
)
|
||||
all_expressions = list(all_expressions_result.scalars())
|
||||
|
||||
|
||||
logger.info(f"配置的相关chat_id的表达方式数量: {len(all_expressions)}")
|
||||
|
||||
|
||||
# 🔥 智能回退:如果相关 chat_id 没有数据,尝试查询所有 chat_id
|
||||
if not all_expressions:
|
||||
logger.info(f"相关chat_id没有数据,尝试从所有chat_id查询")
|
||||
logger.info("相关chat_id没有数据,尝试从所有chat_id查询")
|
||||
all_expressions_result = await session.execute(
|
||||
select(Expression)
|
||||
.where(Expression.type == "style")
|
||||
)
|
||||
all_expressions = list(all_expressions_result.scalars())
|
||||
logger.debug(f"数据库中所有表达方式数量: {len(all_expressions)}")
|
||||
|
||||
|
||||
if not all_expressions:
|
||||
logger.warning(f"数据库中完全没有任何表达方式,需要先学习")
|
||||
logger.warning("数据库中完全没有任何表达方式,需要先学习")
|
||||
return []
|
||||
|
||||
|
||||
# 🔥 使用模糊匹配而不是精确匹配
|
||||
# 计算每个预测style与数据库style的相似度
|
||||
from difflib import SequenceMatcher
|
||||
|
||||
|
||||
matched_expressions = []
|
||||
for expr in all_expressions:
|
||||
db_style = expr.style or ""
|
||||
max_similarity = 0.0
|
||||
best_predicted = ""
|
||||
|
||||
|
||||
# 与每个预测的style计算相似度
|
||||
for predicted_style, pred_score in predicted_styles[:20]: # 考虑前20个预测
|
||||
# 计算字符串相似度
|
||||
similarity = SequenceMatcher(None, predicted_style, db_style).ratio()
|
||||
|
||||
|
||||
# 也检查包含关系(如果一个是另一个的子串,给更高分)
|
||||
if len(predicted_style) >= 2 and len(db_style) >= 2:
|
||||
if predicted_style in db_style or db_style in predicted_style:
|
||||
similarity = max(similarity, 0.7)
|
||||
|
||||
|
||||
if similarity > max_similarity:
|
||||
max_similarity = similarity
|
||||
best_predicted = predicted_style
|
||||
|
||||
|
||||
# 🔥 降低阈值到30%,因为StyleLearner预测质量较差
|
||||
if max_similarity >= 0.3: # 30%相似度阈值
|
||||
matched_expressions.append((expr, max_similarity, expr.count, best_predicted))
|
||||
|
||||
|
||||
if not matched_expressions:
|
||||
# 收集数据库中的style样例用于调试
|
||||
all_styles = [e.style for e in all_expressions[:10]]
|
||||
@@ -495,11 +495,11 @@ class ExpressionSelector:
|
||||
f" 提示: StyleLearner预测质量差,建议重新训练或使用classic模式"
|
||||
)
|
||||
return []
|
||||
|
||||
|
||||
# 按照相似度*count排序,选择最佳匹配
|
||||
matched_expressions.sort(key=lambda x: x[1] * (x[2] ** 0.5), reverse=True)
|
||||
expressions_objs = [e[0] for e in matched_expressions[:max_num]]
|
||||
|
||||
|
||||
# 显示最佳匹配的详细信息
|
||||
top_matches = [f"{e[3]}->{e[0].style}({e[1]:.2f})" for e in matched_expressions[:3]]
|
||||
logger.info(
|
||||
@@ -507,7 +507,7 @@ class ExpressionSelector:
|
||||
f" 相似度范围: {matched_expressions[0][1]:.2f} ~ {matched_expressions[min(len(matched_expressions)-1, max_num-1)][1]:.2f}\n"
|
||||
f" Top3匹配: {top_matches}"
|
||||
)
|
||||
|
||||
|
||||
# 转换为字典格式
|
||||
expressions = []
|
||||
for expr in expressions_objs:
|
||||
@@ -518,7 +518,7 @@ class ExpressionSelector:
|
||||
"count": float(expr.count) if expr.count else 0.0,
|
||||
"last_active_time": expr.last_active_time or 0.0
|
||||
})
|
||||
|
||||
|
||||
logger.debug(f"从数据库获取了 {len(expressions)} 个表达方式")
|
||||
return expressions
|
||||
|
||||
|
||||
@@ -5,7 +5,6 @@
|
||||
import os
|
||||
import pickle
|
||||
from collections import Counter, defaultdict
|
||||
from typing import Dict, Optional, Tuple
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
@@ -36,14 +35,14 @@ class ExpressorModel:
|
||||
self.nb = OnlineNaiveBayes(alpha=alpha, beta=beta, gamma=gamma, vocab_size=vocab_size)
|
||||
|
||||
# 候选表达管理
|
||||
self._candidates: Dict[str, str] = {} # cid -> text (style)
|
||||
self._situations: Dict[str, str] = {} # cid -> situation (不参与计算)
|
||||
self._candidates: dict[str, str] = {} # cid -> text (style)
|
||||
self._situations: dict[str, str] = {} # cid -> situation (不参与计算)
|
||||
|
||||
logger.info(
|
||||
f"ExpressorModel初始化完成 (alpha={alpha}, beta={beta}, gamma={gamma}, vocab_size={vocab_size}, use_jieba={use_jieba})"
|
||||
)
|
||||
|
||||
def add_candidate(self, cid: str, text: str, situation: Optional[str] = None):
|
||||
def add_candidate(self, cid: str, text: str, situation: str | None = None):
|
||||
"""
|
||||
添加候选文本和对应的situation
|
||||
|
||||
@@ -62,7 +61,7 @@ class ExpressorModel:
|
||||
if cid not in self.nb.token_counts:
|
||||
self.nb.token_counts[cid] = defaultdict(float)
|
||||
|
||||
def predict(self, text: str, k: int = None) -> Tuple[Optional[str], Dict[str, float]]:
|
||||
def predict(self, text: str, k: int = None) -> tuple[str | None, dict[str, float]]:
|
||||
"""
|
||||
直接对所有候选进行朴素贝叶斯评分
|
||||
|
||||
@@ -113,7 +112,7 @@ class ExpressorModel:
|
||||
tf = Counter(toks)
|
||||
self.nb.update_positive(tf, cid)
|
||||
|
||||
def decay(self, factor: Optional[float] = None):
|
||||
def decay(self, factor: float | None = None):
|
||||
"""
|
||||
应用知识衰减
|
||||
|
||||
@@ -122,7 +121,7 @@ class ExpressorModel:
|
||||
"""
|
||||
self.nb.decay(factor)
|
||||
|
||||
def get_candidate_info(self, cid: str) -> Tuple[Optional[str], Optional[str]]:
|
||||
def get_candidate_info(self, cid: str) -> tuple[str | None, str | None]:
|
||||
"""
|
||||
获取候选信息
|
||||
|
||||
@@ -136,7 +135,7 @@ class ExpressorModel:
|
||||
situation = self._situations.get(cid)
|
||||
return style, situation
|
||||
|
||||
def get_all_candidates(self) -> Dict[str, Tuple[str, str]]:
|
||||
def get_all_candidates(self) -> dict[str, tuple[str, str]]:
|
||||
"""
|
||||
获取所有候选
|
||||
|
||||
@@ -205,7 +204,7 @@ class ExpressorModel:
|
||||
|
||||
logger.info(f"模型已从 {path} 加载")
|
||||
|
||||
def get_stats(self) -> Dict:
|
||||
def get_stats(self) -> dict:
|
||||
"""获取模型统计信息"""
|
||||
nb_stats = self.nb.get_stats()
|
||||
return {
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
"""
|
||||
import math
|
||||
from collections import Counter, defaultdict
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
@@ -28,15 +27,15 @@ class OnlineNaiveBayes:
|
||||
self.V = vocab_size
|
||||
|
||||
# 类别统计
|
||||
self.cls_counts: Dict[str, float] = defaultdict(float) # cid -> total token count
|
||||
self.token_counts: Dict[str, Dict[str, float]] = defaultdict(
|
||||
self.cls_counts: dict[str, float] = defaultdict(float) # cid -> total token count
|
||||
self.token_counts: dict[str, dict[str, float]] = defaultdict(
|
||||
lambda: defaultdict(float)
|
||||
) # cid -> term -> count
|
||||
|
||||
# 缓存
|
||||
self._logZ: Dict[str, float] = {} # cache log(∑counts + Vα)
|
||||
self._logZ: dict[str, float] = {} # cache log(∑counts + Vα)
|
||||
|
||||
def score_batch(self, tf: Counter, cids: List[str]) -> Dict[str, float]:
|
||||
def score_batch(self, tf: Counter, cids: list[str]) -> dict[str, float]:
|
||||
"""
|
||||
批量计算候选的贝叶斯分数
|
||||
|
||||
@@ -51,7 +50,7 @@ class OnlineNaiveBayes:
|
||||
n_cls = max(1, len(self.cls_counts))
|
||||
denom_prior = math.log(total_cls + self.beta * n_cls)
|
||||
|
||||
out: Dict[str, float] = {}
|
||||
out: dict[str, float] = {}
|
||||
for cid in cids:
|
||||
# 计算先验概率 log P(c)
|
||||
prior = math.log(self.cls_counts[cid] + self.beta) - denom_prior
|
||||
@@ -88,7 +87,7 @@ class OnlineNaiveBayes:
|
||||
self.cls_counts[cid] += inc
|
||||
self._invalidate(cid)
|
||||
|
||||
def decay(self, factor: Optional[float] = None):
|
||||
def decay(self, factor: float | None = None):
|
||||
"""
|
||||
知识衰减(遗忘机制)
|
||||
|
||||
@@ -133,7 +132,7 @@ class OnlineNaiveBayes:
|
||||
if cid in self._logZ:
|
||||
del self._logZ[cid]
|
||||
|
||||
def get_stats(self) -> Dict:
|
||||
def get_stats(self) -> dict:
|
||||
"""获取统计信息"""
|
||||
return {
|
||||
"n_classes": len(self.cls_counts),
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
"""
|
||||
文本分词器,支持中文Jieba分词
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
@@ -30,7 +29,7 @@ class Tokenizer:
|
||||
logger.warning("Jieba未安装,将使用字符级分词")
|
||||
self.use_jieba = False
|
||||
|
||||
def tokenize(self, text: str) -> List[str]:
|
||||
def tokenize(self, text: str) -> list[str]:
|
||||
"""
|
||||
分词并返回token列表
|
||||
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
情境提取器
|
||||
从聊天历史中提取当前的情境(situation),用于 StyleLearner 预测
|
||||
"""
|
||||
from typing import Optional
|
||||
|
||||
from src.chat.utils.prompt import Prompt, global_prompt_manager
|
||||
from src.common.logger import get_logger
|
||||
@@ -41,17 +40,17 @@ def init_prompt():
|
||||
|
||||
class SituationExtractor:
|
||||
"""情境提取器,从聊天历史中提取当前情境"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.llm_model = LLMRequest(
|
||||
model_set=model_config.model_task_config.utils_small,
|
||||
request_type="expression.situation_extractor"
|
||||
)
|
||||
|
||||
|
||||
async def extract_situations(
|
||||
self,
|
||||
chat_history: list | str,
|
||||
target_message: Optional[str] = None,
|
||||
target_message: str | None = None,
|
||||
max_situations: int = 3
|
||||
) -> list[str]:
|
||||
"""
|
||||
@@ -68,18 +67,18 @@ class SituationExtractor:
|
||||
# 转换chat_history为字符串
|
||||
if isinstance(chat_history, list):
|
||||
chat_info = "\n".join([
|
||||
f"{msg.get('sender', 'Unknown')}: {msg.get('content', '')}"
|
||||
f"{msg.get('sender', 'Unknown')}: {msg.get('content', '')}"
|
||||
for msg in chat_history
|
||||
])
|
||||
else:
|
||||
chat_info = chat_history
|
||||
|
||||
|
||||
# 构建目标消息信息
|
||||
if target_message:
|
||||
target_message_info = f",现在你想要回复消息:{target_message}"
|
||||
else:
|
||||
target_message_info = ""
|
||||
|
||||
|
||||
# 构建 prompt
|
||||
try:
|
||||
prompt = (await global_prompt_manager.get_prompt_async("situation_extraction_prompt")).format(
|
||||
@@ -87,31 +86,31 @@ class SituationExtractor:
|
||||
chat_history=chat_info,
|
||||
target_message_info=target_message_info
|
||||
)
|
||||
|
||||
|
||||
# 调用 LLM
|
||||
response, _ = await self.llm_model.generate_response_async(
|
||||
prompt=prompt,
|
||||
temperature=0.3
|
||||
)
|
||||
|
||||
|
||||
if not response or not response.strip():
|
||||
logger.warning("LLM返回空响应,无法提取情境")
|
||||
return []
|
||||
|
||||
|
||||
# 解析响应
|
||||
situations = self._parse_situations(response, max_situations)
|
||||
|
||||
|
||||
if situations:
|
||||
logger.debug(f"提取到 {len(situations)} 个情境: {situations}")
|
||||
else:
|
||||
logger.warning(f"无法从LLM响应中解析出情境。响应:\n{response}")
|
||||
|
||||
|
||||
return situations
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"提取情境失败: {e}")
|
||||
return []
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _parse_situations(response: str, max_situations: int) -> list[str]:
|
||||
"""
|
||||
@@ -125,33 +124,33 @@ class SituationExtractor:
|
||||
情境描述列表
|
||||
"""
|
||||
situations = []
|
||||
|
||||
|
||||
for line in response.splitlines():
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
|
||||
|
||||
# 移除可能的序号、引号等
|
||||
line = line.lstrip('0123456789.、-*>))】] \t"\'""''')
|
||||
line = line.rstrip('"\'""''')
|
||||
line = line.strip()
|
||||
|
||||
|
||||
if not line:
|
||||
continue
|
||||
|
||||
|
||||
# 过滤掉明显不是情境描述的内容
|
||||
if len(line) > 30: # 太长
|
||||
continue
|
||||
if len(line) < 2: # 太短
|
||||
continue
|
||||
if any(keyword in line.lower() for keyword in ['例如', '注意', '请', '分析', '总结']):
|
||||
if any(keyword in line.lower() for keyword in ["例如", "注意", "请", "分析", "总结"]):
|
||||
continue
|
||||
|
||||
|
||||
situations.append(line)
|
||||
|
||||
|
||||
if len(situations) >= max_situations:
|
||||
break
|
||||
|
||||
|
||||
return situations
|
||||
|
||||
|
||||
|
||||
@@ -5,7 +5,6 @@
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
from src.common.logger import get_logger
|
||||
|
||||
@@ -17,7 +16,7 @@ logger = get_logger("expressor.style_learner")
|
||||
class StyleLearner:
|
||||
"""单个聊天室的表达风格学习器"""
|
||||
|
||||
def __init__(self, chat_id: str, model_config: Optional[Dict] = None):
|
||||
def __init__(self, chat_id: str, model_config: dict | None = None):
|
||||
"""
|
||||
Args:
|
||||
chat_id: 聊天室ID
|
||||
@@ -37,9 +36,9 @@ class StyleLearner:
|
||||
|
||||
# 动态风格管理
|
||||
self.max_styles = 2000 # 每个chat_id最多2000个风格
|
||||
self.style_to_id: Dict[str, str] = {} # style文本 -> style_id
|
||||
self.id_to_style: Dict[str, str] = {} # style_id -> style文本
|
||||
self.id_to_situation: Dict[str, str] = {} # style_id -> situation文本
|
||||
self.style_to_id: dict[str, str] = {} # style文本 -> style_id
|
||||
self.id_to_style: dict[str, str] = {} # style_id -> style文本
|
||||
self.id_to_situation: dict[str, str] = {} # style_id -> situation文本
|
||||
self.next_style_id = 0
|
||||
|
||||
# 学习统计
|
||||
@@ -51,7 +50,7 @@ class StyleLearner:
|
||||
|
||||
logger.info(f"StyleLearner初始化成功: chat_id={chat_id}")
|
||||
|
||||
def add_style(self, style: str, situation: Optional[str] = None) -> bool:
|
||||
def add_style(self, style: str, situation: str | None = None) -> bool:
|
||||
"""
|
||||
动态添加一个新的风格
|
||||
|
||||
@@ -130,7 +129,7 @@ class StyleLearner:
|
||||
logger.error(f"学习映射失败: {e}")
|
||||
return False
|
||||
|
||||
def predict_style(self, up_content: str, top_k: int = 5) -> Tuple[Optional[str], Dict[str, float]]:
|
||||
def predict_style(self, up_content: str, top_k: int = 5) -> tuple[str | None, dict[str, float]]:
|
||||
"""
|
||||
根据up_content预测最合适的style
|
||||
|
||||
@@ -146,7 +145,7 @@ class StyleLearner:
|
||||
if not self.style_to_id:
|
||||
logger.debug(f"StyleLearner还没有任何训练数据: chat_id={self.chat_id}")
|
||||
return None, {}
|
||||
|
||||
|
||||
best_style_id, scores = self.expressor.predict(up_content, k=top_k)
|
||||
|
||||
if best_style_id is None:
|
||||
@@ -155,7 +154,7 @@ class StyleLearner:
|
||||
|
||||
# 将style_id转换为style文本
|
||||
best_style = self.id_to_style.get(best_style_id)
|
||||
|
||||
|
||||
if best_style is None:
|
||||
logger.warning(
|
||||
f"style_id无法转换为style文本: style_id={best_style_id}, "
|
||||
@@ -171,7 +170,7 @@ class StyleLearner:
|
||||
style_scores[style_text] = score
|
||||
else:
|
||||
logger.warning(f"跳过无法转换的style_id: {sid}")
|
||||
|
||||
|
||||
logger.debug(
|
||||
f"预测成功: up_content={up_content[:30]}..., "
|
||||
f"best_style={best_style}, top3_scores={list(style_scores.items())[:3]}"
|
||||
@@ -183,7 +182,7 @@ class StyleLearner:
|
||||
logger.error(f"预测style失败: {e}", exc_info=True)
|
||||
return None, {}
|
||||
|
||||
def get_style_info(self, style: str) -> Tuple[Optional[str], Optional[str]]:
|
||||
def get_style_info(self, style: str) -> tuple[str | None, str | None]:
|
||||
"""
|
||||
获取style的完整信息
|
||||
|
||||
@@ -200,7 +199,7 @@ class StyleLearner:
|
||||
situation = self.id_to_situation.get(style_id)
|
||||
return style_id, situation
|
||||
|
||||
def get_all_styles(self) -> List[str]:
|
||||
def get_all_styles(self) -> list[str]:
|
||||
"""
|
||||
获取所有风格列表
|
||||
|
||||
@@ -209,7 +208,7 @@ class StyleLearner:
|
||||
"""
|
||||
return list(self.style_to_id.keys())
|
||||
|
||||
def apply_decay(self, factor: Optional[float] = None):
|
||||
def apply_decay(self, factor: float | None = None):
|
||||
"""
|
||||
应用知识衰减
|
||||
|
||||
@@ -304,7 +303,7 @@ class StyleLearner:
|
||||
logger.error(f"加载StyleLearner失败: {e}")
|
||||
return False
|
||||
|
||||
def get_stats(self) -> Dict:
|
||||
def get_stats(self) -> dict:
|
||||
"""获取统计信息"""
|
||||
model_stats = self.expressor.get_stats()
|
||||
return {
|
||||
@@ -324,7 +323,7 @@ class StyleLearnerManager:
|
||||
Args:
|
||||
model_save_path: 模型保存路径
|
||||
"""
|
||||
self.learners: Dict[str, StyleLearner] = {}
|
||||
self.learners: dict[str, StyleLearner] = {}
|
||||
self.model_save_path = model_save_path
|
||||
|
||||
# 确保保存目录存在
|
||||
@@ -332,7 +331,7 @@ class StyleLearnerManager:
|
||||
|
||||
logger.info(f"StyleLearnerManager初始化成功, 模型保存路径: {model_save_path}")
|
||||
|
||||
def get_learner(self, chat_id: str, model_config: Optional[Dict] = None) -> StyleLearner:
|
||||
def get_learner(self, chat_id: str, model_config: dict | None = None) -> StyleLearner:
|
||||
"""
|
||||
获取或创建指定chat_id的学习器
|
||||
|
||||
@@ -369,7 +368,7 @@ class StyleLearnerManager:
|
||||
learner = self.get_learner(chat_id)
|
||||
return learner.learn_mapping(up_content, style)
|
||||
|
||||
def predict_style(self, chat_id: str, up_content: str, top_k: int = 5) -> Tuple[Optional[str], Dict[str, float]]:
|
||||
def predict_style(self, chat_id: str, up_content: str, top_k: int = 5) -> tuple[str | None, dict[str, float]]:
|
||||
"""
|
||||
预测最合适的风格
|
||||
|
||||
@@ -399,7 +398,7 @@ class StyleLearnerManager:
|
||||
logger.info(f"保存所有StyleLearner {'成功' if success else '部分失败'}")
|
||||
return success
|
||||
|
||||
def apply_decay_all(self, factor: Optional[float] = None):
|
||||
def apply_decay_all(self, factor: float | None = None):
|
||||
"""
|
||||
对所有学习器应用知识衰减
|
||||
|
||||
@@ -409,9 +408,9 @@ class StyleLearnerManager:
|
||||
for learner in self.learners.values():
|
||||
learner.apply_decay(factor)
|
||||
|
||||
logger.info(f"对所有StyleLearner应用知识衰减")
|
||||
logger.info("对所有StyleLearner应用知识衰减")
|
||||
|
||||
def get_all_stats(self) -> Dict[str, Dict]:
|
||||
def get_all_stats(self) -> dict[str, dict]:
|
||||
"""
|
||||
获取所有学习器的统计信息
|
||||
|
||||
|
||||
@@ -503,7 +503,7 @@ class MemorySystem:
|
||||
existing_id = self._memory_fingerprints.get(fingerprint_key)
|
||||
if existing_id and existing_id not in new_memory_ids:
|
||||
candidate_ids.add(existing_id)
|
||||
except Exception as exc: # noqa: PERF203
|
||||
except Exception as exc:
|
||||
logger.debug("构建记忆指纹失败,跳过候选收集: %s", exc)
|
||||
|
||||
# 基于主体索引的候选(使用统一存储)
|
||||
|
||||
@@ -35,12 +35,12 @@ class SingleStreamContextManager:
|
||||
self.last_access_time = time.time()
|
||||
self.access_count = 0
|
||||
self.total_messages = 0
|
||||
|
||||
|
||||
# 标记是否已初始化历史消息
|
||||
self._history_initialized = False
|
||||
|
||||
logger.info(f"[新建] 单流上下文管理器初始化: {stream_id} (id={id(self)})")
|
||||
|
||||
|
||||
# 异步初始化历史消息(不阻塞构造函数)
|
||||
asyncio.create_task(self._initialize_history_from_db())
|
||||
|
||||
@@ -299,55 +299,55 @@ class SingleStreamContextManager:
|
||||
"""更新访问统计"""
|
||||
self.last_access_time = time.time()
|
||||
self.access_count += 1
|
||||
|
||||
|
||||
async def _initialize_history_from_db(self):
|
||||
"""从数据库初始化历史消息到context中"""
|
||||
if self._history_initialized:
|
||||
logger.info(f"历史消息已初始化,跳过: {self.stream_id}")
|
||||
return
|
||||
|
||||
|
||||
# 立即设置标志,防止并发重复加载
|
||||
logger.info(f"设置历史初始化标志: {self.stream_id}")
|
||||
self._history_initialized = True
|
||||
|
||||
|
||||
try:
|
||||
logger.info(f"开始从数据库加载历史消息: {self.stream_id}")
|
||||
|
||||
|
||||
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat
|
||||
|
||||
|
||||
# 加载历史消息(限制数量为max_context_size的2倍,用于丰富上下文)
|
||||
db_messages = await get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=self.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=self.max_context_size * 2,
|
||||
)
|
||||
|
||||
|
||||
if db_messages:
|
||||
# 将数据库消息转换为 DatabaseMessages 对象并添加到历史
|
||||
for msg_dict in db_messages:
|
||||
try:
|
||||
# 使用 ** 解包字典作为关键字参数
|
||||
db_msg = DatabaseMessages(**msg_dict)
|
||||
|
||||
|
||||
# 标记为已读
|
||||
db_msg.is_read = True
|
||||
|
||||
|
||||
# 添加到历史消息
|
||||
self.context.history_messages.append(db_msg)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"转换历史消息失败 (message_id={msg_dict.get('message_id', 'unknown')}): {e}")
|
||||
continue
|
||||
|
||||
|
||||
logger.info(f"成功从数据库加载 {len(self.context.history_messages)} 条历史消息到内存: {self.stream_id}")
|
||||
else:
|
||||
logger.debug(f"没有历史消息需要加载: {self.stream_id}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"从数据库初始化历史消息失败: {self.stream_id}, {e}", exc_info=True)
|
||||
# 加载失败时重置标志,允许重试
|
||||
self._history_initialized = False
|
||||
|
||||
|
||||
async def ensure_history_initialized(self):
|
||||
"""确保历史消息已初始化(供外部调用)"""
|
||||
if not self._history_initialized:
|
||||
|
||||
@@ -69,10 +69,10 @@ class StreamLoopManager:
|
||||
try:
|
||||
# 获取所有活跃的流
|
||||
from src.plugin_system.apis.chat_api import get_chat_manager
|
||||
|
||||
|
||||
chat_manager = get_chat_manager()
|
||||
all_streams = await chat_manager.get_all_streams()
|
||||
|
||||
|
||||
# 创建任务列表以便并发取消
|
||||
cancel_tasks = []
|
||||
for chat_stream in all_streams:
|
||||
@@ -119,10 +119,10 @@ class StreamLoopManager:
|
||||
# 创建流循环任务
|
||||
try:
|
||||
loop_task = asyncio.create_task(self._stream_loop_worker(stream_id), name=f"stream_loop_{stream_id}")
|
||||
|
||||
|
||||
# 将任务记录到 StreamContext 中
|
||||
context.stream_loop_task = loop_task
|
||||
|
||||
|
||||
# 更新统计信息
|
||||
self.stats["active_streams"] += 1
|
||||
self.stats["total_loops"] += 1
|
||||
@@ -169,7 +169,7 @@ class StreamLoopManager:
|
||||
|
||||
# 清空 StreamContext 中的任务记录
|
||||
context.stream_loop_task = None
|
||||
|
||||
|
||||
logger.info(f"停止流循环: {stream_id}")
|
||||
return True
|
||||
|
||||
@@ -200,13 +200,13 @@ class StreamLoopManager:
|
||||
if has_messages:
|
||||
if force_dispatch:
|
||||
logger.info("流 %s 未读消息 %d 条,触发强制分发", stream_id, unread_count)
|
||||
|
||||
|
||||
# 3. 在处理前更新能量值(用于下次间隔计算)
|
||||
try:
|
||||
await self._update_stream_energy(stream_id, context)
|
||||
except Exception as e:
|
||||
logger.debug(f"更新流能量失败 {stream_id}: {e}")
|
||||
|
||||
|
||||
# 4. 激活chatter处理
|
||||
success = await self._process_stream_messages(stream_id, context)
|
||||
|
||||
@@ -371,7 +371,7 @@ class StreamLoopManager:
|
||||
# 清除 Chatter 处理标志
|
||||
context.is_chatter_processing = False
|
||||
logger.debug(f"清除 Chatter 处理标志: {stream_id}")
|
||||
|
||||
|
||||
# 无论成功或失败,都要设置处理状态为未处理
|
||||
self._set_stream_processing_status(stream_id, False)
|
||||
|
||||
@@ -432,48 +432,48 @@ class StreamLoopManager:
|
||||
"""
|
||||
try:
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
|
||||
|
||||
# 获取聊天流
|
||||
chat_manager = get_chat_manager()
|
||||
chat_stream = await chat_manager.get_stream(stream_id)
|
||||
|
||||
|
||||
if not chat_stream:
|
||||
logger.debug(f"无法找到聊天流 {stream_id},跳过能量更新")
|
||||
return
|
||||
|
||||
|
||||
# 从 context_manager 获取消息(包括未读和历史消息)
|
||||
# 合并未读消息和历史消息
|
||||
all_messages = []
|
||||
|
||||
|
||||
# 添加历史消息
|
||||
history_messages = context.get_history_messages(limit=global_config.chat.max_context_size)
|
||||
all_messages.extend(history_messages)
|
||||
|
||||
|
||||
# 添加未读消息
|
||||
unread_messages = context.get_unread_messages()
|
||||
all_messages.extend(unread_messages)
|
||||
|
||||
|
||||
# 按时间排序并限制数量
|
||||
all_messages.sort(key=lambda m: m.time)
|
||||
messages = all_messages[-global_config.chat.max_context_size:]
|
||||
|
||||
|
||||
# 获取用户ID
|
||||
user_id = None
|
||||
if context.triggering_user_id:
|
||||
user_id = context.triggering_user_id
|
||||
|
||||
|
||||
# 使用能量管理器计算并缓存能量值
|
||||
energy = await energy_manager.calculate_focus_energy(
|
||||
stream_id=stream_id,
|
||||
messages=messages,
|
||||
user_id=user_id
|
||||
)
|
||||
|
||||
|
||||
# 同步更新到 ChatStream
|
||||
chat_stream._focus_energy = energy
|
||||
|
||||
|
||||
logger.debug(f"已更新流 {stream_id} 的能量值: {energy:.3f}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"更新流能量失败 {stream_id}: {e}", exc_info=False)
|
||||
|
||||
@@ -670,7 +670,7 @@ class StreamLoopManager:
|
||||
|
||||
# 使用 start_stream_loop 重新创建流循环任务
|
||||
success = await self.start_stream_loop(stream_id, force=True)
|
||||
|
||||
|
||||
if success:
|
||||
logger.info(f"已创建强制分发流循环: {stream_id}")
|
||||
else:
|
||||
|
||||
@@ -307,7 +307,7 @@ class MessageManager:
|
||||
|
||||
# 检查上下文
|
||||
context = chat_stream.context_manager.context
|
||||
|
||||
|
||||
# 只有当 Chatter 真正在处理时才检查打断
|
||||
if not context.is_chatter_processing:
|
||||
logger.debug(f"聊天流 {chat_stream.stream_id} Chatter 未在处理,跳过打断检查")
|
||||
@@ -315,7 +315,7 @@ class MessageManager:
|
||||
|
||||
# 检查是否有 stream_loop_task 在运行
|
||||
stream_loop_task = context.stream_loop_task
|
||||
|
||||
|
||||
if stream_loop_task and not stream_loop_task.done():
|
||||
# 检查触发用户ID
|
||||
triggering_user_id = context.triggering_user_id
|
||||
@@ -387,7 +387,7 @@ class MessageManager:
|
||||
|
||||
# 重新创建 stream_loop 任务
|
||||
success = await stream_loop_manager.start_stream_loop(stream_id, force=True)
|
||||
|
||||
|
||||
if success:
|
||||
logger.info(f"✅ 成功重新创建流循环任务: {stream_id}")
|
||||
else:
|
||||
|
||||
@@ -10,7 +10,7 @@ from src.chat.antipromptinjector import initialize_anti_injector
|
||||
from src.chat.message_manager import message_manager
|
||||
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
|
||||
from src.chat.message_receive.storage import MessageStorage
|
||||
from src.chat.utils.prompt import create_prompt_async, global_prompt_manager
|
||||
from src.chat.utils.prompt import global_prompt_manager
|
||||
from src.chat.utils.utils import is_mentioned_bot_in_message
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.logger import get_logger
|
||||
@@ -181,7 +181,7 @@ class ChatBot:
|
||||
|
||||
# 创建PlusCommand实例
|
||||
plus_command_instance = plus_command_class(message, plugin_config)
|
||||
|
||||
|
||||
# 为插件实例设置 chat_stream 运行时属性
|
||||
setattr(plus_command_instance, "chat_stream", chat)
|
||||
|
||||
@@ -257,7 +257,7 @@ class ChatBot:
|
||||
# 创建命令实例
|
||||
command_instance: BaseCommand = command_class(message, plugin_config)
|
||||
command_instance.set_matched_groups(matched_groups)
|
||||
|
||||
|
||||
# 为插件实例设置 chat_stream 运行时属性
|
||||
setattr(command_instance, "chat_stream", chat)
|
||||
|
||||
@@ -340,7 +340,7 @@ class ChatBot:
|
||||
)
|
||||
# print(message_data)
|
||||
# logger.debug(str(message_data))
|
||||
|
||||
|
||||
# 先提取基础信息检查是否是自身消息上报
|
||||
from maim_message import BaseMessageInfo
|
||||
temp_message_info = BaseMessageInfo.from_dict(message_data.get("message_info", {}))
|
||||
@@ -350,7 +350,7 @@ class ChatBot:
|
||||
# 直接使用消息字典更新,不再需要创建 MessageRecv
|
||||
await MessageStorage.update_message(message_data)
|
||||
return
|
||||
|
||||
|
||||
group_info = temp_message_info.group_info
|
||||
user_info = temp_message_info.user_info
|
||||
|
||||
@@ -368,14 +368,14 @@ class ChatBot:
|
||||
stream_id=chat.stream_id,
|
||||
platform=chat.platform
|
||||
)
|
||||
|
||||
|
||||
# 填充聊天流时间信息
|
||||
message.chat_info.create_time = chat.create_time
|
||||
message.chat_info.last_active_time = chat.last_active_time
|
||||
|
||||
|
||||
# 注册消息到聊天管理器
|
||||
get_chat_manager().register_message(message)
|
||||
|
||||
|
||||
# 检测是否提及机器人
|
||||
message.is_mentioned, _ = is_mentioned_bot_in_message(message)
|
||||
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
import asyncio
|
||||
import copy
|
||||
import hashlib
|
||||
import time
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from maim_message import GroupInfo, UserInfo
|
||||
from rich.traceback import install
|
||||
@@ -10,13 +8,12 @@ from sqlalchemy import select
|
||||
from sqlalchemy.dialects.mysql import insert as mysql_insert
|
||||
from sqlalchemy.dialects.sqlite import insert as sqlite_insert
|
||||
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.database.sqlalchemy_database_api import get_db_session
|
||||
from src.common.database.sqlalchemy_models import ChatStreams # 新增导入
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.logger import get_logger
|
||||
from src.config.config import global_config # 新增导入
|
||||
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
|
||||
@@ -134,7 +131,7 @@ class ChatStream:
|
||||
"""
|
||||
# 直接使用传入的 DatabaseMessages,设置到上下文中
|
||||
self.context_manager.context.set_current_message(message)
|
||||
|
||||
|
||||
# 设置优先级信息(如果存在)
|
||||
priority_mode = getattr(message, "priority_mode", None)
|
||||
priority_info = getattr(message, "priority_info", None)
|
||||
@@ -156,7 +153,7 @@ class ChatStream:
|
||||
def _safe_get_actions(self, message: DatabaseMessages) -> list | None:
|
||||
"""安全获取消息的actions字段"""
|
||||
import json
|
||||
|
||||
|
||||
try:
|
||||
actions = getattr(message, "actions", None)
|
||||
if actions is None:
|
||||
@@ -321,7 +318,7 @@ class ChatManager:
|
||||
def __init__(self):
|
||||
if not self._initialized:
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
|
||||
|
||||
self.streams: dict[str, ChatStream] = {} # stream_id -> ChatStream
|
||||
self.last_messages: dict[str, DatabaseMessages] = {} # stream_id -> last_message
|
||||
# try:
|
||||
@@ -360,15 +357,15 @@ class ChatManager:
|
||||
def register_message(self, message: DatabaseMessages):
|
||||
"""注册消息到聊天流"""
|
||||
# 从 DatabaseMessages 提取平台和用户/群组信息
|
||||
from maim_message import UserInfo, GroupInfo
|
||||
|
||||
from maim_message import GroupInfo, UserInfo
|
||||
|
||||
user_info = UserInfo(
|
||||
platform=message.user_info.platform,
|
||||
user_id=message.user_info.user_id,
|
||||
user_nickname=message.user_info.user_nickname,
|
||||
user_cardname=message.user_info.user_cardname or ""
|
||||
)
|
||||
|
||||
|
||||
group_info = None
|
||||
if message.group_info:
|
||||
group_info = GroupInfo(
|
||||
@@ -376,7 +373,7 @@ class ChatManager:
|
||||
group_id=message.group_info.group_id,
|
||||
group_name=message.group_info.group_name
|
||||
)
|
||||
|
||||
|
||||
stream_id = self._generate_stream_id(
|
||||
message.chat_info.platform,
|
||||
user_info,
|
||||
@@ -435,7 +432,7 @@ class ChatManager:
|
||||
stream.user_info = user_info
|
||||
if group_info:
|
||||
stream.group_info = group_info
|
||||
|
||||
|
||||
# 检查是否有最后一条消息(现在使用 DatabaseMessages)
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
if stream_id in self.last_messages and isinstance(self.last_messages[stream_id], DatabaseMessages):
|
||||
@@ -532,7 +529,7 @@ class ChatManager:
|
||||
async def get_stream(self, stream_id: str) -> ChatStream | None:
|
||||
"""通过stream_id获取聊天流"""
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
|
||||
|
||||
stream = self.streams.get(stream_id)
|
||||
if not stream:
|
||||
return None
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
import base64
|
||||
import time
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Optional, Union
|
||||
from typing import Optional
|
||||
|
||||
import urllib3
|
||||
from maim_message import BaseMessageInfo, MessageBase, Seg, UserInfo
|
||||
@@ -11,7 +10,6 @@ from rich.traceback import install
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.utils.self_voice_cache import consume_self_voice_text
|
||||
from src.chat.utils.utils_image import get_image_manager
|
||||
from src.chat.utils.utils_video import get_video_analyzer, is_video_analysis_available
|
||||
from src.chat.utils.utils_voice import get_voice_text
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.logger import get_logger
|
||||
@@ -269,7 +267,7 @@ class MessageSending(MessageProcessBase):
|
||||
if self.reply:
|
||||
# 从 DatabaseMessages 获取 message_id
|
||||
message_id = self.reply.message_id
|
||||
|
||||
|
||||
if message_id:
|
||||
self.reply_to_message_id = message_id
|
||||
self.message_segment = Seg(
|
||||
|
||||
@@ -39,7 +39,7 @@ async def process_message_from_dict(message_dict: dict[str, Any], stream_id: str
|
||||
# 解析基础信息
|
||||
message_info = BaseMessageInfo.from_dict(message_dict.get("message_info", {}))
|
||||
message_segment = Seg.from_dict(message_dict.get("message_segment", {}))
|
||||
|
||||
|
||||
# 初始化处理状态
|
||||
processing_state = {
|
||||
"is_emoji": False,
|
||||
@@ -53,10 +53,10 @@ async def process_message_from_dict(message_dict: dict[str, Any], stream_id: str
|
||||
"priority_mode": "interest",
|
||||
"priority_info": None,
|
||||
}
|
||||
|
||||
|
||||
# 异步处理消息段,生成纯文本
|
||||
processed_plain_text = await _process_message_segments(message_segment, processing_state, message_info)
|
||||
|
||||
|
||||
# 解析 notice 信息
|
||||
is_notify = False
|
||||
is_public_notice = False
|
||||
@@ -65,34 +65,34 @@ async def process_message_from_dict(message_dict: dict[str, Any], stream_id: str
|
||||
is_notify = message_info.additional_config.get("is_notice", False)
|
||||
is_public_notice = message_info.additional_config.get("is_public_notice", False)
|
||||
notice_type = message_info.additional_config.get("notice_type")
|
||||
|
||||
|
||||
# 提取用户信息
|
||||
user_info = message_info.user_info
|
||||
user_id = str(user_info.user_id) if user_info and user_info.user_id else ""
|
||||
user_nickname = (user_info.user_nickname or "") if user_info else ""
|
||||
user_cardname = user_info.user_cardname if user_info else None
|
||||
user_platform = (user_info.platform or "") if user_info else ""
|
||||
|
||||
|
||||
# 提取群组信息
|
||||
group_info = message_info.group_info
|
||||
group_id = group_info.group_id if group_info else None
|
||||
group_name = group_info.group_name if group_info else None
|
||||
group_platform = group_info.platform if group_info else None
|
||||
|
||||
|
||||
# chat_id 应该直接使用 stream_id(与数据库存储格式一致)
|
||||
# stream_id 是通过 platform + user_id/group_id 的 SHA-256 哈希生成的
|
||||
chat_id = stream_id
|
||||
|
||||
|
||||
# 准备 additional_config
|
||||
additional_config_str = _prepare_additional_config(message_info, is_notify, is_public_notice, notice_type)
|
||||
|
||||
|
||||
# 提取 reply_to
|
||||
reply_to = _extract_reply_from_segment(message_segment)
|
||||
|
||||
|
||||
# 构造 DatabaseMessages
|
||||
message_time = message_info.time if hasattr(message_info, "time") and message_info.time is not None else time.time()
|
||||
message_id = message_info.message_id or ""
|
||||
|
||||
|
||||
# 处理 is_mentioned
|
||||
is_mentioned = None
|
||||
mentioned_value = processing_state.get("is_mentioned")
|
||||
@@ -100,7 +100,7 @@ async def process_message_from_dict(message_dict: dict[str, Any], stream_id: str
|
||||
is_mentioned = mentioned_value
|
||||
elif isinstance(mentioned_value, (int, float)):
|
||||
is_mentioned = mentioned_value != 0
|
||||
|
||||
|
||||
db_message = DatabaseMessages(
|
||||
message_id=message_id,
|
||||
time=float(message_time),
|
||||
@@ -133,19 +133,19 @@ async def process_message_from_dict(message_dict: dict[str, Any], stream_id: str
|
||||
chat_info_group_name=group_name,
|
||||
chat_info_group_platform=group_platform,
|
||||
)
|
||||
|
||||
|
||||
# 设置优先级信息
|
||||
if processing_state.get("priority_mode"):
|
||||
setattr(db_message, "priority_mode", processing_state["priority_mode"])
|
||||
if processing_state.get("priority_info"):
|
||||
setattr(db_message, "priority_info", processing_state["priority_info"])
|
||||
|
||||
|
||||
# 设置其他运行时属性
|
||||
setattr(db_message, "is_voice", bool(processing_state.get("is_voice", False)))
|
||||
setattr(db_message, "is_video", bool(processing_state.get("is_video", False)))
|
||||
setattr(db_message, "has_emoji", bool(processing_state.get("has_emoji", False)))
|
||||
setattr(db_message, "has_picid", bool(processing_state.get("has_picid", False)))
|
||||
|
||||
|
||||
return db_message
|
||||
|
||||
|
||||
@@ -190,7 +190,7 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
state["is_emoji"] = False
|
||||
state["is_video"] = False
|
||||
return segment.data
|
||||
|
||||
|
||||
elif segment.type == "at":
|
||||
state["is_picid"] = False
|
||||
state["is_emoji"] = False
|
||||
@@ -201,7 +201,7 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
nickname, qq_id = segment.data.split(":", 1)
|
||||
return f"@{nickname}"
|
||||
return f"@{segment.data}" if isinstance(segment.data, str) else "@未知用户"
|
||||
|
||||
|
||||
elif segment.type == "image":
|
||||
# 如果是base64图片数据
|
||||
if isinstance(segment.data, str):
|
||||
@@ -213,7 +213,7 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
_, processed_text = await image_manager.process_image(segment.data)
|
||||
return processed_text
|
||||
return "[发了一张图片,网卡了加载不出来]"
|
||||
|
||||
|
||||
elif segment.type == "emoji":
|
||||
state["has_emoji"] = True
|
||||
state["is_emoji"] = True
|
||||
@@ -223,13 +223,13 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
if isinstance(segment.data, str):
|
||||
return await get_image_manager().get_emoji_description(segment.data)
|
||||
return "[发了一个表情包,网卡了加载不出来]"
|
||||
|
||||
|
||||
elif segment.type == "voice":
|
||||
state["is_picid"] = False
|
||||
state["is_emoji"] = False
|
||||
state["is_voice"] = True
|
||||
state["is_video"] = False
|
||||
|
||||
|
||||
# 检查消息是否由机器人自己发送
|
||||
if message_info and message_info.user_info and str(message_info.user_info.user_id) == str(global_config.bot.qq_account):
|
||||
logger.info(f"检测到机器人自身发送的语音消息 (User ID: {message_info.user_info.user_id}),尝试从缓存获取文本。")
|
||||
@@ -240,12 +240,12 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
return f"[语音:{cached_text}]"
|
||||
else:
|
||||
logger.warning("机器人自身语音消息缓存未命中,将回退到标准语音识别。")
|
||||
|
||||
|
||||
# 标准语音识别流程
|
||||
if isinstance(segment.data, str):
|
||||
return await get_voice_text(segment.data)
|
||||
return "[发了一段语音,网卡了加载不出来]"
|
||||
|
||||
|
||||
elif segment.type == "mention_bot":
|
||||
state["is_picid"] = False
|
||||
state["is_emoji"] = False
|
||||
@@ -253,7 +253,7 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
state["is_video"] = False
|
||||
state["is_mentioned"] = float(segment.data)
|
||||
return ""
|
||||
|
||||
|
||||
elif segment.type == "priority_info":
|
||||
state["is_picid"] = False
|
||||
state["is_emoji"] = False
|
||||
@@ -263,26 +263,26 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
state["priority_mode"] = "priority"
|
||||
state["priority_info"] = segment.data
|
||||
return ""
|
||||
|
||||
|
||||
elif segment.type == "file":
|
||||
if isinstance(segment.data, dict):
|
||||
file_name = segment.data.get('name', '未知文件')
|
||||
file_size = segment.data.get('size', '未知大小')
|
||||
file_name = segment.data.get("name", "未知文件")
|
||||
file_size = segment.data.get("size", "未知大小")
|
||||
return f"[文件:{file_name} ({file_size}字节)]"
|
||||
return "[收到一个文件]"
|
||||
|
||||
|
||||
elif segment.type == "video":
|
||||
state["is_picid"] = False
|
||||
state["is_emoji"] = False
|
||||
state["is_voice"] = False
|
||||
state["is_video"] = True
|
||||
logger.info(f"接收到视频消息,数据类型: {type(segment.data)}")
|
||||
|
||||
|
||||
# 检查视频分析功能是否可用
|
||||
if not is_video_analysis_available():
|
||||
logger.warning("⚠️ Rust视频处理模块不可用,跳过视频分析")
|
||||
return "[视频]"
|
||||
|
||||
|
||||
if global_config.video_analysis.enable:
|
||||
logger.info("已启用视频识别,开始识别")
|
||||
if isinstance(segment.data, dict):
|
||||
@@ -290,23 +290,23 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
# 从Adapter接收的视频数据
|
||||
video_base64 = segment.data.get("base64")
|
||||
filename = segment.data.get("filename", "video.mp4")
|
||||
|
||||
|
||||
logger.info(f"视频文件名: {filename}")
|
||||
logger.info(f"Base64数据长度: {len(video_base64) if video_base64 else 0}")
|
||||
|
||||
|
||||
if video_base64:
|
||||
# 解码base64视频数据
|
||||
video_bytes = base64.b64decode(video_base64)
|
||||
logger.info(f"解码后视频大小: {len(video_bytes)} 字节")
|
||||
|
||||
|
||||
# 使用video analyzer分析视频
|
||||
video_analyzer = get_video_analyzer()
|
||||
result = await video_analyzer.analyze_video_from_bytes(
|
||||
video_bytes, filename, prompt=global_config.video_analysis.batch_analysis_prompt
|
||||
)
|
||||
|
||||
|
||||
logger.info(f"视频分析结果: {result}")
|
||||
|
||||
|
||||
# 返回视频分析结果
|
||||
summary = result.get("summary", "")
|
||||
if summary:
|
||||
@@ -329,7 +329,7 @@ async def _process_single_segment(segment: Seg, state: dict, message_info: BaseM
|
||||
else:
|
||||
logger.warning(f"未知的消息段类型: {segment.type}")
|
||||
return f"[{segment.type} 消息]"
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"处理消息段失败: {e!s}, 类型: {segment.type}, 数据: {segment.data}")
|
||||
return f"[处理失败的{segment.type}消息]"
|
||||
@@ -349,9 +349,9 @@ def _prepare_additional_config(message_info: BaseMessageInfo, is_notify: bool, i
|
||||
"""
|
||||
try:
|
||||
additional_config_data = {}
|
||||
|
||||
|
||||
# 首先获取adapter传递的additional_config
|
||||
if hasattr(message_info, 'additional_config') and message_info.additional_config:
|
||||
if hasattr(message_info, "additional_config") and message_info.additional_config:
|
||||
if isinstance(message_info.additional_config, dict):
|
||||
additional_config_data = message_info.additional_config.copy()
|
||||
elif isinstance(message_info.additional_config, str):
|
||||
@@ -360,28 +360,28 @@ def _prepare_additional_config(message_info: BaseMessageInfo, is_notify: bool, i
|
||||
except Exception as e:
|
||||
logger.warning(f"无法解析 additional_config JSON: {e}")
|
||||
additional_config_data = {}
|
||||
|
||||
|
||||
# 添加notice相关标志
|
||||
if is_notify:
|
||||
additional_config_data["is_notice"] = True
|
||||
additional_config_data["notice_type"] = notice_type or "unknown"
|
||||
additional_config_data["is_public_notice"] = bool(is_public_notice)
|
||||
|
||||
|
||||
# 添加format_info到additional_config中
|
||||
if hasattr(message_info, 'format_info') and message_info.format_info:
|
||||
if hasattr(message_info, "format_info") and message_info.format_info:
|
||||
try:
|
||||
format_info_dict = message_info.format_info.to_dict()
|
||||
additional_config_data["format_info"] = format_info_dict
|
||||
logger.debug(f"[message_processor] 嵌入 format_info 到 additional_config: {format_info_dict}")
|
||||
except Exception as e:
|
||||
logger.warning(f"将 format_info 转换为字典失败: {e}")
|
||||
|
||||
|
||||
# 序列化为JSON字符串
|
||||
if additional_config_data:
|
||||
return orjson.dumps(additional_config_data).decode("utf-8")
|
||||
except Exception as e:
|
||||
logger.error(f"准备 additional_config 失败: {e}")
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
@@ -423,8 +423,8 @@ def get_message_info_from_db_message(db_message: DatabaseMessages) -> BaseMessag
|
||||
Returns:
|
||||
BaseMessageInfo: 重建的消息信息对象
|
||||
"""
|
||||
from maim_message import UserInfo, GroupInfo
|
||||
|
||||
from maim_message import GroupInfo, UserInfo
|
||||
|
||||
# 从 DatabaseMessages 的 user_info 转换为 maim_message.UserInfo
|
||||
user_info = UserInfo(
|
||||
platform=db_message.user_info.platform,
|
||||
@@ -432,7 +432,7 @@ def get_message_info_from_db_message(db_message: DatabaseMessages) -> BaseMessag
|
||||
user_nickname=db_message.user_info.user_nickname,
|
||||
user_cardname=db_message.user_info.user_cardname or ""
|
||||
)
|
||||
|
||||
|
||||
# 从 DatabaseMessages 的 group_info 转换为 maim_message.GroupInfo(如果存在)
|
||||
group_info = None
|
||||
if db_message.group_info:
|
||||
@@ -441,7 +441,7 @@ def get_message_info_from_db_message(db_message: DatabaseMessages) -> BaseMessag
|
||||
group_id=db_message.group_info.group_id,
|
||||
group_name=db_message.group_info.group_name
|
||||
)
|
||||
|
||||
|
||||
# 解析 additional_config(从 JSON 字符串到字典)
|
||||
additional_config = None
|
||||
if db_message.additional_config:
|
||||
@@ -450,7 +450,7 @@ def get_message_info_from_db_message(db_message: DatabaseMessages) -> BaseMessag
|
||||
except Exception:
|
||||
# 如果解析失败,保持为字符串
|
||||
pass
|
||||
|
||||
|
||||
# 创建 BaseMessageInfo
|
||||
message_info = BaseMessageInfo(
|
||||
platform=db_message.chat_info.platform,
|
||||
@@ -460,7 +460,7 @@ def get_message_info_from_db_message(db_message: DatabaseMessages) -> BaseMessag
|
||||
group_info=group_info,
|
||||
additional_config=additional_config # type: ignore
|
||||
)
|
||||
|
||||
|
||||
return message_info
|
||||
|
||||
|
||||
|
||||
@@ -5,12 +5,11 @@ import traceback
|
||||
import orjson
|
||||
from sqlalchemy import desc, select, update
|
||||
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.database.sqlalchemy_database_api import get_db_session
|
||||
from src.common.database.sqlalchemy_models import Images, Messages
|
||||
from src.common.logger import get_logger
|
||||
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
|
||||
from .chat_stream import ChatStream
|
||||
from .message import MessageSending
|
||||
|
||||
@@ -51,10 +50,10 @@ class MessageStorage:
|
||||
filtered_processed_plain_text = re.sub(pattern, "", safe_processed_plain_text, flags=re.DOTALL)
|
||||
else:
|
||||
filtered_processed_plain_text = ""
|
||||
|
||||
|
||||
display_message = message.display_message or message.processed_plain_text or ""
|
||||
filtered_display_message = re.sub(pattern, "", display_message, flags=re.DOTALL)
|
||||
|
||||
|
||||
# 直接从 DatabaseMessages 获取所有字段
|
||||
msg_id = message.message_id
|
||||
msg_time = message.time
|
||||
@@ -71,13 +70,13 @@ class MessageStorage:
|
||||
key_words = "" # DatabaseMessages 没有 key_words
|
||||
key_words_lite = ""
|
||||
memorized_times = 0 # DatabaseMessages 没有 memorized_times
|
||||
|
||||
|
||||
# 使用 DatabaseMessages 中的嵌套对象信息
|
||||
user_platform = message.user_info.platform if message.user_info else ""
|
||||
user_id = message.user_info.user_id if message.user_info else ""
|
||||
user_nickname = message.user_info.user_nickname if message.user_info else ""
|
||||
user_cardname = message.user_info.user_cardname if message.user_info else None
|
||||
|
||||
|
||||
chat_info_stream_id = message.chat_info.stream_id if message.chat_info else ""
|
||||
chat_info_platform = message.chat_info.platform if message.chat_info else ""
|
||||
chat_info_create_time = message.chat_info.create_time if message.chat_info else 0.0
|
||||
@@ -89,7 +88,7 @@ class MessageStorage:
|
||||
chat_info_group_platform = message.group_info.group_platform if message.group_info else None
|
||||
chat_info_group_id = message.group_info.group_id if message.group_info else None
|
||||
chat_info_group_name = message.group_info.group_name if message.group_info else None
|
||||
|
||||
|
||||
else:
|
||||
# MessageSending 处理逻辑
|
||||
processed_plain_text = message.processed_plain_text
|
||||
@@ -145,7 +144,7 @@ class MessageStorage:
|
||||
msg_time = float(message.message_info.time or time.time())
|
||||
chat_id = chat_stream.stream_id
|
||||
memorized_times = message.memorized_times
|
||||
|
||||
|
||||
# 安全地获取 group_info, 如果为 None 则视为空字典
|
||||
group_info_from_chat = chat_info_dict.get("group_info") or {}
|
||||
# 安全地获取 user_info, 如果为 None 则视为空字典 (以防万一)
|
||||
@@ -153,12 +152,12 @@ class MessageStorage:
|
||||
|
||||
# 将priority_info字典序列化为JSON字符串,以便存储到数据库的Text字段
|
||||
priority_info_json = orjson.dumps(priority_info).decode("utf-8") if priority_info else None
|
||||
|
||||
|
||||
user_platform = user_info_dict.get("platform")
|
||||
user_id = user_info_dict.get("user_id")
|
||||
user_nickname = user_info_dict.get("user_nickname")
|
||||
user_cardname = user_info_dict.get("user_cardname")
|
||||
|
||||
|
||||
chat_info_stream_id = chat_info_dict.get("stream_id")
|
||||
chat_info_platform = chat_info_dict.get("platform")
|
||||
chat_info_create_time = float(chat_info_dict.get("create_time", 0.0))
|
||||
@@ -222,11 +221,11 @@ class MessageStorage:
|
||||
# 从字典中提取信息
|
||||
message_info = message_data.get("message_info", {})
|
||||
mmc_message_id = message_info.get("message_id")
|
||||
|
||||
|
||||
message_segment = message_data.get("message_segment", {})
|
||||
segment_type = message_segment.get("type") if isinstance(message_segment, dict) else None
|
||||
segment_data = message_segment.get("data", {}) if isinstance(message_segment, dict) else {}
|
||||
|
||||
|
||||
qq_message_id = None
|
||||
|
||||
logger.debug(f"尝试更新消息ID: {mmc_message_id}, 消息段类型: {segment_type}")
|
||||
|
||||
@@ -23,35 +23,35 @@ async def send_message(message: MessageSending, show_log=True) -> bool:
|
||||
await get_global_api().send_message(message)
|
||||
if show_log:
|
||||
logger.info(f"已将消息 '{message_preview}' 发往平台'{message.message_info.platform}'")
|
||||
|
||||
|
||||
# 触发 AFTER_SEND 事件
|
||||
try:
|
||||
from src.plugin_system.core.event_manager import event_manager
|
||||
from src.plugin_system.base.component_types import EventType
|
||||
|
||||
from src.plugin_system.core.event_manager import event_manager
|
||||
|
||||
if message.chat_stream:
|
||||
logger.info(f"[发送完成] 准备触发 AFTER_SEND 事件,stream_id={message.chat_stream.stream_id}")
|
||||
|
||||
|
||||
# 使用 asyncio.create_task 来异步触发事件,避免阻塞
|
||||
async def trigger_event_async():
|
||||
try:
|
||||
logger.info(f"[事件触发] 开始异步触发 AFTER_SEND 事件")
|
||||
logger.info("[事件触发] 开始异步触发 AFTER_SEND 事件")
|
||||
await event_manager.trigger_event(
|
||||
EventType.AFTER_SEND,
|
||||
permission_group="SYSTEM",
|
||||
stream_id=message.chat_stream.stream_id,
|
||||
message=message,
|
||||
)
|
||||
logger.info(f"[事件触发] AFTER_SEND 事件触发完成")
|
||||
logger.info("[事件触发] AFTER_SEND 事件触发完成")
|
||||
except Exception as e:
|
||||
logger.error(f"[事件触发] 异步触发事件失败: {e}", exc_info=True)
|
||||
|
||||
|
||||
# 创建异步任务,不等待完成
|
||||
asyncio.create_task(trigger_event_async())
|
||||
logger.info(f"[发送完成] AFTER_SEND 事件已提交到异步任务")
|
||||
logger.info("[发送完成] AFTER_SEND 事件已提交到异步任务")
|
||||
except Exception as event_error:
|
||||
logger.error(f"触发 AFTER_SEND 事件时出错: {event_error}", exc_info=True)
|
||||
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -270,7 +270,7 @@ class ChatterActionManager:
|
||||
msg_text = target_message.get("processed_plain_text", "未知消息")
|
||||
else:
|
||||
msg_text = "未知消息"
|
||||
|
||||
|
||||
logger.info(f"对 {msg_text} 的回复生成失败")
|
||||
return {"action_type": "reply", "success": False, "reply_text": "", "loop_info": None}
|
||||
except asyncio.CancelledError:
|
||||
|
||||
@@ -32,8 +32,6 @@ from src.common.logger import get_logger
|
||||
from src.config.config import global_config, model_config
|
||||
from src.individuality.individuality import get_individuality
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
|
||||
|
||||
from src.mood.mood_manager import mood_manager
|
||||
from src.person_info.person_info import get_person_info_manager
|
||||
from src.plugin_system.apis import llm_api
|
||||
@@ -943,10 +941,10 @@ class DefaultReplyer:
|
||||
chat_stream = await chat_manager.get_stream(chat_id)
|
||||
if chat_stream:
|
||||
stream_context = chat_stream.context_manager
|
||||
|
||||
|
||||
# 确保历史消息已从数据库加载
|
||||
await stream_context.ensure_history_initialized()
|
||||
|
||||
|
||||
# 直接使用内存中的已读和未读消息,无需再查询数据库
|
||||
read_messages = stream_context.context.history_messages # 已读消息(已从数据库加载)
|
||||
unread_messages = stream_context.get_unread_messages() # 未读消息
|
||||
@@ -956,11 +954,11 @@ class DefaultReplyer:
|
||||
if read_messages:
|
||||
# 将 DatabaseMessages 对象转换为字典格式,以便使用 build_readable_messages
|
||||
read_messages_dicts = [msg.flatten() for msg in read_messages]
|
||||
|
||||
|
||||
# 按时间排序并限制数量
|
||||
sorted_messages = sorted(read_messages_dicts, key=lambda x: x.get("time", 0))
|
||||
final_history = sorted_messages[-50:] # 限制最多50条
|
||||
|
||||
|
||||
read_content = await build_readable_messages(
|
||||
final_history,
|
||||
replace_bot_name=True,
|
||||
@@ -1194,7 +1192,7 @@ class DefaultReplyer:
|
||||
if reply_message is None:
|
||||
logger.warning("reply_message 为 None,无法构建prompt")
|
||||
return ""
|
||||
|
||||
|
||||
# 统一处理 DatabaseMessages 对象和字典
|
||||
if isinstance(reply_message, DatabaseMessages):
|
||||
platform = reply_message.chat_info.platform
|
||||
@@ -1208,7 +1206,7 @@ class DefaultReplyer:
|
||||
user_nickname = reply_message.get("user_nickname")
|
||||
user_cardname = reply_message.get("user_cardname")
|
||||
processed_plain_text = reply_message.get("processed_plain_text")
|
||||
|
||||
|
||||
person_id = person_info_manager.get_person_id(
|
||||
platform, # type: ignore
|
||||
user_id, # type: ignore
|
||||
@@ -1262,24 +1260,24 @@ class DefaultReplyer:
|
||||
|
||||
# 从内存获取历史消息,避免重复查询数据库
|
||||
from src.plugin_system.apis.chat_api import get_chat_manager
|
||||
|
||||
|
||||
chat_manager = get_chat_manager()
|
||||
chat_stream_obj = await chat_manager.get_stream(chat_id)
|
||||
|
||||
|
||||
if chat_stream_obj:
|
||||
# 确保历史消息已初始化
|
||||
await chat_stream_obj.context_manager.ensure_history_initialized()
|
||||
|
||||
|
||||
# 获取所有消息(历史+未读)
|
||||
all_messages = (
|
||||
chat_stream_obj.context_manager.context.history_messages +
|
||||
chat_stream_obj.context_manager.get_unread_messages()
|
||||
)
|
||||
|
||||
|
||||
# 转换为字典格式
|
||||
message_list_before_now_long = [msg.flatten() for msg in all_messages[-(global_config.chat.max_context_size * 2):]]
|
||||
message_list_before_short = [msg.flatten() for msg in all_messages[-int(global_config.chat.max_context_size * 0.33):]]
|
||||
|
||||
|
||||
logger.debug(f"使用内存中的消息: long={len(message_list_before_now_long)}, short={len(message_list_before_short)}")
|
||||
else:
|
||||
# 回退到数据库查询
|
||||
@@ -1294,7 +1292,7 @@ class DefaultReplyer:
|
||||
timestamp=time.time(),
|
||||
limit=int(global_config.chat.max_context_size * 0.33),
|
||||
)
|
||||
|
||||
|
||||
chat_talking_prompt_short = await build_readable_messages(
|
||||
message_list_before_short,
|
||||
replace_bot_name=True,
|
||||
@@ -1634,24 +1632,24 @@ class DefaultReplyer:
|
||||
|
||||
# 从内存获取历史消息,避免重复查询数据库
|
||||
from src.plugin_system.apis.chat_api import get_chat_manager
|
||||
|
||||
|
||||
chat_manager = get_chat_manager()
|
||||
chat_stream_obj = await chat_manager.get_stream(chat_id)
|
||||
|
||||
|
||||
if chat_stream_obj:
|
||||
# 确保历史消息已初始化
|
||||
await chat_stream_obj.context_manager.ensure_history_initialized()
|
||||
|
||||
|
||||
# 获取所有消息(历史+未读)
|
||||
all_messages = (
|
||||
chat_stream_obj.context_manager.context.history_messages +
|
||||
chat_stream_obj.context_manager.get_unread_messages()
|
||||
)
|
||||
|
||||
|
||||
# 转换为字典格式,限制数量
|
||||
limit = min(int(global_config.chat.max_context_size * 0.33), 15)
|
||||
message_list_before_now_half = [msg.flatten() for msg in all_messages[-limit:]]
|
||||
|
||||
|
||||
logger.debug(f"Rewrite使用内存中的 {len(message_list_before_now_half)} 条消息")
|
||||
else:
|
||||
# 回退到数据库查询
|
||||
@@ -1661,7 +1659,7 @@ class DefaultReplyer:
|
||||
timestamp=time.time(),
|
||||
limit=min(int(global_config.chat.max_context_size * 0.33), 15),
|
||||
)
|
||||
|
||||
|
||||
chat_talking_prompt_half = await build_readable_messages(
|
||||
message_list_before_now_half,
|
||||
replace_bot_name=True,
|
||||
@@ -1818,7 +1816,7 @@ class DefaultReplyer:
|
||||
# 循环移除,以处理模型可能生成的嵌套回复头/尾
|
||||
# 使用更健壮的正则表达式,通过非贪婪匹配和向后查找来定位真正的消息内容
|
||||
pattern = re.compile(r"^\s*\[回复<.+?>\s*(?:的消息)?:(?P<content>.*)\](?:,?说:)?\s*$", re.DOTALL)
|
||||
|
||||
|
||||
temp_content = cleaned_content
|
||||
while True:
|
||||
match = pattern.match(temp_content)
|
||||
@@ -1830,7 +1828,7 @@ class DefaultReplyer:
|
||||
temp_content = new_content
|
||||
else:
|
||||
break # 没有匹配到,退出循环
|
||||
|
||||
|
||||
# 在循环处理后,再使用 rsplit 来处理日志中观察到的特殊情况
|
||||
# 这可以作为处理复杂嵌套的最后一道防线
|
||||
final_split = temp_content.rsplit("],说:", 1)
|
||||
@@ -1838,7 +1836,7 @@ class DefaultReplyer:
|
||||
final_content = final_split[1].strip()
|
||||
else:
|
||||
final_content = temp_content
|
||||
|
||||
|
||||
if final_content != content:
|
||||
logger.debug(f"清理了模型生成的多余内容,原始内容: '{content}', 清理后: '{final_content}'")
|
||||
content = final_content
|
||||
@@ -2077,24 +2075,24 @@ class DefaultReplyer:
|
||||
|
||||
# 从内存获取聊天历史用于存储,避免重复查询数据库
|
||||
from src.plugin_system.apis.chat_api import get_chat_manager
|
||||
|
||||
|
||||
chat_manager = get_chat_manager()
|
||||
chat_stream_obj = await chat_manager.get_stream(stream.stream_id)
|
||||
|
||||
|
||||
if chat_stream_obj:
|
||||
# 确保历史消息已初始化
|
||||
await chat_stream_obj.context_manager.ensure_history_initialized()
|
||||
|
||||
|
||||
# 获取所有消息(历史+未读)
|
||||
all_messages = (
|
||||
chat_stream_obj.context_manager.context.history_messages +
|
||||
chat_stream_obj.context_manager.get_unread_messages()
|
||||
)
|
||||
|
||||
|
||||
# 转换为字典格式,限制数量
|
||||
limit = int(global_config.chat.max_context_size * 0.33)
|
||||
message_list_before_short = [msg.flatten() for msg in all_messages[-limit:]]
|
||||
|
||||
|
||||
logger.debug(f"记忆存储使用内存中的 {len(message_list_before_short)} 条消息")
|
||||
else:
|
||||
# 回退到数据库查询
|
||||
|
||||
@@ -1112,14 +1112,14 @@ class Prompt:
|
||||
# 使用关系提取器构建用户关系信息和聊天流印象
|
||||
user_relation_info = await relationship_fetcher.build_relation_info(person_id, points_num=5)
|
||||
stream_impression = await relationship_fetcher.build_chat_stream_impression(chat_id)
|
||||
|
||||
|
||||
# 组合两部分信息
|
||||
info_parts = []
|
||||
if user_relation_info:
|
||||
info_parts.append(user_relation_info)
|
||||
if stream_impression:
|
||||
info_parts.append(stream_impression)
|
||||
|
||||
|
||||
return "\n\n".join(info_parts) if info_parts else ""
|
||||
|
||||
def _get_default_result_for_task(self, task_name: str) -> dict[str, Any]:
|
||||
|
||||
@@ -11,6 +11,7 @@ import rjieba
|
||||
from maim_message import UserInfo
|
||||
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
|
||||
# MessageRecv 已被移除,现在使用 DatabaseMessages
|
||||
from src.common.logger import get_logger
|
||||
from src.common.message_repository import count_messages, find_messages
|
||||
@@ -49,13 +50,13 @@ def is_mentioned_bot_in_message(message) -> tuple[bool, float]:
|
||||
|
||||
Returns:
|
||||
tuple[bool, float]: (是否提及, 提及概率)
|
||||
"""
|
||||
"""
|
||||
keywords = [global_config.bot.nickname]
|
||||
nicknames = global_config.bot.alias_names
|
||||
reply_probability = 0.0
|
||||
is_at = False
|
||||
is_mentioned = False
|
||||
|
||||
|
||||
# 检查 is_mentioned 属性
|
||||
mentioned_attr = getattr(message, "is_mentioned", None)
|
||||
if mentioned_attr is not None:
|
||||
@@ -63,7 +64,7 @@ def is_mentioned_bot_in_message(message) -> tuple[bool, float]:
|
||||
return bool(mentioned_attr), float(mentioned_attr)
|
||||
except (ValueError, TypeError):
|
||||
pass
|
||||
|
||||
|
||||
# 检查 additional_config
|
||||
additional_config = None
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ import asyncio
|
||||
import time
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system.base.component_types import ChatMode, ChatType
|
||||
@@ -64,7 +64,7 @@ class StreamContext(BaseDataModel):
|
||||
triggering_user_id: str | None = None # 触发当前聊天流的用户ID
|
||||
is_replying: bool = False # 是否正在生成回复
|
||||
processing_message_id: str | None = None # 当前正在规划/处理的目标消息ID,用于防止重复回复
|
||||
decision_history: List["DecisionRecord"] = field(default_factory=list) # 决策历史
|
||||
decision_history: list["DecisionRecord"] = field(default_factory=list) # 决策历史
|
||||
|
||||
def add_action_to_message(self, message_id: str, action: str):
|
||||
"""
|
||||
@@ -260,7 +260,7 @@ class StreamContext(BaseDataModel):
|
||||
if requested_type not in accept_format:
|
||||
logger.debug(f"[check_types] 消息不支持类型 '{requested_type}',支持的类型: {accept_format}")
|
||||
return False
|
||||
logger.debug(f"[check_types] ✅ 消息支持所有请求的类型 (来自 accept_format)")
|
||||
logger.debug("[check_types] ✅ 消息支持所有请求的类型 (来自 accept_format)")
|
||||
return True
|
||||
|
||||
# 方法2: 检查content_format字段(向后兼容)
|
||||
@@ -279,7 +279,7 @@ class StreamContext(BaseDataModel):
|
||||
if requested_type not in content_format:
|
||||
logger.debug(f"[check_types] 消息不支持类型 '{requested_type}',支持的内容格式: {content_format}")
|
||||
return False
|
||||
logger.debug(f"[check_types] ✅ 消息支持所有请求的类型 (来自 content_format)")
|
||||
logger.debug("[check_types] ✅ 消息支持所有请求的类型 (来自 content_format)")
|
||||
return True
|
||||
else:
|
||||
logger.warning("[check_types] [问题] additional_config 中没有 format_info 字段")
|
||||
|
||||
@@ -26,7 +26,6 @@ from src.config.official_configs import (
|
||||
EmojiConfig,
|
||||
ExperimentalConfig,
|
||||
ExpressionConfig,
|
||||
ReactionConfig,
|
||||
LPMMKnowledgeConfig,
|
||||
MaimMessageConfig,
|
||||
MemoryConfig,
|
||||
@@ -38,6 +37,7 @@ from src.config.official_configs import (
|
||||
PersonalityConfig,
|
||||
PlanningSystemConfig,
|
||||
ProactiveThinkingConfig,
|
||||
ReactionConfig,
|
||||
ResponsePostProcessConfig,
|
||||
ResponseSplitterConfig,
|
||||
ToolConfig,
|
||||
|
||||
@@ -188,7 +188,7 @@ class ExpressionConfig(ValidatedConfigBase):
|
||||
"""表达配置类"""
|
||||
|
||||
mode: Literal["classic", "exp_model"] = Field(
|
||||
default="classic",
|
||||
default="classic",
|
||||
description="表达方式选择模式: classic=经典LLM评估, exp_model=机器学习模型预测"
|
||||
)
|
||||
rules: list[ExpressionRule] = Field(default_factory=list, description="表达学习规则")
|
||||
@@ -761,35 +761,35 @@ class ProactiveThinkingConfig(ValidatedConfigBase):
|
||||
cold_start_cooldown: int = Field(
|
||||
default=86400, description="冷启动后,该私聊的下一次主动思考需要等待的最小时间(秒)"
|
||||
)
|
||||
|
||||
|
||||
# --- 新增:间隔配置 ---
|
||||
base_interval: int = Field(default=1800, ge=60, description="基础触发间隔(秒),默认30分钟")
|
||||
min_interval: int = Field(default=600, ge=60, description="最小触发间隔(秒),默认10分钟。兴趣分数高时会接近此值")
|
||||
max_interval: int = Field(default=7200, ge=60, description="最大触发间隔(秒),默认2小时。兴趣分数低时会接近此值")
|
||||
|
||||
|
||||
# --- 新增:动态调整配置 ---
|
||||
use_interest_score: bool = Field(default=True, description="是否根据兴趣分数动态调整间隔。关闭则使用固定base_interval")
|
||||
interest_score_factor: float = Field(default=2.0, ge=1.0, le=3.0, description="兴趣分数影响因子。公式: interval = base * (factor - score)")
|
||||
|
||||
|
||||
# --- 新增:黑白名单配置 ---
|
||||
whitelist_mode: bool = Field(default=False, description="是否启用白名单模式。启用后只对白名单中的聊天流生效")
|
||||
blacklist_mode: bool = Field(default=False, description="是否启用黑名单模式。启用后排除黑名单中的聊天流")
|
||||
|
||||
|
||||
whitelist_private: list[str] = Field(
|
||||
default_factory=list,
|
||||
default_factory=list,
|
||||
description='私聊白名单,格式: ["platform:user_id:private", "qq:12345:private"]'
|
||||
)
|
||||
whitelist_group: list[str] = Field(
|
||||
default_factory=list,
|
||||
default_factory=list,
|
||||
description='群聊白名单,格式: ["platform:group_id:group", "qq:123456:group"]'
|
||||
)
|
||||
|
||||
|
||||
blacklist_private: list[str] = Field(
|
||||
default_factory=list,
|
||||
default_factory=list,
|
||||
description='私聊黑名单,格式: ["platform:user_id:private", "qq:12345:private"]'
|
||||
)
|
||||
blacklist_group: list[str] = Field(
|
||||
default_factory=list,
|
||||
default_factory=list,
|
||||
description='群聊黑名单,格式: ["platform:group_id:group", "qq:123456:group"]'
|
||||
)
|
||||
|
||||
@@ -802,17 +802,17 @@ class ProactiveThinkingConfig(ValidatedConfigBase):
|
||||
quiet_hours_start: str = Field(default="00:00", description='安静时段开始时间,格式: "HH:MM"')
|
||||
quiet_hours_end: str = Field(default="07:00", description='安静时段结束时间,格式: "HH:MM"')
|
||||
active_hours_multiplier: float = Field(default=0.7, ge=0.1, le=2.0, description="活跃时段间隔倍数,<1表示更频繁,>1表示更稀疏")
|
||||
|
||||
|
||||
# --- 新增:冷却与限制 ---
|
||||
reply_reset_enabled: bool = Field(default=True, description="bot回复后是否重置定时器(避免回复后立即又主动发言)")
|
||||
topic_throw_cooldown: int = Field(default=3600, ge=0, description="抛出话题后的冷却时间(秒),期间暂停主动思考")
|
||||
max_daily_proactive: int = Field(default=0, ge=0, description="每个聊天流每天最多主动发言次数,0表示不限制")
|
||||
|
||||
|
||||
# --- 新增:决策权重配置 ---
|
||||
do_nothing_weight: float = Field(default=0.4, ge=0.0, le=1.0, description="do_nothing动作的基础权重")
|
||||
simple_bubble_weight: float = Field(default=0.3, ge=0.0, le=1.0, description="simple_bubble动作的基础权重")
|
||||
throw_topic_weight: float = Field(default=0.3, ge=0.0, le=1.0, description="throw_topic动作的基础权重")
|
||||
|
||||
|
||||
# --- 新增:调试与监控 ---
|
||||
enable_statistics: bool = Field(default=True, description="是否启用统计功能(记录触发次数、决策分布等)")
|
||||
log_decisions: bool = Field(default=False, description="是否记录每次决策的详细日志(用于调试)")
|
||||
|
||||
@@ -429,7 +429,7 @@ MoFox_Bot(第三方修改版)
|
||||
await initialize_scheduler()
|
||||
except Exception as e:
|
||||
logger.error(f"统一调度器初始化失败: {e}")
|
||||
|
||||
|
||||
# 加载所有插件
|
||||
plugin_manager.load_all_plugins()
|
||||
|
||||
|
||||
@@ -123,7 +123,7 @@ class RelationshipFetcher:
|
||||
# 获取用户特征点
|
||||
current_points = await person_info_manager.get_value(person_id, "points") or []
|
||||
forgotten_points = await person_info_manager.get_value(person_id, "forgotten_points") or []
|
||||
|
||||
|
||||
# 确保 points 是列表类型(可能从数据库返回字符串)
|
||||
if not isinstance(current_points, list):
|
||||
current_points = []
|
||||
@@ -195,25 +195,25 @@ class RelationshipFetcher:
|
||||
if relationships:
|
||||
# db_query 返回字典列表,使用字典访问方式
|
||||
rel_data = relationships[0]
|
||||
|
||||
|
||||
# 5.1 用户别名
|
||||
if rel_data.get("user_aliases"):
|
||||
aliases_list = [alias.strip() for alias in rel_data["user_aliases"].split(",") if alias.strip()]
|
||||
if aliases_list:
|
||||
aliases_str = "、".join(aliases_list)
|
||||
relation_parts.append(f"{person_name}的别名有:{aliases_str}")
|
||||
|
||||
|
||||
# 5.2 关系印象文本(主观认知)
|
||||
if rel_data.get("relationship_text"):
|
||||
relation_parts.append(f"你对{person_name}的整体认知:{rel_data['relationship_text']}")
|
||||
|
||||
|
||||
# 5.3 用户偏好关键词
|
||||
if rel_data.get("preference_keywords"):
|
||||
keywords_list = [kw.strip() for kw in rel_data["preference_keywords"].split(",") if kw.strip()]
|
||||
if keywords_list:
|
||||
keywords_str = "、".join(keywords_list)
|
||||
relation_parts.append(f"{person_name}的偏好和兴趣:{keywords_str}")
|
||||
|
||||
|
||||
# 5.4 关系亲密程度(好感分数)
|
||||
if rel_data.get("relationship_score") is not None:
|
||||
score_desc = self._get_relationship_score_description(rel_data["relationship_score"])
|
||||
|
||||
@@ -55,7 +55,7 @@ async def file_to_stream(
|
||||
|
||||
if not file_name:
|
||||
file_name = Path(file_path).name
|
||||
|
||||
|
||||
params = {
|
||||
"file": file_path,
|
||||
"name": file_name,
|
||||
@@ -68,7 +68,7 @@ async def file_to_stream(
|
||||
else:
|
||||
action = "upload_private_file"
|
||||
params["user_id"] = target_stream.user_info.user_id
|
||||
|
||||
|
||||
response = await adapter_command_to_stream(
|
||||
action=action,
|
||||
params=params,
|
||||
@@ -86,7 +86,7 @@ async def file_to_stream(
|
||||
import asyncio
|
||||
import time
|
||||
import traceback
|
||||
from typing import Any, TYPE_CHECKING
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from maim_message import Seg, UserInfo
|
||||
|
||||
@@ -117,11 +117,11 @@ def message_dict_to_db_message(message_dict: dict[str, Any]) -> "DatabaseMessage
|
||||
Optional[DatabaseMessages]: 构建的消息对象,如果构建失败则返回None
|
||||
"""
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
|
||||
|
||||
# 如果已经是 DatabaseMessages,直接返回
|
||||
if isinstance(message_dict, DatabaseMessages):
|
||||
return message_dict
|
||||
|
||||
|
||||
# 从字典提取信息
|
||||
user_platform = message_dict.get("user_platform", "")
|
||||
user_id = message_dict.get("user_id", "")
|
||||
@@ -135,7 +135,7 @@ def message_dict_to_db_message(message_dict: dict[str, Any]) -> "DatabaseMessage
|
||||
time_val = message_dict.get("time", time.time())
|
||||
additional_config = message_dict.get("additional_config")
|
||||
processed_plain_text = message_dict.get("processed_plain_text", "")
|
||||
|
||||
|
||||
# DatabaseMessages 使用扁平参数构造
|
||||
db_message = DatabaseMessages(
|
||||
message_id=message_id or "temp_reply_id",
|
||||
@@ -151,7 +151,7 @@ def message_dict_to_db_message(message_dict: dict[str, Any]) -> "DatabaseMessage
|
||||
processed_plain_text=processed_plain_text,
|
||||
additional_config=additional_config
|
||||
)
|
||||
|
||||
|
||||
logger.info(f"[SendAPI] 构建回复消息对象,发送者: {user_nickname}")
|
||||
return db_message
|
||||
|
||||
|
||||
@@ -192,7 +192,7 @@ class BaseAction(ABC):
|
||||
self.group_name = self.action_message.get("chat_info_group_name", None)
|
||||
self.user_id = str(self.action_message.get("user_id", None))
|
||||
self.user_nickname = self.action_message.get("user_nickname", None)
|
||||
|
||||
|
||||
if self.group_id:
|
||||
self.is_group = True
|
||||
self.target_id = self.group_id
|
||||
|
||||
@@ -45,7 +45,7 @@ class BaseCommand(ABC):
|
||||
self.plugin_config = plugin_config or {} # 直接存储插件配置字典
|
||||
|
||||
self.log_prefix = "[Command]"
|
||||
|
||||
|
||||
# chat_stream 会在运行时被 bot.py 设置
|
||||
self.chat_stream: "ChatStream | None" = None
|
||||
|
||||
|
||||
@@ -64,7 +64,7 @@ class PlusCommand(ABC):
|
||||
self.message = message
|
||||
self.plugin_config = plugin_config or {}
|
||||
self.log_prefix = "[PlusCommand]"
|
||||
|
||||
|
||||
# chat_stream 会在运行时被 bot.py 设置
|
||||
self.chat_stream: "ChatStream | None" = None
|
||||
|
||||
|
||||
@@ -40,7 +40,7 @@ class EventManager:
|
||||
self._events: dict[str, BaseEvent] = {}
|
||||
self._event_handlers: dict[str, type[BaseEventHandler]] = {}
|
||||
self._pending_subscriptions: dict[str, list[str]] = {} # 缓存失败的订阅
|
||||
self._scheduler_callback: Optional[Any] = None # scheduler 回调函数
|
||||
self._scheduler_callback: Any | None = None # scheduler 回调函数
|
||||
self._initialized = True
|
||||
logger.info("EventManager 单例初始化完成")
|
||||
|
||||
|
||||
@@ -5,7 +5,6 @@
|
||||
"""
|
||||
|
||||
import json
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
from sqlalchemy import select
|
||||
@@ -22,7 +21,7 @@ logger = get_logger("chat_stream_impression_tool")
|
||||
|
||||
class ChatStreamImpressionTool(BaseTool):
|
||||
"""聊天流印象更新工具
|
||||
|
||||
|
||||
使用二步调用机制:
|
||||
1. LLM决定是否调用工具并传入初步参数(stream_id会自动传入)
|
||||
2. 工具内部调用LLM,结合现有数据和传入参数,决定最终更新内容
|
||||
@@ -31,27 +30,52 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
name = "update_chat_stream_impression"
|
||||
description = "当你通过观察聊天记录对当前聊天环境(群聊或私聊)产生了整体印象或认识时使用此工具,更新对这个聊天流的看法。包括:环境氛围、聊天风格、常见话题、你的兴趣程度。调用时机:当你发现这个聊天环境有明显的氛围特点(如很活跃、很专业、很闲聊)、群成员经常讨论某类话题、或者你对这个环境的感受发生变化时。注意:这是对整个聊天环境的印象,而非对单个用户。"
|
||||
parameters = [
|
||||
("impression_description", ToolParamType.STRING, "你对这个聊天环境的整体感受和印象,例如'这是个技术氛围浓厚的群'、'大家都很友好热情'。当你通过聊天记录感受到环境特点时填写(可选)", False, None),
|
||||
("chat_style", ToolParamType.STRING, "这个聊天环境的风格特征,如'活跃热闹,互帮互助'、'严肃专业,深度讨论'、'轻松闲聊,段子频出'等。当你发现聊天方式有明显特点时填写(可选)", False, None),
|
||||
("topic_keywords", ToolParamType.STRING, "这个聊天环境中经常出现的话题,如'编程,AI,技术分享'或'游戏,动漫,娱乐'。当你观察到群里反复讨论某些主题时填写,多个关键词用逗号分隔(可选)", False, None),
|
||||
("interest_score", ToolParamType.FLOAT, "你对这个聊天环境的兴趣和喜欢程度,0.0(无聊/不喜欢)到1.0(很有趣/很喜欢)。当你对这个环境的感觉发生变化时更新(可选)", False, None),
|
||||
(
|
||||
"impression_description",
|
||||
ToolParamType.STRING,
|
||||
"你对这个聊天环境的整体感受和印象,例如'这是个技术氛围浓厚的群'、'大家都很友好热情'。当你通过聊天记录感受到环境特点时填写(可选)",
|
||||
False,
|
||||
None,
|
||||
),
|
||||
(
|
||||
"chat_style",
|
||||
ToolParamType.STRING,
|
||||
"这个聊天环境的风格特征,如'活跃热闹,互帮互助'、'严肃专业,深度讨论'、'轻松闲聊,段子频出'等。当你发现聊天方式有明显特点时填写(可选)",
|
||||
False,
|
||||
None,
|
||||
),
|
||||
(
|
||||
"topic_keywords",
|
||||
ToolParamType.STRING,
|
||||
"这个聊天环境中经常出现的话题,如'编程,AI,技术分享'或'游戏,动漫,娱乐'。当你观察到群里反复讨论某些主题时填写,多个关键词用逗号分隔(可选)",
|
||||
False,
|
||||
None,
|
||||
),
|
||||
(
|
||||
"interest_score",
|
||||
ToolParamType.FLOAT,
|
||||
"你对这个聊天环境的兴趣和喜欢程度,0.0(无聊/不喜欢)到1.0(很有趣/很喜欢)。当你对这个环境的感觉发生变化时更新(可选)",
|
||||
False,
|
||||
None,
|
||||
),
|
||||
]
|
||||
available_for_llm = True
|
||||
history_ttl = 5
|
||||
|
||||
def __init__(self, plugin_config: dict | None = None, chat_stream: Any = None):
|
||||
super().__init__(plugin_config, chat_stream)
|
||||
|
||||
|
||||
# 初始化用于二步调用的LLM
|
||||
try:
|
||||
self.impression_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.relationship_tracker,
|
||||
request_type="chat_stream_impression_update"
|
||||
request_type="chat_stream_impression_update",
|
||||
)
|
||||
except AttributeError:
|
||||
# 降级处理
|
||||
available_models = [
|
||||
attr for attr in dir(model_config.model_task_config)
|
||||
attr
|
||||
for attr in dir(model_config.model_task_config)
|
||||
if not attr.startswith("_") and attr != "model_dump"
|
||||
]
|
||||
if available_models:
|
||||
@@ -59,7 +83,7 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
logger.warning(f"relationship_tracker配置不存在,使用降级模型: {fallback_model}")
|
||||
self.impression_llm = LLMRequest(
|
||||
model_set=getattr(model_config.model_task_config, fallback_model),
|
||||
request_type="chat_stream_impression_update"
|
||||
request_type="chat_stream_impression_update",
|
||||
)
|
||||
else:
|
||||
logger.error("无可用的模型配置")
|
||||
@@ -67,17 +91,17 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
|
||||
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""执行聊天流印象更新
|
||||
|
||||
|
||||
Args:
|
||||
function_args: 工具参数
|
||||
|
||||
|
||||
Returns:
|
||||
dict: 执行结果
|
||||
"""
|
||||
try:
|
||||
# 优先从 function_args 获取 stream_id
|
||||
stream_id = function_args.get("stream_id")
|
||||
|
||||
|
||||
# 如果没有,从 chat_stream 对象获取
|
||||
if not stream_id and self.chat_stream:
|
||||
try:
|
||||
@@ -85,61 +109,49 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
logger.debug(f"从 chat_stream 获取到 stream_id: {stream_id}")
|
||||
except AttributeError:
|
||||
logger.warning("chat_stream 对象没有 stream_id 属性")
|
||||
|
||||
|
||||
# 如果还是没有,返回错误
|
||||
if not stream_id:
|
||||
logger.error("无法获取 stream_id:function_args 和 chat_stream 都没有提供")
|
||||
return {
|
||||
"type": "error",
|
||||
"id": "chat_stream_impression",
|
||||
"content": "错误:无法获取当前聊天流ID"
|
||||
}
|
||||
|
||||
return {"type": "error", "id": "chat_stream_impression", "content": "错误:无法获取当前聊天流ID"}
|
||||
|
||||
# 从LLM传入的参数
|
||||
new_impression = function_args.get("impression_description", "")
|
||||
new_style = function_args.get("chat_style", "")
|
||||
new_topics = function_args.get("topic_keywords", "")
|
||||
new_score = function_args.get("interest_score")
|
||||
|
||||
|
||||
# 从数据库获取现有聊天流印象
|
||||
existing_impression = await self._get_stream_impression(stream_id)
|
||||
|
||||
|
||||
# 如果LLM没有传入任何有效参数,返回提示
|
||||
if not any([new_impression, new_style, new_topics, new_score is not None]):
|
||||
return {
|
||||
"type": "info",
|
||||
"id": stream_id,
|
||||
"content": "提示:需要提供至少一项更新内容(印象描述、聊天风格、话题关键词或兴趣分数)"
|
||||
"content": "提示:需要提供至少一项更新内容(印象描述、聊天风格、话题关键词或兴趣分数)",
|
||||
}
|
||||
|
||||
|
||||
# 调用LLM进行二步决策
|
||||
if self.impression_llm is None:
|
||||
logger.error("LLM未正确初始化,无法执行二步调用")
|
||||
return {
|
||||
"type": "error",
|
||||
"id": stream_id,
|
||||
"content": "系统错误:LLM未正确初始化"
|
||||
}
|
||||
|
||||
return {"type": "error", "id": stream_id, "content": "系统错误:LLM未正确初始化"}
|
||||
|
||||
final_impression = await self._llm_decide_final_impression(
|
||||
stream_id=stream_id,
|
||||
existing_impression=existing_impression,
|
||||
new_impression=new_impression,
|
||||
new_style=new_style,
|
||||
new_topics=new_topics,
|
||||
new_score=new_score
|
||||
new_score=new_score,
|
||||
)
|
||||
|
||||
|
||||
if not final_impression:
|
||||
return {
|
||||
"type": "error",
|
||||
"id": stream_id,
|
||||
"content": "LLM决策失败,无法更新聊天流印象"
|
||||
}
|
||||
|
||||
return {"type": "error", "id": stream_id, "content": "LLM决策失败,无法更新聊天流印象"}
|
||||
|
||||
# 更新数据库
|
||||
await self._update_stream_impression_in_db(stream_id, final_impression)
|
||||
|
||||
|
||||
# 构建返回信息
|
||||
updates = []
|
||||
if final_impression.get("stream_impression_text"):
|
||||
@@ -150,30 +162,26 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
updates.append(f"话题: {final_impression['stream_topic_keywords']}")
|
||||
if final_impression.get("stream_interest_score") is not None:
|
||||
updates.append(f"兴趣分: {final_impression['stream_interest_score']:.2f}")
|
||||
|
||||
|
||||
result_text = f"已更新聊天流 {stream_id} 的印象:\n" + "\n".join(updates)
|
||||
logger.info(f"聊天流印象更新成功: {stream_id}")
|
||||
|
||||
return {
|
||||
"type": "chat_stream_impression_update",
|
||||
"id": stream_id,
|
||||
"content": result_text
|
||||
}
|
||||
|
||||
|
||||
return {"type": "chat_stream_impression_update", "id": stream_id, "content": result_text}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"聊天流印象更新失败: {e}", exc_info=True)
|
||||
return {
|
||||
"type": "error",
|
||||
"id": function_args.get("stream_id", "unknown"),
|
||||
"content": f"聊天流印象更新失败: {str(e)}"
|
||||
"content": f"聊天流印象更新失败: {e!s}",
|
||||
}
|
||||
|
||||
async def _get_stream_impression(self, stream_id: str) -> dict[str, Any]:
|
||||
"""从数据库获取聊天流现有印象
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
dict: 聊天流印象数据
|
||||
"""
|
||||
@@ -182,13 +190,15 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
stmt = select(ChatStreams).where(ChatStreams.stream_id == stream_id)
|
||||
result = await session.execute(stmt)
|
||||
stream = result.scalar_one_or_none()
|
||||
|
||||
|
||||
if stream:
|
||||
return {
|
||||
"stream_impression_text": stream.stream_impression_text or "",
|
||||
"stream_chat_style": stream.stream_chat_style or "",
|
||||
"stream_topic_keywords": stream.stream_topic_keywords or "",
|
||||
"stream_interest_score": float(stream.stream_interest_score) if stream.stream_interest_score is not None else 0.5,
|
||||
"stream_interest_score": float(stream.stream_interest_score)
|
||||
if stream.stream_interest_score is not None
|
||||
else 0.5,
|
||||
"group_name": stream.group_name or "私聊",
|
||||
}
|
||||
else:
|
||||
@@ -217,10 +227,10 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
new_impression: str,
|
||||
new_style: str,
|
||||
new_topics: str,
|
||||
new_score: float | None
|
||||
new_score: float | None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""使用LLM决策最终的聊天流印象内容
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
existing_impression: 现有印象数据
|
||||
@@ -228,33 +238,34 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
new_style: LLM传入的新风格
|
||||
new_topics: LLM传入的新话题
|
||||
new_score: LLM传入的新分数
|
||||
|
||||
|
||||
Returns:
|
||||
dict: 最终决定的印象数据,如果失败返回None
|
||||
"""
|
||||
try:
|
||||
# 获取bot人设
|
||||
from src.individuality.individuality import Individuality
|
||||
|
||||
individuality = Individuality()
|
||||
bot_personality = await individuality.get_personality_block()
|
||||
|
||||
|
||||
prompt = f"""
|
||||
你现在是一个有着特定性格和身份的AI助手。你的人设是:{bot_personality}
|
||||
|
||||
你正在更新对聊天流 {stream_id} 的整体印象。
|
||||
|
||||
【当前聊天流信息】
|
||||
- 聊天环境: {existing_impression.get('group_name', '未知')}
|
||||
- 当前印象: {existing_impression.get('stream_impression_text', '暂无印象')}
|
||||
- 聊天风格: {existing_impression.get('stream_chat_style', '未知')}
|
||||
- 常见话题: {existing_impression.get('stream_topic_keywords', '未知')}
|
||||
- 当前兴趣分: {existing_impression.get('stream_interest_score', 0.5):.2f}
|
||||
- 聊天环境: {existing_impression.get("group_name", "未知")}
|
||||
- 当前印象: {existing_impression.get("stream_impression_text", "暂无印象")}
|
||||
- 聊天风格: {existing_impression.get("stream_chat_style", "未知")}
|
||||
- 常见话题: {existing_impression.get("stream_topic_keywords", "未知")}
|
||||
- 当前兴趣分: {existing_impression.get("stream_interest_score", 0.5):.2f}
|
||||
|
||||
【本次想要更新的内容】
|
||||
- 新的印象描述: {new_impression if new_impression else '不更新'}
|
||||
- 新的聊天风格: {new_style if new_style else '不更新'}
|
||||
- 新的话题关键词: {new_topics if new_topics else '不更新'}
|
||||
- 新的兴趣分数: {new_score if new_score is not None else '不更新'}
|
||||
- 新的印象描述: {new_impression if new_impression else "不更新"}
|
||||
- 新的聊天风格: {new_style if new_style else "不更新"}
|
||||
- 新的话题关键词: {new_topics if new_topics else "不更新"}
|
||||
- 新的兴趣分数: {new_score if new_score is not None else "不更新"}
|
||||
|
||||
请综合考虑现有信息和新信息,决定最终的聊天流印象内容。注意:
|
||||
1. 印象描述:如果提供了新印象,应该综合现有印象和新印象,形成对这个聊天环境的整体认知(100-200字)
|
||||
@@ -271,31 +282,47 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
"reasoning": "你的决策理由"
|
||||
}}
|
||||
"""
|
||||
|
||||
|
||||
# 调用LLM
|
||||
llm_response, _ = await self.impression_llm.generate_response_async(prompt=prompt)
|
||||
|
||||
|
||||
if not llm_response:
|
||||
logger.warning("LLM未返回有效响应")
|
||||
return None
|
||||
|
||||
|
||||
# 清理并解析响应
|
||||
cleaned_response = self._clean_llm_json_response(llm_response)
|
||||
response_data = json.loads(cleaned_response)
|
||||
|
||||
|
||||
# 提取最终决定的数据
|
||||
final_impression = {
|
||||
"stream_impression_text": response_data.get("stream_impression_text", existing_impression.get("stream_impression_text", "")),
|
||||
"stream_chat_style": response_data.get("stream_chat_style", existing_impression.get("stream_chat_style", "")),
|
||||
"stream_topic_keywords": response_data.get("stream_topic_keywords", existing_impression.get("stream_topic_keywords", "")),
|
||||
"stream_interest_score": max(0.0, min(1.0, float(response_data.get("stream_interest_score", existing_impression.get("stream_interest_score", 0.5))))),
|
||||
"stream_impression_text": response_data.get(
|
||||
"stream_impression_text", existing_impression.get("stream_impression_text", "")
|
||||
),
|
||||
"stream_chat_style": response_data.get(
|
||||
"stream_chat_style", existing_impression.get("stream_chat_style", "")
|
||||
),
|
||||
"stream_topic_keywords": response_data.get(
|
||||
"stream_topic_keywords", existing_impression.get("stream_topic_keywords", "")
|
||||
),
|
||||
"stream_interest_score": max(
|
||||
0.0,
|
||||
min(
|
||||
1.0,
|
||||
float(
|
||||
response_data.get(
|
||||
"stream_interest_score", existing_impression.get("stream_interest_score", 0.5)
|
||||
)
|
||||
),
|
||||
),
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
logger.info(f"LLM决策完成: {stream_id}")
|
||||
logger.debug(f"决策理由: {response_data.get('reasoning', '无')}")
|
||||
|
||||
|
||||
return final_impression
|
||||
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"LLM响应JSON解析失败: {e}")
|
||||
logger.debug(f"LLM原始响应: {llm_response if 'llm_response' in locals() else 'N/A'}")
|
||||
@@ -306,7 +333,7 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
|
||||
async def _update_stream_impression_in_db(self, stream_id: str, impression: dict[str, Any]):
|
||||
"""更新数据库中的聊天流印象
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
impression: 印象数据
|
||||
@@ -316,14 +343,14 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
stmt = select(ChatStreams).where(ChatStreams.stream_id == stream_id)
|
||||
result = await session.execute(stmt)
|
||||
existing = result.scalar_one_or_none()
|
||||
|
||||
|
||||
if existing:
|
||||
# 更新现有记录
|
||||
existing.stream_impression_text = impression.get("stream_impression_text", "")
|
||||
existing.stream_chat_style = impression.get("stream_chat_style", "")
|
||||
existing.stream_topic_keywords = impression.get("stream_topic_keywords", "")
|
||||
existing.stream_interest_score = impression.get("stream_interest_score", 0.5)
|
||||
|
||||
|
||||
await session.commit()
|
||||
logger.info(f"聊天流印象已更新到数据库: {stream_id}")
|
||||
else:
|
||||
@@ -331,40 +358,40 @@ class ChatStreamImpressionTool(BaseTool):
|
||||
logger.error(error_msg)
|
||||
# 注意:通常聊天流应该在消息处理时就已创建,这里不创建新记录
|
||||
raise ValueError(error_msg)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"更新聊天流印象到数据库失败: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
def _clean_llm_json_response(self, response: str) -> str:
|
||||
"""清理LLM响应,移除可能的JSON格式标记
|
||||
|
||||
|
||||
Args:
|
||||
response: LLM原始响应
|
||||
|
||||
|
||||
Returns:
|
||||
str: 清理后的JSON字符串
|
||||
"""
|
||||
try:
|
||||
import re
|
||||
|
||||
|
||||
cleaned = response.strip()
|
||||
|
||||
|
||||
# 移除 ```json 或 ``` 等标记
|
||||
cleaned = re.sub(r"^```(?:json)?\s*", "", cleaned, flags=re.MULTILINE | re.IGNORECASE)
|
||||
cleaned = re.sub(r"\s*```$", "", cleaned, flags=re.MULTILINE)
|
||||
|
||||
|
||||
# 尝试找到JSON对象的开始和结束
|
||||
json_start = cleaned.find("{")
|
||||
json_end = cleaned.rfind("}")
|
||||
|
||||
|
||||
if json_start != -1 and json_end != -1 and json_end > json_start:
|
||||
cleaned = cleaned[json_start:json_end + 1]
|
||||
|
||||
cleaned = cleaned[json_start : json_end + 1]
|
||||
|
||||
cleaned = cleaned.strip()
|
||||
|
||||
|
||||
return cleaned
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"清理LLM响应失败: {e}")
|
||||
return response
|
||||
|
||||
@@ -231,11 +231,11 @@ class ChatterPlanExecutor:
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
logger.error(f"执行回复动作失败: {action_info.action_type}, 错误: {error_message}")
|
||||
|
||||
|
||||
# 将机器人回复添加到已读消息中
|
||||
if success and action_info.action_message:
|
||||
await self._add_bot_reply_to_read_messages(action_info, plan, reply_content)
|
||||
|
||||
|
||||
execution_time = time.time() - start_time
|
||||
self.execution_stats["execution_times"].append(execution_time)
|
||||
|
||||
@@ -381,13 +381,11 @@ class ChatterPlanExecutor:
|
||||
is_picid=False,
|
||||
is_command=False,
|
||||
is_notify=False,
|
||||
|
||||
# 用户信息
|
||||
user_id=bot_user_id,
|
||||
user_nickname=bot_nickname,
|
||||
user_cardname=bot_nickname,
|
||||
user_platform="qq",
|
||||
|
||||
# 聊天上下文信息
|
||||
chat_info_user_id=chat_stream.user_info.user_id if chat_stream.user_info else bot_user_id,
|
||||
chat_info_user_nickname=chat_stream.user_info.user_nickname if chat_stream.user_info else bot_nickname,
|
||||
@@ -397,23 +395,22 @@ class ChatterPlanExecutor:
|
||||
chat_info_platform=chat_stream.platform,
|
||||
chat_info_create_time=chat_stream.create_time,
|
||||
chat_info_last_active_time=chat_stream.last_active_time,
|
||||
|
||||
# 群组信息(如果是群聊)
|
||||
chat_info_group_id=chat_stream.group_info.group_id if chat_stream.group_info else None,
|
||||
chat_info_group_name=chat_stream.group_info.group_name if chat_stream.group_info else None,
|
||||
chat_info_group_platform=getattr(chat_stream.group_info, "platform", None) if chat_stream.group_info else None,
|
||||
|
||||
chat_info_group_platform=getattr(chat_stream.group_info, "platform", None)
|
||||
if chat_stream.group_info
|
||||
else None,
|
||||
# 动作信息
|
||||
actions=["bot_reply"],
|
||||
should_reply=False,
|
||||
should_act=False
|
||||
should_act=False,
|
||||
)
|
||||
|
||||
# 添加到chat_stream的已读消息中
|
||||
chat_stream.context_manager.context.history_messages.append(bot_message)
|
||||
logger.debug(f"机器人回复已添加到已读消息: {reply_content[:50]}...")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"添加机器人回复到已读消息时出错: {e}")
|
||||
logger.debug(f"plan.chat_id: {plan.chat_id}")
|
||||
|
||||
@@ -60,7 +60,7 @@ class ChatterPlanFilter:
|
||||
prompt, used_message_id_list = await self._build_prompt(plan)
|
||||
plan.llm_prompt = prompt
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"规划器原始提示词:{prompt}") #叫你不要改你耳朵聋吗😡😡😡😡😡
|
||||
logger.info(f"规划器原始提示词:{prompt}") # 叫你不要改你耳朵聋吗😡😡😡😡😡
|
||||
|
||||
llm_content, _ = await self.planner_llm.generate_response_async(prompt=prompt)
|
||||
|
||||
@@ -104,24 +104,26 @@ class ChatterPlanFilter:
|
||||
# 预解析 action_type 来进行判断
|
||||
thinking = item.get("thinking", "未提供思考过程")
|
||||
actions_obj = item.get("actions", {})
|
||||
|
||||
|
||||
# 记录决策历史
|
||||
if hasattr(global_config.chat, "enable_decision_history") and global_config.chat.enable_decision_history:
|
||||
if (
|
||||
hasattr(global_config.chat, "enable_decision_history")
|
||||
and global_config.chat.enable_decision_history
|
||||
):
|
||||
action_types_to_log = []
|
||||
actions_to_process_for_log = []
|
||||
if isinstance(actions_obj, dict):
|
||||
actions_to_process_for_log.append(actions_obj)
|
||||
elif isinstance(actions_obj, list):
|
||||
actions_to_process_for_log.extend(actions_obj)
|
||||
|
||||
|
||||
for single_action in actions_to_process_for_log:
|
||||
if isinstance(single_action, dict):
|
||||
action_types_to_log.append(single_action.get("action_type", "no_action"))
|
||||
|
||||
|
||||
if thinking != "未提供思考过程" and action_types_to_log:
|
||||
await self._add_decision_to_history(plan, thinking, ", ".join(action_types_to_log))
|
||||
|
||||
|
||||
# 处理actions字段可能是字典或列表的情况
|
||||
if isinstance(actions_obj, dict):
|
||||
action_type = actions_obj.get("action_type", "no_action")
|
||||
@@ -579,15 +581,15 @@ class ChatterPlanFilter:
|
||||
):
|
||||
reasoning = f"LLM 返回了当前不可用的动作 '{action}'。原始理由: {reasoning}"
|
||||
action = "no_action"
|
||||
#TODO:把逻辑迁移到DatabaseMessages(如果没人做下个星期我自己来)
|
||||
#from src.common.data_models.database_data_model import DatabaseMessages
|
||||
# TODO:把逻辑迁移到DatabaseMessages(如果没人做下个星期我自己来)
|
||||
# from src.common.data_models.database_data_model import DatabaseMessages
|
||||
|
||||
#action_message_obj = None
|
||||
#if target_message_obj:
|
||||
#try:
|
||||
#action_message_obj = DatabaseMessages(**target_message_obj)
|
||||
#except Exception:
|
||||
#logger.warning("无法将目标消息转换为DatabaseMessages对象")
|
||||
# action_message_obj = None
|
||||
# if target_message_obj:
|
||||
# try:
|
||||
# action_message_obj = DatabaseMessages(**target_message_obj)
|
||||
# except Exception:
|
||||
# logger.warning("无法将目标消息转换为DatabaseMessages对象")
|
||||
|
||||
parsed_actions.append(
|
||||
ActionPlannerInfo(
|
||||
|
||||
@@ -17,7 +17,6 @@ from src.plugins.built_in.affinity_flow_chatter.plan_generator import ChatterPla
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from src.chat.planner_actions.action_manager import ChatterActionManager
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.data_models.info_data_model import Plan
|
||||
from src.common.data_models.message_manager_data_model import StreamContext
|
||||
|
||||
@@ -100,11 +99,11 @@ class ChatterActionPlanner:
|
||||
if context:
|
||||
context.chat_mode = ChatMode.FOCUS
|
||||
await self._sync_chat_mode_to_stream(context)
|
||||
|
||||
|
||||
# Normal模式下使用简化流程
|
||||
if chat_mode == ChatMode.NORMAL:
|
||||
return await self._normal_mode_flow(context)
|
||||
|
||||
|
||||
# 在规划前,先进行动作修改
|
||||
from src.chat.planner_actions.action_modifier import ActionModifier
|
||||
action_modifier = ActionModifier(self.action_manager, self.chat_id)
|
||||
@@ -184,12 +183,12 @@ class ChatterActionPlanner:
|
||||
for action in filtered_plan.decided_actions:
|
||||
if action.action_type in ["reply", "proactive_reply"] and action.action_message:
|
||||
# 提取目标消息ID
|
||||
if hasattr(action.action_message, 'message_id'):
|
||||
if hasattr(action.action_message, "message_id"):
|
||||
target_message_id = action.action_message.message_id
|
||||
elif isinstance(action.action_message, dict):
|
||||
target_message_id = action.action_message.get('message_id')
|
||||
target_message_id = action.action_message.get("message_id")
|
||||
break
|
||||
|
||||
|
||||
# 如果找到目标消息ID,检查是否已经在处理中
|
||||
if target_message_id and context:
|
||||
if context.processing_message_id == target_message_id:
|
||||
@@ -215,7 +214,7 @@ class ChatterActionPlanner:
|
||||
|
||||
# 6. 根据执行结果更新统计信息
|
||||
self._update_stats_from_execution_result(execution_result)
|
||||
|
||||
|
||||
# 7. Focus模式下如果执行了reply动作,切换到Normal模式
|
||||
if chat_mode == ChatMode.FOCUS and context:
|
||||
if filtered_plan.decided_actions:
|
||||
@@ -233,7 +232,7 @@ class ChatterActionPlanner:
|
||||
# 8. 清理处理标记
|
||||
if context:
|
||||
context.processing_message_id = None
|
||||
logger.debug(f"已清理处理标记,完成规划流程")
|
||||
logger.debug("已清理处理标记,完成规划流程")
|
||||
|
||||
# 9. 返回结果
|
||||
return self._build_return_result(filtered_plan)
|
||||
@@ -262,7 +261,7 @@ class ChatterActionPlanner:
|
||||
return await self._enhanced_plan_flow(context)
|
||||
try:
|
||||
unread_messages = context.get_unread_messages() if context else []
|
||||
|
||||
|
||||
if not unread_messages:
|
||||
logger.debug("Normal模式: 没有未读消息")
|
||||
from src.common.data_models.info_data_model import ActionPlannerInfo
|
||||
@@ -273,11 +272,11 @@ class ChatterActionPlanner:
|
||||
action_message=None,
|
||||
)
|
||||
return [asdict(no_action)], None
|
||||
|
||||
|
||||
# 检查是否有消息达到reply阈值
|
||||
should_reply = False
|
||||
target_message = None
|
||||
|
||||
|
||||
for message in unread_messages:
|
||||
message_should_reply = getattr(message, "should_reply", False)
|
||||
if message_should_reply:
|
||||
@@ -285,7 +284,7 @@ class ChatterActionPlanner:
|
||||
target_message = message
|
||||
logger.info(f"Normal模式: 消息 {message.message_id} 达到reply阈值")
|
||||
break
|
||||
|
||||
|
||||
if should_reply and target_message:
|
||||
# 检查是否正在处理相同的目标消息,防止重复回复
|
||||
target_message_id = target_message.message_id
|
||||
@@ -302,26 +301,26 @@ class ChatterActionPlanner:
|
||||
action_message=None,
|
||||
)
|
||||
return [asdict(no_action)], None
|
||||
|
||||
|
||||
# 记录当前正在处理的消息ID
|
||||
if context:
|
||||
context.processing_message_id = target_message_id
|
||||
logger.debug(f"Normal模式: 开始处理目标消息: {target_message_id}")
|
||||
|
||||
|
||||
# 达到reply阈值,直接进入回复流程
|
||||
from src.common.data_models.info_data_model import ActionPlannerInfo, Plan
|
||||
from src.plugin_system.base.component_types import ChatType
|
||||
|
||||
|
||||
# 构建目标消息字典 - 使用 flatten() 方法获取扁平化的字典
|
||||
target_message_dict = target_message.flatten()
|
||||
|
||||
|
||||
reply_action = ActionPlannerInfo(
|
||||
action_type="reply",
|
||||
reasoning="Normal模式: 兴趣度达到阈值,直接回复",
|
||||
action_data={"target_message_id": target_message.message_id},
|
||||
action_message=target_message,
|
||||
)
|
||||
|
||||
|
||||
# Normal模式下直接构建最小化的Plan,跳过generator和action_modifier
|
||||
# 这样可以显著降低延迟
|
||||
minimal_plan = Plan(
|
||||
@@ -330,25 +329,25 @@ class ChatterActionPlanner:
|
||||
mode=ChatMode.NORMAL,
|
||||
decided_actions=[reply_action],
|
||||
)
|
||||
|
||||
|
||||
# 执行reply动作
|
||||
execution_result = await self.executor.execute(minimal_plan)
|
||||
self._update_stats_from_execution_result(execution_result)
|
||||
|
||||
|
||||
logger.info("Normal模式: 执行reply动作完成")
|
||||
|
||||
|
||||
# 清理处理标记
|
||||
if context:
|
||||
context.processing_message_id = None
|
||||
logger.debug(f"Normal模式: 已清理处理标记")
|
||||
|
||||
logger.debug("Normal模式: 已清理处理标记")
|
||||
|
||||
# 无论是否回复,都进行退出normal模式的判定
|
||||
await self._check_exit_normal_mode(context)
|
||||
|
||||
|
||||
return [asdict(reply_action)], target_message_dict
|
||||
else:
|
||||
# 未达到reply阈值
|
||||
logger.debug(f"Normal模式: 未达到reply阈值")
|
||||
logger.debug("Normal模式: 未达到reply阈值")
|
||||
from src.common.data_models.info_data_model import ActionPlannerInfo
|
||||
no_action = ActionPlannerInfo(
|
||||
action_type="no_action",
|
||||
@@ -356,12 +355,12 @@ class ChatterActionPlanner:
|
||||
action_data={},
|
||||
action_message=None,
|
||||
)
|
||||
|
||||
|
||||
# 无论是否回复,都进行退出normal模式的判定
|
||||
await self._check_exit_normal_mode(context)
|
||||
|
||||
|
||||
return [asdict(no_action)], None
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Normal模式流程出错: {e}")
|
||||
self.planner_stats["failed_plans"] += 1
|
||||
@@ -378,16 +377,16 @@ class ChatterActionPlanner:
|
||||
"""
|
||||
if not context:
|
||||
return
|
||||
|
||||
|
||||
try:
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
|
||||
|
||||
chat_manager = get_chat_manager()
|
||||
chat_stream = await chat_manager.get_stream(self.chat_id) if chat_manager else None
|
||||
|
||||
|
||||
if not chat_stream:
|
||||
return
|
||||
|
||||
|
||||
focus_energy = chat_stream.focus_energy
|
||||
# focus_energy越低,退出normal模式的概率越高
|
||||
# 使用反比例函数: 退出概率 = 1 - focus_energy
|
||||
@@ -395,7 +394,7 @@ class ChatterActionPlanner:
|
||||
# 当focus_energy = 0.5时,退出概率 = 50%
|
||||
# 当focus_energy = 0.9时,退出概率 = 10%
|
||||
exit_probability = 1.0 - focus_energy
|
||||
|
||||
|
||||
import random
|
||||
if random.random() < exit_probability:
|
||||
logger.info(f"Normal模式: focus_energy={focus_energy:.3f}, 退出概率={exit_probability:.3f}, 切换回focus模式")
|
||||
@@ -404,7 +403,7 @@ class ChatterActionPlanner:
|
||||
await self._sync_chat_mode_to_stream(context)
|
||||
else:
|
||||
logger.debug(f"Normal模式: focus_energy={focus_energy:.3f}, 退出概率={exit_probability:.3f}, 保持normal模式")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"检查退出Normal模式失败: {e}")
|
||||
|
||||
@@ -412,7 +411,7 @@ class ChatterActionPlanner:
|
||||
"""同步chat_mode到ChatStream"""
|
||||
try:
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
|
||||
|
||||
chat_manager = get_chat_manager()
|
||||
if chat_manager:
|
||||
chat_stream = await chat_manager.get_stream(context.stream_id)
|
||||
|
||||
@@ -15,57 +15,57 @@ logger = get_logger("proactive_thinking_event")
|
||||
|
||||
class ProactiveThinkingReplyHandler(BaseEventHandler):
|
||||
"""Reply事件处理器
|
||||
|
||||
|
||||
当bot回复某个聊天流后:
|
||||
1. 如果该聊天流的主动思考被暂停(因为抛出了话题),则恢复它
|
||||
2. 无论是否暂停,都重置定时任务,重新开始计时
|
||||
"""
|
||||
|
||||
|
||||
handler_name: str = "proactive_thinking_reply_handler"
|
||||
handler_description: str = "监听reply事件,重置主动思考定时任务"
|
||||
init_subscribe: list[EventType | str] = [EventType.AFTER_SEND]
|
||||
|
||||
|
||||
async def execute(self, kwargs: dict | None) -> HandlerResult:
|
||||
"""处理reply事件
|
||||
|
||||
|
||||
Args:
|
||||
kwargs: 事件参数,应包含 stream_id
|
||||
|
||||
|
||||
Returns:
|
||||
HandlerResult: 处理结果
|
||||
"""
|
||||
logger.debug("[主动思考事件] ProactiveThinkingReplyHandler 开始执行")
|
||||
logger.debug(f"[主动思考事件] 接收到的参数: {kwargs}")
|
||||
|
||||
|
||||
if not kwargs:
|
||||
logger.debug("[主动思考事件] kwargs 为空,跳过处理")
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
stream_id = kwargs.get("stream_id")
|
||||
if not stream_id:
|
||||
logger.debug(f"[主动思考事件] Reply事件缺少stream_id参数")
|
||||
logger.debug("[主动思考事件] Reply事件缺少stream_id参数")
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
logger.debug(f"[主动思考事件] 收到 AFTER_SEND 事件,stream_id={stream_id}")
|
||||
|
||||
|
||||
try:
|
||||
from src.config.config import global_config
|
||||
|
||||
|
||||
# 检查是否启用reply重置
|
||||
if not global_config.proactive_thinking.reply_reset_enabled:
|
||||
logger.debug(f"[主动思考事件] reply_reset_enabled 为 False,跳过重置")
|
||||
logger.debug("[主动思考事件] reply_reset_enabled 为 False,跳过重置")
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
# 检查是否被暂停
|
||||
was_paused = await proactive_thinking_scheduler.is_paused(stream_id)
|
||||
logger.debug(f"[主动思考事件] 聊天流 {stream_id} 暂停状态: {was_paused}")
|
||||
|
||||
|
||||
if was_paused:
|
||||
logger.debug(f"[主动思考事件] 检测到reply事件,聊天流 {stream_id} 之前因抛出话题而暂停,现在恢复")
|
||||
|
||||
|
||||
# 重置定时任务(这会自动清除暂停标记并创建新任务)
|
||||
success = await proactive_thinking_scheduler.schedule_proactive_thinking(stream_id)
|
||||
|
||||
|
||||
if success:
|
||||
if was_paused:
|
||||
logger.info(f"✅ 聊天流 {stream_id} 主动思考已恢复并重置")
|
||||
@@ -73,82 +73,82 @@ class ProactiveThinkingReplyHandler(BaseEventHandler):
|
||||
logger.debug(f"✅ 聊天流 {stream_id} 主动思考任务已重置")
|
||||
else:
|
||||
logger.warning(f"❌ 重置聊天流 {stream_id} 主动思考任务失败")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ 处理reply事件时出错: {e}", exc_info=True)
|
||||
|
||||
|
||||
# 总是继续处理其他handler
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
class ProactiveThinkingMessageHandler(BaseEventHandler):
|
||||
"""消息事件处理器
|
||||
|
||||
|
||||
当收到消息时,如果该聊天流还没有主动思考任务,则创建一个
|
||||
这样可以确保新的聊天流也能获得主动思考功能
|
||||
"""
|
||||
|
||||
|
||||
handler_name: str = "proactive_thinking_message_handler"
|
||||
handler_description: str = "监听消息事件,为新聊天流创建主动思考任务"
|
||||
init_subscribe: list[EventType | str] = [EventType.ON_MESSAGE]
|
||||
|
||||
|
||||
async def execute(self, kwargs: dict | None) -> HandlerResult:
|
||||
"""处理消息事件
|
||||
|
||||
|
||||
Args:
|
||||
kwargs: 事件参数,格式为 {"message": DatabaseMessages}
|
||||
|
||||
|
||||
Returns:
|
||||
HandlerResult: 处理结果
|
||||
"""
|
||||
if not kwargs:
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
# 从 kwargs 中获取 DatabaseMessages 对象
|
||||
message = kwargs.get("message")
|
||||
if not message or not hasattr(message, "chat_stream"):
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
# 从 chat_stream 获取 stream_id
|
||||
chat_stream = message.chat_stream
|
||||
if not chat_stream or not hasattr(chat_stream, "stream_id"):
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
stream_id = chat_stream.stream_id
|
||||
|
||||
|
||||
try:
|
||||
from src.config.config import global_config
|
||||
|
||||
|
||||
# 检查是否启用主动思考
|
||||
if not global_config.proactive_thinking.enable:
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
# 检查该聊天流是否已经有任务
|
||||
task_info = await proactive_thinking_scheduler.get_task_info(stream_id)
|
||||
if task_info:
|
||||
# 已经有任务,不需要创建
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
# 从 message_info 获取平台和聊天ID信息
|
||||
message_info = message.message_info
|
||||
platform = message_info.platform
|
||||
is_group = message_info.group_info is not None
|
||||
chat_id = message_info.group_info.group_id if is_group else message_info.user_info.user_id # type: ignore
|
||||
|
||||
|
||||
# 构造配置字符串
|
||||
stream_config = f"{platform}:{chat_id}:{'group' if is_group else 'private'}"
|
||||
|
||||
|
||||
# 检查黑白名单
|
||||
if not proactive_thinking_scheduler._check_whitelist_blacklist(stream_config):
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
|
||||
# 创建主动思考任务
|
||||
success = await proactive_thinking_scheduler.schedule_proactive_thinking(stream_id)
|
||||
if success:
|
||||
logger.info(f"为新聊天流 {stream_id} 创建了主动思考任务")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"处理消息事件时出错: {e}", exc_info=True)
|
||||
|
||||
|
||||
# 总是继续处理其他handler
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
|
||||
@@ -5,11 +5,10 @@
|
||||
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import Any, Literal, Optional
|
||||
from typing import Any, Literal
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from src.chat.express.expression_learner import expression_learner_manager
|
||||
from src.chat.express.expression_selector import expression_selector
|
||||
from src.common.database.sqlalchemy_database_api import get_db_session
|
||||
from src.common.database.sqlalchemy_models import ChatStreams
|
||||
@@ -17,42 +16,40 @@ from src.common.logger import get_logger
|
||||
from src.config.config import global_config, model_config
|
||||
from src.individuality.individuality import Individuality
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.plugin_system.apis import chat_api, message_api, send_api
|
||||
from src.plugin_system.apis import message_api, send_api
|
||||
|
||||
logger = get_logger("proactive_thinking_executor")
|
||||
|
||||
|
||||
class ProactiveThinkingPlanner:
|
||||
"""主动思考规划器
|
||||
|
||||
|
||||
负责:
|
||||
1. 搜集信息(聊天流印象、话题关键词、历史聊天记录)
|
||||
2. 调用LLM决策:什么都不做/简单冒泡/抛出话题
|
||||
3. 根据决策生成回复内容
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
"""初始化规划器"""
|
||||
try:
|
||||
self.decision_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.utils,
|
||||
request_type="proactive_thinking_decision"
|
||||
model_set=model_config.model_task_config.utils, request_type="proactive_thinking_decision"
|
||||
)
|
||||
self.reply_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.replyer,
|
||||
request_type="proactive_thinking_reply"
|
||||
model_set=model_config.model_task_config.replyer, request_type="proactive_thinking_reply"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"初始化LLM失败: {e}")
|
||||
self.decision_llm = None
|
||||
self.reply_llm = None
|
||||
|
||||
async def gather_context(self, stream_id: str) -> Optional[dict[str, Any]]:
|
||||
|
||||
async def gather_context(self, stream_id: str) -> dict[str, Any] | None:
|
||||
"""搜集聊天流的上下文信息
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
dict: 包含所有上下文信息的字典,失败返回None
|
||||
"""
|
||||
@@ -62,27 +59,25 @@ class ProactiveThinkingPlanner:
|
||||
if not stream_data:
|
||||
logger.warning(f"无法获取聊天流 {stream_id} 的印象数据")
|
||||
return None
|
||||
|
||||
|
||||
# 2. 获取最近的聊天记录
|
||||
recent_messages = await message_api.get_recent_messages(
|
||||
chat_id=stream_id,
|
||||
limit=20,
|
||||
limit_mode="latest",
|
||||
hours=24
|
||||
chat_id=stream_id, limit=20, limit_mode="latest", hours=24
|
||||
)
|
||||
|
||||
|
||||
recent_chat_history = ""
|
||||
if recent_messages:
|
||||
recent_chat_history = await message_api.build_readable_messages_to_str(recent_messages)
|
||||
|
||||
|
||||
# 3. 获取bot人设
|
||||
individuality = Individuality()
|
||||
bot_personality = await individuality.get_personality_block()
|
||||
|
||||
|
||||
# 4. 获取当前心情
|
||||
current_mood = "感觉很平静" # 默认心情
|
||||
try:
|
||||
from src.mood.mood_manager import mood_manager
|
||||
|
||||
mood_obj = mood_manager.get_mood_by_chat_id(stream_id)
|
||||
if mood_obj:
|
||||
await mood_obj._initialize() # 确保已初始化
|
||||
@@ -90,19 +85,20 @@ class ProactiveThinkingPlanner:
|
||||
logger.debug(f"获取到聊天流 {stream_id} 的心情: {current_mood}")
|
||||
except Exception as e:
|
||||
logger.warning(f"获取心情失败,使用默认值: {e}")
|
||||
|
||||
|
||||
# 5. 获取上次决策
|
||||
last_decision = None
|
||||
try:
|
||||
from src.plugins.built_in.affinity_flow_chatter.proactive_thinking_scheduler import (
|
||||
proactive_thinking_scheduler,
|
||||
)
|
||||
|
||||
last_decision = proactive_thinking_scheduler.get_last_decision(stream_id)
|
||||
if last_decision:
|
||||
logger.debug(f"获取到聊天流 {stream_id} 的上次决策: {last_decision.get('action')}")
|
||||
except Exception as e:
|
||||
logger.warning(f"获取上次决策失败: {e}")
|
||||
|
||||
|
||||
# 6. 构建上下文
|
||||
context = {
|
||||
"stream_id": stream_id,
|
||||
@@ -117,45 +113,45 @@ class ProactiveThinkingPlanner:
|
||||
"current_mood": current_mood,
|
||||
"last_decision": last_decision,
|
||||
}
|
||||
|
||||
|
||||
logger.debug(f"成功搜集聊天流 {stream_id} 的上下文信息")
|
||||
return context
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"搜集上下文信息失败: {e}", exc_info=True)
|
||||
return None
|
||||
|
||||
async def _get_stream_impression(self, stream_id: str) -> Optional[dict[str, Any]]:
|
||||
|
||||
async def _get_stream_impression(self, stream_id: str) -> dict[str, Any] | None:
|
||||
"""从数据库获取聊天流印象数据"""
|
||||
try:
|
||||
async with get_db_session() as session:
|
||||
stmt = select(ChatStreams).where(ChatStreams.stream_id == stream_id)
|
||||
result = await session.execute(stmt)
|
||||
stream = result.scalar_one_or_none()
|
||||
|
||||
|
||||
if not stream:
|
||||
return None
|
||||
|
||||
|
||||
return {
|
||||
"stream_name": stream.group_name or "私聊",
|
||||
"stream_impression_text": stream.stream_impression_text or "",
|
||||
"stream_chat_style": stream.stream_chat_style or "",
|
||||
"stream_topic_keywords": stream.stream_topic_keywords or "",
|
||||
"stream_interest_score": float(stream.stream_interest_score) if stream.stream_interest_score else 0.5,
|
||||
"stream_interest_score": float(stream.stream_interest_score)
|
||||
if stream.stream_interest_score
|
||||
else 0.5,
|
||||
}
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取聊天流印象失败: {e}")
|
||||
return None
|
||||
|
||||
async def make_decision(
|
||||
self, context: dict[str, Any]
|
||||
) -> Optional[dict[str, Any]]:
|
||||
|
||||
async def make_decision(self, context: dict[str, Any]) -> dict[str, Any] | None:
|
||||
"""使用LLM进行决策
|
||||
|
||||
|
||||
Args:
|
||||
context: 上下文信息
|
||||
|
||||
|
||||
Returns:
|
||||
dict: 决策结果,包含:
|
||||
- action: "do_nothing" | "simple_bubble" | "throw_topic"
|
||||
@@ -165,30 +161,28 @@ class ProactiveThinkingPlanner:
|
||||
if not self.decision_llm:
|
||||
logger.error("决策LLM未初始化")
|
||||
return None
|
||||
|
||||
|
||||
response = None
|
||||
try:
|
||||
decision_prompt = self._build_decision_prompt(context)
|
||||
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"决策提示词:\n{decision_prompt}")
|
||||
|
||||
|
||||
response, _ = await self.decision_llm.generate_response_async(prompt=decision_prompt)
|
||||
|
||||
|
||||
if not response:
|
||||
logger.warning("LLM未返回有效响应")
|
||||
return None
|
||||
|
||||
|
||||
# 清理并解析JSON响应
|
||||
cleaned_response = self._clean_json_response(response)
|
||||
decision = json.loads(cleaned_response)
|
||||
|
||||
logger.info(
|
||||
f"决策结果: {decision.get('action', 'unknown')} - {decision.get('reasoning', '无理由')}"
|
||||
)
|
||||
|
||||
|
||||
logger.info(f"决策结果: {decision.get('action', 'unknown')} - {decision.get('reasoning', '无理由')}")
|
||||
|
||||
return decision
|
||||
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"解析决策JSON失败: {e}")
|
||||
if response:
|
||||
@@ -197,18 +191,18 @@ class ProactiveThinkingPlanner:
|
||||
except Exception as e:
|
||||
logger.error(f"决策过程失败: {e}", exc_info=True)
|
||||
return None
|
||||
|
||||
|
||||
def _build_decision_prompt(self, context: dict[str, Any]) -> str:
|
||||
"""构建决策提示词"""
|
||||
# 构建上次决策信息
|
||||
last_decision_text = ""
|
||||
if context.get('last_decision'):
|
||||
last_dec = context['last_decision']
|
||||
last_action = last_dec.get('action', '未知')
|
||||
last_reasoning = last_dec.get('reasoning', '无')
|
||||
last_topic = last_dec.get('topic')
|
||||
last_time = last_dec.get('timestamp', '未知')
|
||||
|
||||
if context.get("last_decision"):
|
||||
last_dec = context["last_decision"]
|
||||
last_action = last_dec.get("action", "未知")
|
||||
last_reasoning = last_dec.get("reasoning", "无")
|
||||
last_topic = last_dec.get("topic")
|
||||
last_time = last_dec.get("timestamp", "未知")
|
||||
|
||||
last_decision_text = f"""
|
||||
【上次主动思考的决策】
|
||||
- 时间: {last_time}
|
||||
@@ -216,24 +210,24 @@ class ProactiveThinkingPlanner:
|
||||
- 理由: {last_reasoning}"""
|
||||
if last_topic:
|
||||
last_decision_text += f"\n- 话题: {last_topic}"
|
||||
|
||||
return f"""你是一个有着独特个性的AI助手。你的人设是:
|
||||
{context['bot_personality']}
|
||||
|
||||
现在是 {context['current_time']},你正在考虑是否要主动在 "{context['stream_name']}" 中说些什么。
|
||||
return f"""你是一个有着独特个性的AI助手。你的人设是:
|
||||
{context["bot_personality"]}
|
||||
|
||||
现在是 {context["current_time"]},你正在考虑是否要主动在 "{context["stream_name"]}" 中说些什么。
|
||||
|
||||
【你当前的心情】
|
||||
{context.get('current_mood', '感觉很平静')}
|
||||
{context.get("current_mood", "感觉很平静")}
|
||||
|
||||
【聊天环境信息】
|
||||
- 整体印象: {context['stream_impression']}
|
||||
- 聊天风格: {context['chat_style']}
|
||||
- 常见话题: {context['topic_keywords'] or '暂无'}
|
||||
- 你的兴趣程度: {context['interest_score']:.2f}/1.0
|
||||
- 整体印象: {context["stream_impression"]}
|
||||
- 聊天风格: {context["chat_style"]}
|
||||
- 常见话题: {context["topic_keywords"] or "暂无"}
|
||||
- 你的兴趣程度: {context["interest_score"]:.2f}/1.0
|
||||
{last_decision_text}
|
||||
|
||||
【最近的聊天记录】
|
||||
{context['recent_chat_history']}
|
||||
{context["recent_chat_history"]}
|
||||
|
||||
请根据以上信息(包括你的心情和上次决策),决定你现在应该做什么:
|
||||
|
||||
@@ -267,53 +261,50 @@ class ProactiveThinkingPlanner:
|
||||
3. 只有在真的有话题想聊时才选择 throw_topic
|
||||
4. 符合你的人设,不要太过热情或冷淡
|
||||
"""
|
||||
|
||||
|
||||
async def generate_reply(
|
||||
self,
|
||||
context: dict[str, Any],
|
||||
action: Literal["simple_bubble", "throw_topic"],
|
||||
topic: Optional[str] = None
|
||||
) -> Optional[str]:
|
||||
self, context: dict[str, Any], action: Literal["simple_bubble", "throw_topic"], topic: str | None = None
|
||||
) -> str | None:
|
||||
"""生成回复内容
|
||||
|
||||
|
||||
Args:
|
||||
context: 上下文信息
|
||||
action: 动作类型
|
||||
topic: (可选) 话题内容,当action=throw_topic时必须提供
|
||||
|
||||
|
||||
Returns:
|
||||
str: 生成的回复文本,失败返回None
|
||||
"""
|
||||
if not self.reply_llm:
|
||||
logger.error("回复LLM未初始化")
|
||||
return None
|
||||
|
||||
|
||||
try:
|
||||
reply_prompt = await self._build_reply_prompt(context, action, topic)
|
||||
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"回复提示词:\n{reply_prompt}")
|
||||
|
||||
|
||||
response, _ = await self.reply_llm.generate_response_async(prompt=reply_prompt)
|
||||
|
||||
|
||||
if not response:
|
||||
logger.warning("LLM未返回有效回复")
|
||||
return None
|
||||
|
||||
|
||||
logger.info(f"生成回复成功: {response[:50]}...")
|
||||
return response.strip()
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"生成回复失败: {e}", exc_info=True)
|
||||
return None
|
||||
|
||||
|
||||
async def _get_expression_habits(self, stream_id: str, chat_history: str) -> str:
|
||||
"""获取表达方式参考
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
chat_history: 聊天历史
|
||||
|
||||
|
||||
Returns:
|
||||
str: 格式化的表达方式参考文本
|
||||
"""
|
||||
@@ -324,15 +315,15 @@ class ProactiveThinkingPlanner:
|
||||
chat_history=chat_history,
|
||||
target_message=None, # 主动思考没有target message
|
||||
max_num=6, # 主动思考时使用较少的表达方式
|
||||
min_num=2
|
||||
min_num=2,
|
||||
)
|
||||
|
||||
|
||||
if not selected_expressions:
|
||||
return ""
|
||||
|
||||
|
||||
style_habits = []
|
||||
grammar_habits = []
|
||||
|
||||
|
||||
for expr in selected_expressions:
|
||||
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
|
||||
expr_type = expr.get("type", "style")
|
||||
@@ -340,7 +331,7 @@ class ProactiveThinkingPlanner:
|
||||
grammar_habits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||||
else:
|
||||
style_habits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||||
|
||||
|
||||
expression_block = ""
|
||||
if style_habits or grammar_habits:
|
||||
expression_block = "\n【表达方式参考】\n"
|
||||
@@ -349,41 +340,37 @@ class ProactiveThinkingPlanner:
|
||||
if grammar_habits:
|
||||
expression_block += "句法特点:\n" + "\n".join(grammar_habits) + "\n"
|
||||
expression_block += "注意:仅在情景合适时自然地使用这些表达,不要生硬套用。\n"
|
||||
|
||||
|
||||
return expression_block
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"获取表达方式失败: {e}")
|
||||
return ""
|
||||
|
||||
|
||||
async def _build_reply_prompt(
|
||||
self,
|
||||
context: dict[str, Any],
|
||||
action: Literal["simple_bubble", "throw_topic"],
|
||||
topic: Optional[str]
|
||||
self, context: dict[str, Any], action: Literal["simple_bubble", "throw_topic"], topic: str | None
|
||||
) -> str:
|
||||
"""构建回复提示词"""
|
||||
# 获取表达方式参考
|
||||
expression_habits = await self._get_expression_habits(
|
||||
stream_id=context.get('stream_id', ''),
|
||||
chat_history=context.get('recent_chat_history', '')
|
||||
stream_id=context.get("stream_id", ""), chat_history=context.get("recent_chat_history", "")
|
||||
)
|
||||
|
||||
|
||||
if action == "simple_bubble":
|
||||
return f"""你是一个有着独特个性的AI助手。你的人设是:
|
||||
{context['bot_personality']}
|
||||
{context["bot_personality"]}
|
||||
|
||||
现在是 {context['current_time']},你决定在 "{context['stream_name']}" 中简单冒个泡。
|
||||
现在是 {context["current_time"]},你决定在 "{context["stream_name"]}" 中简单冒个泡。
|
||||
|
||||
【你当前的心情】
|
||||
{context.get('current_mood', '感觉很平静')}
|
||||
{context.get("current_mood", "感觉很平静")}
|
||||
|
||||
【聊天环境】
|
||||
- 整体印象: {context['stream_impression']}
|
||||
- 聊天风格: {context['chat_style']}
|
||||
- 整体印象: {context["stream_impression"]}
|
||||
- 聊天风格: {context["chat_style"]}
|
||||
|
||||
【最近的聊天记录】
|
||||
{context['recent_chat_history']}
|
||||
{context["recent_chat_history"]}
|
||||
{expression_habits}
|
||||
请生成一条简短的消息,用于水群。要求:
|
||||
1. 非常简短(5-15字)
|
||||
@@ -394,23 +381,23 @@ class ProactiveThinkingPlanner:
|
||||
6. 如果有表达方式参考,在合适时自然使用
|
||||
7. 合理参考历史记录
|
||||
直接输出消息内容,不要解释:"""
|
||||
|
||||
|
||||
else: # throw_topic
|
||||
return f"""你是一个有着独特个性的AI助手。你的人设是:
|
||||
{context['bot_personality']}
|
||||
{context["bot_personality"]}
|
||||
|
||||
现在是 {context['current_time']},你决定在 "{context['stream_name']}" 中抛出一个话题。
|
||||
现在是 {context["current_time"]},你决定在 "{context["stream_name"]}" 中抛出一个话题。
|
||||
|
||||
【你当前的心情】
|
||||
{context.get('current_mood', '感觉很平静')}
|
||||
{context.get("current_mood", "感觉很平静")}
|
||||
|
||||
【聊天环境】
|
||||
- 整体印象: {context['stream_impression']}
|
||||
- 聊天风格: {context['chat_style']}
|
||||
- 常见话题: {context['topic_keywords'] or '暂无'}
|
||||
- 整体印象: {context["stream_impression"]}
|
||||
- 聊天风格: {context["chat_style"]}
|
||||
- 常见话题: {context["topic_keywords"] or "暂无"}
|
||||
|
||||
【最近的聊天记录】
|
||||
{context['recent_chat_history']}
|
||||
{context["recent_chat_history"]}
|
||||
|
||||
【你想抛出的话题】
|
||||
{topic}
|
||||
@@ -425,21 +412,21 @@ class ProactiveThinkingPlanner:
|
||||
7. 如果有表达方式参考,在合适时自然使用
|
||||
|
||||
直接输出消息内容,不要解释:"""
|
||||
|
||||
|
||||
def _clean_json_response(self, response: str) -> str:
|
||||
"""清理LLM响应中的JSON格式标记"""
|
||||
import re
|
||||
|
||||
|
||||
cleaned = response.strip()
|
||||
cleaned = re.sub(r"^```(?:json)?\s*", "", cleaned, flags=re.MULTILINE | re.IGNORECASE)
|
||||
cleaned = re.sub(r"\s*```$", "", cleaned, flags=re.MULTILINE)
|
||||
|
||||
|
||||
json_start = cleaned.find("{")
|
||||
json_end = cleaned.rfind("}")
|
||||
|
||||
|
||||
if json_start != -1 and json_end != -1 and json_end > json_start:
|
||||
cleaned = cleaned[json_start:json_end + 1]
|
||||
|
||||
cleaned = cleaned[json_start : json_end + 1]
|
||||
|
||||
return cleaned.strip()
|
||||
|
||||
|
||||
@@ -452,7 +439,7 @@ _statistics: dict[str, dict[str, Any]] = {}
|
||||
|
||||
def _update_statistics(stream_id: str, action: str):
|
||||
"""更新统计数据
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
action: 执行的动作
|
||||
@@ -465,18 +452,18 @@ def _update_statistics(stream_id: str, action: str):
|
||||
"throw_topic_count": 0,
|
||||
"last_execution_time": None,
|
||||
}
|
||||
|
||||
|
||||
_statistics[stream_id]["total_executions"] += 1
|
||||
_statistics[stream_id][f"{action}_count"] += 1
|
||||
_statistics[stream_id]["last_execution_time"] = datetime.now().isoformat()
|
||||
|
||||
|
||||
def get_statistics(stream_id: Optional[str] = None) -> dict[str, Any]:
|
||||
def get_statistics(stream_id: str | None = None) -> dict[str, Any]:
|
||||
"""获取统计数据
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID,None表示获取所有统计
|
||||
|
||||
|
||||
Returns:
|
||||
统计数据字典
|
||||
"""
|
||||
@@ -487,7 +474,7 @@ def get_statistics(stream_id: Optional[str] = None) -> dict[str, Any]:
|
||||
|
||||
async def execute_proactive_thinking(stream_id: str):
|
||||
"""执行主动思考(被调度器调用的回调函数)
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
"""
|
||||
@@ -495,125 +482,125 @@ async def execute_proactive_thinking(stream_id: str):
|
||||
from src.plugins.built_in.affinity_flow_chatter.proactive_thinking_scheduler import (
|
||||
proactive_thinking_scheduler,
|
||||
)
|
||||
|
||||
|
||||
config = global_config.proactive_thinking
|
||||
|
||||
|
||||
logger.debug(f"🤔 开始主动思考 {stream_id}")
|
||||
|
||||
|
||||
try:
|
||||
# 0. 前置检查
|
||||
if proactive_thinking_scheduler._is_in_quiet_hours():
|
||||
logger.debug(f"安静时段,跳过")
|
||||
logger.debug("安静时段,跳过")
|
||||
return
|
||||
|
||||
|
||||
if not proactive_thinking_scheduler._check_daily_limit(stream_id):
|
||||
logger.debug(f"今日发言达上限")
|
||||
logger.debug("今日发言达上限")
|
||||
return
|
||||
|
||||
|
||||
# 1. 搜集信息
|
||||
logger.debug(f"步骤1: 搜集上下文")
|
||||
logger.debug("步骤1: 搜集上下文")
|
||||
context = await _planner.gather_context(stream_id)
|
||||
if not context:
|
||||
logger.warning(f"无法搜集上下文,跳过")
|
||||
logger.warning("无法搜集上下文,跳过")
|
||||
return
|
||||
|
||||
# 检查兴趣分数阈值
|
||||
interest_score = context.get('interest_score', 0.5)
|
||||
interest_score = context.get("interest_score", 0.5)
|
||||
if not proactive_thinking_scheduler._check_interest_score_threshold(interest_score):
|
||||
logger.debug(f"兴趣分数不在阈值范围内")
|
||||
logger.debug("兴趣分数不在阈值范围内")
|
||||
return
|
||||
|
||||
|
||||
# 2. 进行决策
|
||||
logger.debug(f"步骤2: LLM决策")
|
||||
logger.debug("步骤2: LLM决策")
|
||||
decision = await _planner.make_decision(context)
|
||||
if not decision:
|
||||
logger.warning(f"决策失败,跳过")
|
||||
logger.warning("决策失败,跳过")
|
||||
return
|
||||
|
||||
|
||||
action = decision.get("action", "do_nothing")
|
||||
reasoning = decision.get("reasoning", "无")
|
||||
|
||||
|
||||
# 记录决策日志
|
||||
if config.log_decisions:
|
||||
logger.debug(f"决策: action={action}, reasoning={reasoning}")
|
||||
|
||||
|
||||
# 3. 根据决策执行相应动作
|
||||
if action == "do_nothing":
|
||||
logger.debug(f"决策:什么都不做。理由:{reasoning}")
|
||||
proactive_thinking_scheduler.record_decision(stream_id, action, reasoning, None)
|
||||
return
|
||||
|
||||
|
||||
elif action == "simple_bubble":
|
||||
logger.info(f"💬 决策:冒个泡。理由:{reasoning}")
|
||||
|
||||
|
||||
proactive_thinking_scheduler.record_decision(stream_id, action, reasoning, None)
|
||||
|
||||
|
||||
# 生成简单的消息
|
||||
logger.debug(f"步骤3: 生成冒泡回复")
|
||||
logger.debug("步骤3: 生成冒泡回复")
|
||||
reply = await _planner.generate_reply(context, "simple_bubble")
|
||||
if reply:
|
||||
await send_api.text_to_stream(
|
||||
stream_id=stream_id,
|
||||
text=reply,
|
||||
)
|
||||
logger.info(f"✅ 已发送冒泡消息")
|
||||
|
||||
logger.info("✅ 已发送冒泡消息")
|
||||
|
||||
# 增加每日计数
|
||||
proactive_thinking_scheduler._increment_daily_count(stream_id)
|
||||
|
||||
|
||||
# 更新统计
|
||||
if config.enable_statistics:
|
||||
_update_statistics(stream_id, action)
|
||||
|
||||
|
||||
# 冒泡后暂停主动思考,等待用户回复
|
||||
# 使用与 topic_throw 相同的冷却时间配置
|
||||
if config.topic_throw_cooldown > 0:
|
||||
logger.info(f"[主动思考] 步骤5:暂停任务")
|
||||
logger.info("[主动思考] 步骤5:暂停任务")
|
||||
await proactive_thinking_scheduler.pause_proactive_thinking(stream_id, reason="已冒泡")
|
||||
logger.info(f"[主动思考] 已暂停聊天流 {stream_id} 的主动思考,等待用户回复")
|
||||
|
||||
logger.info(f"[主动思考] simple_bubble 执行完成")
|
||||
|
||||
logger.info("[主动思考] simple_bubble 执行完成")
|
||||
|
||||
elif action == "throw_topic":
|
||||
topic = decision.get("topic", "")
|
||||
logger.info(f"[主动思考] 决策:抛出话题。理由:{reasoning},话题:{topic}")
|
||||
|
||||
|
||||
# 记录决策
|
||||
proactive_thinking_scheduler.record_decision(stream_id, action, reasoning, topic)
|
||||
|
||||
|
||||
if not topic:
|
||||
logger.warning("[主动思考] 选择了抛出话题但未提供话题内容,降级为冒泡")
|
||||
logger.info(f"[主动思考] 步骤3:生成降级冒泡回复")
|
||||
logger.info("[主动思考] 步骤3:生成降级冒泡回复")
|
||||
reply = await _planner.generate_reply(context, "simple_bubble")
|
||||
else:
|
||||
# 生成基于话题的消息
|
||||
logger.info(f"[主动思考] 步骤3:生成话题回复")
|
||||
logger.info("[主动思考] 步骤3:生成话题回复")
|
||||
reply = await _planner.generate_reply(context, "throw_topic", topic)
|
||||
|
||||
|
||||
if reply:
|
||||
logger.info(f"[主动思考] 步骤4:发送消息")
|
||||
logger.info("[主动思考] 步骤4:发送消息")
|
||||
await send_api.text_to_stream(
|
||||
stream_id=stream_id,
|
||||
text=reply,
|
||||
)
|
||||
logger.info(f"[主动思考] 已发送话题消息到 {stream_id}")
|
||||
|
||||
|
||||
# 增加每日计数
|
||||
proactive_thinking_scheduler._increment_daily_count(stream_id)
|
||||
|
||||
|
||||
# 更新统计
|
||||
if config.enable_statistics:
|
||||
_update_statistics(stream_id, action)
|
||||
|
||||
|
||||
# 抛出话题后暂停主动思考(如果配置了冷却时间)
|
||||
if config.topic_throw_cooldown > 0:
|
||||
logger.info(f"[主动思考] 步骤5:暂停任务")
|
||||
logger.info("[主动思考] 步骤5:暂停任务")
|
||||
await proactive_thinking_scheduler.pause_proactive_thinking(stream_id, reason="已抛出话题")
|
||||
logger.info(f"[主动思考] 已暂停聊天流 {stream_id} 的主动思考,等待用户回复")
|
||||
|
||||
logger.info(f"[主动思考] throw_topic 执行完成")
|
||||
logger.info("[主动思考] throw_topic 执行完成")
|
||||
|
||||
logger.info(f"[主动思考] 聊天流 {stream_id} 的主动思考执行完成")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[主动思考] 执行主动思考失败: {e}", exc_info=True)
|
||||
|
||||
@@ -6,20 +6,17 @@
|
||||
|
||||
import asyncio
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
from src.common.database.sqlalchemy_database_api import get_db_session
|
||||
from src.common.database.sqlalchemy_models import ChatStreams
|
||||
from src.common.logger import get_logger
|
||||
from src.schedule.unified_scheduler import TriggerType, unified_scheduler
|
||||
from sqlalchemy import select
|
||||
|
||||
logger = get_logger("proactive_thinking_scheduler")
|
||||
|
||||
|
||||
class ProactiveThinkingScheduler:
|
||||
"""主动思考调度器
|
||||
|
||||
|
||||
负责为每个聊天流创建和管理主动思考任务。
|
||||
特点:
|
||||
1. 根据聊天流的兴趣分数动态计算触发间隔
|
||||
@@ -32,27 +29,28 @@ class ProactiveThinkingScheduler:
|
||||
self._stream_schedules: dict[str, str] = {} # stream_id -> schedule_id
|
||||
self._paused_streams: set[str] = set() # 因抛出话题而暂停的聊天流
|
||||
self._lock = asyncio.Lock()
|
||||
|
||||
|
||||
# 统计数据
|
||||
self._statistics: dict[str, dict[str, Any]] = {} # stream_id -> 统计信息
|
||||
self._daily_counts: dict[str, dict[str, int]] = {} # stream_id -> {date: count}
|
||||
|
||||
|
||||
# 历史决策记录:stream_id -> 上次决策信息
|
||||
self._last_decisions: dict[str, dict[str, Any]] = {}
|
||||
|
||||
|
||||
# 从全局配置加载(延迟导入避免循环依赖)
|
||||
from src.config.config import global_config
|
||||
|
||||
self.config = global_config.proactive_thinking
|
||||
|
||||
|
||||
def _calculate_interval(self, focus_energy: float) -> int:
|
||||
"""根据 focus_energy 计算触发间隔
|
||||
|
||||
|
||||
Args:
|
||||
focus_energy: 聊天流的 focus_energy 值 (0.0-1.0)
|
||||
|
||||
|
||||
Returns:
|
||||
int: 触发间隔(秒)
|
||||
|
||||
|
||||
公式:
|
||||
- focus_energy 越高,间隔越短(更频繁思考)
|
||||
- interval = base_interval * (factor - focus_energy)
|
||||
@@ -63,26 +61,26 @@ class ProactiveThinkingScheduler:
|
||||
# 如果不使用 focus_energy,直接返回基础间隔
|
||||
if not self.config.use_interest_score:
|
||||
return self.config.base_interval
|
||||
|
||||
|
||||
# 确保值在有效范围内
|
||||
focus_energy = max(0.0, min(1.0, focus_energy))
|
||||
|
||||
|
||||
# 计算间隔:focus_energy 越高,系数越小,间隔越短
|
||||
factor = self.config.interest_score_factor - focus_energy
|
||||
interval = int(self.config.base_interval * factor)
|
||||
|
||||
|
||||
# 限制在最小和最大间隔之间
|
||||
interval = max(self.config.min_interval, min(self.config.max_interval, interval))
|
||||
|
||||
logger.debug(f"Focus Energy {focus_energy:.3f} -> 触发间隔 {interval}秒 ({interval/60:.1f}分钟)")
|
||||
|
||||
logger.debug(f"Focus Energy {focus_energy:.3f} -> 触发间隔 {interval}秒 ({interval / 60:.1f}分钟)")
|
||||
return interval
|
||||
|
||||
|
||||
def _check_whitelist_blacklist(self, stream_config: str) -> bool:
|
||||
"""检查聊天流是否通过黑白名单验证
|
||||
|
||||
|
||||
Args:
|
||||
stream_config: 聊天流配置字符串,格式: "platform:id:type"
|
||||
|
||||
|
||||
Returns:
|
||||
bool: True表示允许主动思考,False表示拒绝
|
||||
"""
|
||||
@@ -91,148 +89,148 @@ class ProactiveThinkingScheduler:
|
||||
if len(parts) != 3:
|
||||
logger.warning(f"无效的stream_config格式: {stream_config}")
|
||||
return False
|
||||
|
||||
|
||||
is_private = parts[2] == "private"
|
||||
|
||||
|
||||
# 检查基础开关
|
||||
if is_private and not self.config.enable_in_private:
|
||||
return False
|
||||
if not is_private and not self.config.enable_in_group:
|
||||
return False
|
||||
|
||||
|
||||
# 黑名单检查(优先级高)
|
||||
if self.config.blacklist_mode:
|
||||
blacklist = self.config.blacklist_private if is_private else self.config.blacklist_group
|
||||
if stream_config in blacklist:
|
||||
logger.debug(f"聊天流 {stream_config} 在黑名单中,拒绝主动思考")
|
||||
return False
|
||||
|
||||
|
||||
# 白名单检查
|
||||
if self.config.whitelist_mode:
|
||||
whitelist = self.config.whitelist_private if is_private else self.config.whitelist_group
|
||||
if stream_config not in whitelist:
|
||||
logger.debug(f"聊天流 {stream_config} 不在白名单中,拒绝主动思考")
|
||||
return False
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def _check_interest_score_threshold(self, interest_score: float) -> bool:
|
||||
"""检查兴趣分数是否在阈值范围内
|
||||
|
||||
|
||||
Args:
|
||||
interest_score: 兴趣分数
|
||||
|
||||
|
||||
Returns:
|
||||
bool: True表示在范围内
|
||||
"""
|
||||
if interest_score < self.config.min_interest_score:
|
||||
logger.debug(f"兴趣分数 {interest_score:.2f} 低于最低阈值 {self.config.min_interest_score}")
|
||||
return False
|
||||
|
||||
|
||||
if interest_score > self.config.max_interest_score:
|
||||
logger.debug(f"兴趣分数 {interest_score:.2f} 高于最高阈值 {self.config.max_interest_score}")
|
||||
return False
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def _check_daily_limit(self, stream_id: str) -> bool:
|
||||
"""检查今日主动发言次数是否超限
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
bool: True表示未超限
|
||||
"""
|
||||
if self.config.max_daily_proactive == 0:
|
||||
return True # 不限制
|
||||
|
||||
|
||||
today = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
|
||||
if stream_id not in self._daily_counts:
|
||||
self._daily_counts[stream_id] = {}
|
||||
|
||||
|
||||
# 清理过期日期的数据
|
||||
for date in list(self._daily_counts[stream_id].keys()):
|
||||
if date != today:
|
||||
del self._daily_counts[stream_id][date]
|
||||
|
||||
|
||||
count = self._daily_counts[stream_id].get(today, 0)
|
||||
|
||||
|
||||
if count >= self.config.max_daily_proactive:
|
||||
logger.debug(f"聊天流 {stream_id} 今日主动发言次数已达上限 ({count}/{self.config.max_daily_proactive})")
|
||||
return False
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def _increment_daily_count(self, stream_id: str):
|
||||
"""增加今日主动发言计数"""
|
||||
today = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
|
||||
if stream_id not in self._daily_counts:
|
||||
self._daily_counts[stream_id] = {}
|
||||
|
||||
|
||||
self._daily_counts[stream_id][today] = self._daily_counts[stream_id].get(today, 0) + 1
|
||||
|
||||
|
||||
def _is_in_quiet_hours(self) -> bool:
|
||||
"""检查当前是否在安静时段
|
||||
|
||||
|
||||
Returns:
|
||||
bool: True表示在安静时段
|
||||
"""
|
||||
if not self.config.enable_time_strategy:
|
||||
return False
|
||||
|
||||
|
||||
now = datetime.now()
|
||||
current_time = now.strftime("%H:%M")
|
||||
|
||||
|
||||
start = self.config.quiet_hours_start
|
||||
end = self.config.quiet_hours_end
|
||||
|
||||
|
||||
# 处理跨日的情况(如23:00-07:00)
|
||||
if start <= end:
|
||||
return start <= current_time <= end
|
||||
else:
|
||||
return current_time >= start or current_time <= end
|
||||
|
||||
|
||||
async def _get_stream_focus_energy(self, stream_id: str) -> float:
|
||||
"""获取聊天流的 focus_energy
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
float: focus_energy 值,默认0.5
|
||||
"""
|
||||
try:
|
||||
# 从聊天管理器获取聊天流
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
|
||||
logger.debug(f"[调度器] 获取聊天管理器")
|
||||
|
||||
logger.debug("[调度器] 获取聊天管理器")
|
||||
chat_manager = get_chat_manager()
|
||||
logger.debug(f"[调度器] 从聊天管理器获取聊天流 {stream_id}")
|
||||
chat_stream = await chat_manager.get_stream(stream_id)
|
||||
|
||||
|
||||
if chat_stream:
|
||||
# 计算并获取最新的 focus_energy
|
||||
logger.debug(f"[调度器] 找到聊天流,开始计算 focus_energy")
|
||||
logger.debug("[调度器] 找到聊天流,开始计算 focus_energy")
|
||||
focus_energy = await chat_stream.calculate_focus_energy()
|
||||
logger.info(f"[调度器] 聊天流 {stream_id} 的 focus_energy: {focus_energy:.3f}")
|
||||
return focus_energy
|
||||
else:
|
||||
logger.warning(f"[调度器] ⚠️ 未找到聊天流 {stream_id},使用默认 focus_energy=0.5")
|
||||
return 0.5
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[调度器] ❌ 获取聊天流 {stream_id} 的 focus_energy 失败: {e}", exc_info=True)
|
||||
return 0.5
|
||||
|
||||
|
||||
async def schedule_proactive_thinking(self, stream_id: str) -> bool:
|
||||
"""为聊天流创建或重置主动思考任务
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
bool: 是否成功创建/重置任务
|
||||
"""
|
||||
@@ -243,25 +241,25 @@ class ProactiveThinkingScheduler:
|
||||
if stream_id in self._paused_streams:
|
||||
logger.debug(f"[调度器] 清除聊天流 {stream_id} 的暂停标记")
|
||||
self._paused_streams.discard(stream_id)
|
||||
|
||||
|
||||
# 如果已经有任务,先移除
|
||||
if stream_id in self._stream_schedules:
|
||||
old_schedule_id = self._stream_schedules[stream_id]
|
||||
logger.debug(f"[调度器] 移除聊天流 {stream_id} 的旧任务")
|
||||
await unified_scheduler.remove_schedule(old_schedule_id)
|
||||
|
||||
|
||||
# 获取 focus_energy 并计算间隔
|
||||
focus_energy = await self._get_stream_focus_energy(stream_id)
|
||||
logger.debug(f"[调度器] focus_energy={focus_energy:.3f}")
|
||||
|
||||
|
||||
interval_seconds = self._calculate_interval(focus_energy)
|
||||
logger.debug(f"[调度器] 触发间隔={interval_seconds}秒 ({interval_seconds/60:.1f}分钟)")
|
||||
|
||||
logger.debug(f"[调度器] 触发间隔={interval_seconds}秒 ({interval_seconds / 60:.1f}分钟)")
|
||||
|
||||
# 导入回调函数(延迟导入避免循环依赖)
|
||||
from src.plugins.built_in.affinity_flow_chatter.proactive_thinking_executor import (
|
||||
execute_proactive_thinking,
|
||||
)
|
||||
|
||||
|
||||
# 创建新任务
|
||||
schedule_id = await unified_scheduler.create_schedule(
|
||||
callback=execute_proactive_thinking,
|
||||
@@ -273,34 +271,34 @@ class ProactiveThinkingScheduler:
|
||||
task_name=f"ProactiveThinking-{stream_id}",
|
||||
callback_args=(stream_id,),
|
||||
)
|
||||
|
||||
|
||||
self._stream_schedules[stream_id] = schedule_id
|
||||
|
||||
|
||||
# 计算下次触发时间
|
||||
next_run_time = datetime.now() + timedelta(seconds=interval_seconds)
|
||||
|
||||
|
||||
logger.info(
|
||||
f"✅ 聊天流 {stream_id} 主动思考任务已创建 | "
|
||||
f"Focus: {focus_energy:.3f} | "
|
||||
f"间隔: {interval_seconds/60:.1f}分钟 | "
|
||||
f"间隔: {interval_seconds / 60:.1f}分钟 | "
|
||||
f"下次: {next_run_time.strftime('%H:%M:%S')}"
|
||||
)
|
||||
return True
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ 创建主动思考任务失败 {stream_id}: {e}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
async def pause_proactive_thinking(self, stream_id: str, reason: str = "抛出话题") -> bool:
|
||||
"""暂停聊天流的主动思考任务
|
||||
|
||||
|
||||
当选择"抛出话题"后,应该暂停该聊天流的主动思考,
|
||||
直到bot至少执行过一次reply后才恢复。
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
reason: 暂停原因
|
||||
|
||||
|
||||
Returns:
|
||||
bool: 是否成功暂停
|
||||
"""
|
||||
@@ -309,26 +307,26 @@ class ProactiveThinkingScheduler:
|
||||
if stream_id not in self._stream_schedules:
|
||||
logger.warning(f"尝试暂停不存在的任务: {stream_id}")
|
||||
return False
|
||||
|
||||
|
||||
schedule_id = self._stream_schedules[stream_id]
|
||||
success = await unified_scheduler.pause_schedule(schedule_id)
|
||||
|
||||
|
||||
if success:
|
||||
self._paused_streams.add(stream_id)
|
||||
logger.info(f"⏸️ 暂停主动思考 {stream_id},原因: {reason}")
|
||||
|
||||
|
||||
return success
|
||||
|
||||
except Exception as e:
|
||||
|
||||
except Exception:
|
||||
# 错误日志已在上面记录
|
||||
return False
|
||||
|
||||
|
||||
async def resume_proactive_thinking(self, stream_id: str) -> bool:
|
||||
"""恢复聊天流的主动思考任务
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
bool: 是否成功恢复
|
||||
"""
|
||||
@@ -337,26 +335,26 @@ class ProactiveThinkingScheduler:
|
||||
if stream_id not in self._stream_schedules:
|
||||
logger.warning(f"尝试恢复不存在的任务: {stream_id}")
|
||||
return False
|
||||
|
||||
|
||||
schedule_id = self._stream_schedules[stream_id]
|
||||
success = await unified_scheduler.resume_schedule(schedule_id)
|
||||
|
||||
|
||||
if success:
|
||||
self._paused_streams.discard(stream_id)
|
||||
logger.info(f"▶️ 恢复主动思考 {stream_id}")
|
||||
|
||||
|
||||
return success
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ 恢复主动思考失败 {stream_id}: {e}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
async def cancel_proactive_thinking(self, stream_id: str) -> bool:
|
||||
"""取消聊天流的主动思考任务
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
bool: 是否成功取消
|
||||
"""
|
||||
@@ -364,55 +362,55 @@ class ProactiveThinkingScheduler:
|
||||
async with self._lock:
|
||||
if stream_id not in self._stream_schedules:
|
||||
return True # 已经不存在,视为成功
|
||||
|
||||
|
||||
schedule_id = self._stream_schedules.pop(stream_id)
|
||||
self._paused_streams.discard(stream_id)
|
||||
|
||||
|
||||
success = await unified_scheduler.remove_schedule(schedule_id)
|
||||
logger.debug(f"⏹️ 取消主动思考 {stream_id}")
|
||||
|
||||
|
||||
return success
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ 取消主动思考失败 {stream_id}: {e}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
async def is_paused(self, stream_id: str) -> bool:
|
||||
"""检查聊天流的主动思考是否被暂停
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
bool: 是否暂停中
|
||||
"""
|
||||
async with self._lock:
|
||||
return stream_id in self._paused_streams
|
||||
|
||||
async def get_task_info(self, stream_id: str) -> Optional[dict[str, Any]]:
|
||||
|
||||
async def get_task_info(self, stream_id: str) -> dict[str, Any] | None:
|
||||
"""获取聊天流的主动思考任务信息
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
dict: 任务信息,如果不存在返回None
|
||||
"""
|
||||
async with self._lock:
|
||||
if stream_id not in self._stream_schedules:
|
||||
return None
|
||||
|
||||
|
||||
schedule_id = self._stream_schedules[stream_id]
|
||||
task_info = await unified_scheduler.get_task_info(schedule_id)
|
||||
|
||||
|
||||
if task_info:
|
||||
task_info["is_paused_for_topic"] = stream_id in self._paused_streams
|
||||
|
||||
|
||||
return task_info
|
||||
|
||||
|
||||
async def list_all_tasks(self) -> list[dict[str, Any]]:
|
||||
"""列出所有主动思考任务
|
||||
|
||||
|
||||
Returns:
|
||||
list: 任务信息列表
|
||||
"""
|
||||
@@ -425,10 +423,10 @@ class ProactiveThinkingScheduler:
|
||||
task_info["is_paused_for_topic"] = stream_id in self._paused_streams
|
||||
tasks.append(task_info)
|
||||
return tasks
|
||||
|
||||
|
||||
def get_statistics(self) -> dict[str, Any]:
|
||||
"""获取调度器统计信息
|
||||
|
||||
|
||||
Returns:
|
||||
dict: 统计信息
|
||||
"""
|
||||
@@ -437,51 +435,48 @@ class ProactiveThinkingScheduler:
|
||||
"paused_for_topic": len(self._paused_streams),
|
||||
"active_tasks": len(self._stream_schedules) - len(self._paused_streams),
|
||||
}
|
||||
|
||||
|
||||
async def log_next_trigger_times(self, max_streams: int = 10):
|
||||
"""在日志中输出聊天流的下次触发时间
|
||||
|
||||
|
||||
Args:
|
||||
max_streams: 最多显示多少个聊天流,0表示全部
|
||||
"""
|
||||
logger.info("=" * 60)
|
||||
logger.info("主动思考任务状态")
|
||||
logger.info("=" * 60)
|
||||
|
||||
|
||||
tasks = await self.list_all_tasks()
|
||||
|
||||
|
||||
if not tasks:
|
||||
logger.info("当前没有活跃的主动思考任务")
|
||||
logger.info("=" * 60)
|
||||
return
|
||||
|
||||
|
||||
# 按下次触发时间排序
|
||||
tasks_sorted = sorted(
|
||||
tasks,
|
||||
key=lambda x: x.get("next_run_time", datetime.max) or datetime.max
|
||||
)
|
||||
|
||||
tasks_sorted = sorted(tasks, key=lambda x: x.get("next_run_time", datetime.max) or datetime.max)
|
||||
|
||||
# 限制显示数量
|
||||
if max_streams > 0:
|
||||
tasks_sorted = tasks_sorted[:max_streams]
|
||||
|
||||
|
||||
logger.info(f"共有 {len(self._stream_schedules)} 个任务,显示前 {len(tasks_sorted)} 个")
|
||||
logger.info("")
|
||||
|
||||
|
||||
for i, task in enumerate(tasks_sorted, 1):
|
||||
stream_id = task.get("stream_id", "Unknown")
|
||||
next_run = task.get("next_run_time")
|
||||
is_paused = task.get("is_paused_for_topic", False)
|
||||
|
||||
|
||||
# 获取聊天流名称(如果可能)
|
||||
stream_name = stream_id[:16] + "..." if len(stream_id) > 16 else stream_id
|
||||
|
||||
|
||||
if next_run:
|
||||
# 计算剩余时间
|
||||
now = datetime.now()
|
||||
remaining = next_run - now
|
||||
remaining_seconds = int(remaining.total_seconds())
|
||||
|
||||
|
||||
if remaining_seconds < 0:
|
||||
time_str = "已过期(待执行)"
|
||||
elif remaining_seconds < 60:
|
||||
@@ -492,28 +487,25 @@ class ProactiveThinkingScheduler:
|
||||
hours = remaining_seconds // 3600
|
||||
minutes = (remaining_seconds % 3600) // 60
|
||||
time_str = f"{hours}小时{minutes}分钟后"
|
||||
|
||||
|
||||
status = "⏸️ 暂停中" if is_paused else "✅ 活跃"
|
||||
|
||||
|
||||
logger.info(
|
||||
f"[{i:2d}] {status} | {stream_name}\n"
|
||||
f" 下次触发: {next_run.strftime('%Y-%m-%d %H:%M:%S')} ({time_str})"
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
f"[{i:2d}] ⚠️ 未知 | {stream_name}\n"
|
||||
f" 下次触发: 未设置"
|
||||
)
|
||||
|
||||
logger.info(f"[{i:2d}] ⚠️ 未知 | {stream_name}\n 下次触发: 未设置")
|
||||
|
||||
logger.info("")
|
||||
logger.info("=" * 60)
|
||||
|
||||
def get_last_decision(self, stream_id: str) -> Optional[dict[str, Any]]:
|
||||
|
||||
def get_last_decision(self, stream_id: str) -> dict[str, Any] | None:
|
||||
"""获取聊天流的上次主动思考决策
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
|
||||
Returns:
|
||||
dict: 上次决策信息,包含:
|
||||
- action: "do_nothing" | "simple_bubble" | "throw_topic"
|
||||
@@ -523,16 +515,10 @@ class ProactiveThinkingScheduler:
|
||||
None: 如果没有历史决策
|
||||
"""
|
||||
return self._last_decisions.get(stream_id)
|
||||
|
||||
def record_decision(
|
||||
self,
|
||||
stream_id: str,
|
||||
action: str,
|
||||
reasoning: str,
|
||||
topic: Optional[str] = None
|
||||
) -> None:
|
||||
|
||||
def record_decision(self, stream_id: str, action: str, reasoning: str, topic: str | None = None) -> None:
|
||||
"""记录聊天流的主动思考决策
|
||||
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
action: 决策动作
|
||||
|
||||
@@ -4,10 +4,10 @@
|
||||
通过LLM二步调用机制更新用户画像信息,包括别名、主观印象、偏好关键词和好感分数
|
||||
"""
|
||||
|
||||
import orjson
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
from sqlalchemy import select
|
||||
|
||||
from src.common.database.sqlalchemy_database_api import get_db_session
|
||||
@@ -42,7 +42,7 @@ class UserProfileTool(BaseTool):
|
||||
|
||||
def __init__(self, plugin_config: dict | None = None, chat_stream: Any = None):
|
||||
super().__init__(plugin_config, chat_stream)
|
||||
|
||||
|
||||
# 初始化用于二步调用的LLM
|
||||
try:
|
||||
self.profile_llm = LLMRequest(
|
||||
@@ -84,24 +84,24 @@ class UserProfileTool(BaseTool):
|
||||
"id": "user_profile_update",
|
||||
"content": "错误:必须提供目标用户ID"
|
||||
}
|
||||
|
||||
|
||||
# 从LLM传入的参数
|
||||
new_aliases = function_args.get("user_aliases", "")
|
||||
new_impression = function_args.get("impression_description", "")
|
||||
new_keywords = function_args.get("preference_keywords", "")
|
||||
new_score = function_args.get("affection_score")
|
||||
|
||||
|
||||
# 从数据库获取现有用户画像
|
||||
existing_profile = await self._get_user_profile(target_user_id)
|
||||
|
||||
|
||||
# 如果LLM没有传入任何有效参数,返回提示
|
||||
if not any([new_aliases, new_impression, new_keywords, new_score is not None]):
|
||||
return {
|
||||
"type": "info",
|
||||
"id": target_user_id,
|
||||
"content": f"提示:需要提供至少一项更新内容(别名、印象描述、偏好关键词或好感分数)"
|
||||
"content": "提示:需要提供至少一项更新内容(别名、印象描述、偏好关键词或好感分数)"
|
||||
}
|
||||
|
||||
|
||||
# 调用LLM进行二步决策
|
||||
if self.profile_llm is None:
|
||||
logger.error("LLM未正确初始化,无法执行二步调用")
|
||||
@@ -110,7 +110,7 @@ class UserProfileTool(BaseTool):
|
||||
"id": target_user_id,
|
||||
"content": "系统错误:LLM未正确初始化"
|
||||
}
|
||||
|
||||
|
||||
final_profile = await self._llm_decide_final_profile(
|
||||
target_user_id=target_user_id,
|
||||
existing_profile=existing_profile,
|
||||
@@ -119,17 +119,17 @@ class UserProfileTool(BaseTool):
|
||||
new_keywords=new_keywords,
|
||||
new_score=new_score
|
||||
)
|
||||
|
||||
|
||||
if not final_profile:
|
||||
return {
|
||||
"type": "error",
|
||||
"id": target_user_id,
|
||||
"content": "LLM决策失败,无法更新用户画像"
|
||||
}
|
||||
|
||||
|
||||
# 更新数据库
|
||||
await self._update_user_profile_in_db(target_user_id, final_profile)
|
||||
|
||||
|
||||
# 构建返回信息
|
||||
updates = []
|
||||
if final_profile.get("user_aliases"):
|
||||
@@ -140,22 +140,22 @@ class UserProfileTool(BaseTool):
|
||||
updates.append(f"偏好: {final_profile['preference_keywords']}")
|
||||
if final_profile.get("relationship_score") is not None:
|
||||
updates.append(f"好感分: {final_profile['relationship_score']:.2f}")
|
||||
|
||||
|
||||
result_text = f"已更新用户 {target_user_id} 的画像:\n" + "\n".join(updates)
|
||||
logger.info(f"用户画像更新成功: {target_user_id}")
|
||||
|
||||
|
||||
return {
|
||||
"type": "user_profile_update",
|
||||
"id": target_user_id,
|
||||
"content": result_text
|
||||
}
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"用户画像更新失败: {e}", exc_info=True)
|
||||
return {
|
||||
"type": "error",
|
||||
"id": function_args.get("target_user_id", "unknown"),
|
||||
"content": f"用户画像更新失败: {str(e)}"
|
||||
"content": f"用户画像更新失败: {e!s}"
|
||||
}
|
||||
|
||||
async def _get_user_profile(self, user_id: str) -> dict[str, Any]:
|
||||
@@ -172,7 +172,7 @@ class UserProfileTool(BaseTool):
|
||||
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
|
||||
result = await session.execute(stmt)
|
||||
profile = result.scalar_one_or_none()
|
||||
|
||||
|
||||
if profile:
|
||||
return {
|
||||
"user_name": profile.user_name or user_id,
|
||||
@@ -227,7 +227,7 @@ class UserProfileTool(BaseTool):
|
||||
from src.individuality.individuality import Individuality
|
||||
individuality = Individuality()
|
||||
bot_personality = await individuality.get_personality_block()
|
||||
|
||||
|
||||
prompt = f"""
|
||||
你现在是一个有着特定性格和身份的AI助手。你的人设是:{bot_personality}
|
||||
|
||||
@@ -261,18 +261,18 @@ class UserProfileTool(BaseTool):
|
||||
"reasoning": "你的决策理由"
|
||||
}}
|
||||
"""
|
||||
|
||||
|
||||
# 调用LLM
|
||||
llm_response, _ = await self.profile_llm.generate_response_async(prompt=prompt)
|
||||
|
||||
|
||||
if not llm_response:
|
||||
logger.warning("LLM未返回有效响应")
|
||||
return None
|
||||
|
||||
|
||||
# 清理并解析响应
|
||||
cleaned_response = self._clean_llm_json_response(llm_response)
|
||||
response_data = orjson.loads(cleaned_response)
|
||||
|
||||
|
||||
# 提取最终决定的数据
|
||||
final_profile = {
|
||||
"user_aliases": response_data.get("user_aliases", existing_profile.get("user_aliases", "")),
|
||||
@@ -280,12 +280,12 @@ class UserProfileTool(BaseTool):
|
||||
"preference_keywords": response_data.get("preference_keywords", existing_profile.get("preference_keywords", "")),
|
||||
"relationship_score": max(0.0, min(1.0, float(response_data.get("relationship_score", existing_profile.get("relationship_score", 0.3))))),
|
||||
}
|
||||
|
||||
|
||||
logger.info(f"LLM决策完成: {target_user_id}")
|
||||
logger.debug(f"决策理由: {response_data.get('reasoning', '无')}")
|
||||
|
||||
|
||||
return final_profile
|
||||
|
||||
|
||||
except orjson.JSONDecodeError as e:
|
||||
logger.error(f"LLM响应JSON解析失败: {e}")
|
||||
logger.debug(f"LLM原始响应: {llm_response if 'llm_response' in locals() else 'N/A'}")
|
||||
@@ -303,12 +303,12 @@ class UserProfileTool(BaseTool):
|
||||
"""
|
||||
try:
|
||||
current_time = time.time()
|
||||
|
||||
|
||||
async with get_db_session() as session:
|
||||
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
|
||||
result = await session.execute(stmt)
|
||||
existing = result.scalar_one_or_none()
|
||||
|
||||
|
||||
if existing:
|
||||
# 更新现有记录
|
||||
existing.user_aliases = profile.get("user_aliases", "")
|
||||
@@ -328,10 +328,10 @@ class UserProfileTool(BaseTool):
|
||||
last_updated=current_time
|
||||
)
|
||||
session.add(new_profile)
|
||||
|
||||
|
||||
await session.commit()
|
||||
logger.info(f"用户画像已更新到数据库: {user_id}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"更新用户画像到数据库失败: {e}", exc_info=True)
|
||||
raise
|
||||
@@ -347,24 +347,24 @@ class UserProfileTool(BaseTool):
|
||||
"""
|
||||
try:
|
||||
import re
|
||||
|
||||
|
||||
cleaned = response.strip()
|
||||
|
||||
|
||||
# 移除 ```json 或 ``` 等标记
|
||||
cleaned = re.sub(r"^```(?:json)?\s*", "", cleaned, flags=re.MULTILINE | re.IGNORECASE)
|
||||
cleaned = re.sub(r"\s*```$", "", cleaned, flags=re.MULTILINE)
|
||||
|
||||
|
||||
# 尝试找到JSON对象的开始和结束
|
||||
json_start = cleaned.find("{")
|
||||
json_end = cleaned.rfind("}")
|
||||
|
||||
|
||||
if json_start != -1 and json_end != -1 and json_end > json_start:
|
||||
cleaned = cleaned[json_start:json_end + 1]
|
||||
|
||||
|
||||
cleaned = cleaned.strip()
|
||||
|
||||
|
||||
return cleaned
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"清理LLM响应失败: {e}")
|
||||
return response
|
||||
|
||||
@@ -261,7 +261,7 @@ class SetEmojiLikeAction(BaseAction):
|
||||
elif isinstance(self.action_message, dict):
|
||||
message_id = self.action_message.get("message_id")
|
||||
logger.info(f"获取到的消息ID: {message_id}")
|
||||
|
||||
|
||||
if not message_id:
|
||||
logger.error("未提供有效的消息或消息ID")
|
||||
await self.store_action_info(action_prompt_display="贴表情失败: 未提供消息ID", action_done=False)
|
||||
@@ -279,7 +279,7 @@ class SetEmojiLikeAction(BaseAction):
|
||||
context_text = self.action_message.processed_plain_text or ""
|
||||
else:
|
||||
context_text = self.action_message.get("processed_plain_text", "")
|
||||
|
||||
|
||||
if not context_text:
|
||||
logger.error("无法找到动作选择的原始消息文本")
|
||||
return False, "无法找到动作选择的原始消息文本"
|
||||
|
||||
@@ -5,7 +5,7 @@ Web Search Tool Plugin
|
||||
"""
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system import BasePlugin, ComponentInfo, ConfigField, PythonDependency, register_plugin
|
||||
from src.plugin_system import BasePlugin, ComponentInfo, ConfigField, register_plugin
|
||||
from src.plugin_system.apis import config_api
|
||||
|
||||
from .tools.url_parser import URLParserTool
|
||||
|
||||
@@ -5,9 +5,10 @@
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from datetime import datetime, timedelta
|
||||
from collections.abc import Awaitable, Callable
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import Any, Awaitable, Callable, Optional
|
||||
from typing import Any
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system.base.component_types import EventType
|
||||
@@ -33,9 +34,9 @@ class ScheduleTask:
|
||||
trigger_type: TriggerType,
|
||||
trigger_config: dict[str, Any],
|
||||
is_recurring: bool = False,
|
||||
task_name: Optional[str] = None,
|
||||
callback_args: Optional[tuple] = None,
|
||||
callback_kwargs: Optional[dict] = None,
|
||||
task_name: str | None = None,
|
||||
callback_args: tuple | None = None,
|
||||
callback_kwargs: dict | None = None,
|
||||
):
|
||||
self.schedule_id = schedule_id
|
||||
self.callback = callback
|
||||
@@ -46,7 +47,7 @@ class ScheduleTask:
|
||||
self.callback_args = callback_args or ()
|
||||
self.callback_kwargs = callback_kwargs or {}
|
||||
self.created_at = datetime.now()
|
||||
self.last_triggered_at: Optional[datetime] = None
|
||||
self.last_triggered_at: datetime | None = None
|
||||
self.trigger_count = 0
|
||||
self.is_active = True
|
||||
|
||||
@@ -77,7 +78,7 @@ class UnifiedScheduler:
|
||||
def __init__(self):
|
||||
self._tasks: dict[str, ScheduleTask] = {}
|
||||
self._running = False
|
||||
self._check_task: Optional[asyncio.Task] = None
|
||||
self._check_task: asyncio.Task | None = None
|
||||
self._lock = asyncio.Lock()
|
||||
self._event_subscriptions: set[str] = set() # 追踪已订阅的事件
|
||||
|
||||
@@ -111,7 +112,7 @@ class UnifiedScheduler:
|
||||
for task in event_tasks:
|
||||
try:
|
||||
logger.debug(f"[调度器] 执行事件任务: {task.task_name}")
|
||||
|
||||
|
||||
# 执行回调,传入事件参数
|
||||
if event_params:
|
||||
if asyncio.iscoroutinefunction(task.callback):
|
||||
@@ -127,7 +128,7 @@ class UnifiedScheduler:
|
||||
# 如果不是循环任务,标记为删除
|
||||
if not task.is_recurring:
|
||||
tasks_to_remove.append(task.schedule_id)
|
||||
|
||||
|
||||
logger.debug(f"[调度器] 事件任务 {task.task_name} 执行完成")
|
||||
|
||||
except Exception as e:
|
||||
@@ -204,11 +205,11 @@ class UnifiedScheduler:
|
||||
注意:为了避免死锁,回调执行必须在锁外进行
|
||||
"""
|
||||
current_time = datetime.now()
|
||||
|
||||
|
||||
# 第一阶段:在锁内快速收集需要触发的任务
|
||||
async with self._lock:
|
||||
tasks_to_trigger = []
|
||||
|
||||
|
||||
for schedule_id, task in list(self._tasks.items()):
|
||||
if not task.is_active:
|
||||
continue
|
||||
@@ -219,14 +220,14 @@ class UnifiedScheduler:
|
||||
tasks_to_trigger.append(task)
|
||||
except Exception as e:
|
||||
logger.error(f"检查任务 {task.task_name} 时发生错误: {e}", exc_info=True)
|
||||
|
||||
|
||||
# 第二阶段:在锁外执行回调(避免死锁)
|
||||
tasks_to_remove = []
|
||||
|
||||
|
||||
for task in tasks_to_trigger:
|
||||
try:
|
||||
logger.debug(f"[调度器] 触发定时任务: {task.task_name}")
|
||||
|
||||
|
||||
# 执行回调
|
||||
await self._execute_callback(task)
|
||||
|
||||
@@ -339,9 +340,9 @@ class UnifiedScheduler:
|
||||
trigger_type: TriggerType,
|
||||
trigger_config: dict[str, Any],
|
||||
is_recurring: bool = False,
|
||||
task_name: Optional[str] = None,
|
||||
callback_args: Optional[tuple] = None,
|
||||
callback_kwargs: Optional[dict] = None,
|
||||
task_name: str | None = None,
|
||||
callback_args: tuple | None = None,
|
||||
callback_kwargs: dict | None = None,
|
||||
) -> str:
|
||||
"""创建调度任务(详细注释见文档)"""
|
||||
schedule_id = str(uuid.uuid4())
|
||||
@@ -430,7 +431,7 @@ class UnifiedScheduler:
|
||||
logger.info(f"恢复任务: {task.task_name} (ID: {schedule_id[:8]}...)")
|
||||
return True
|
||||
|
||||
async def get_task_info(self, schedule_id: str) -> Optional[dict[str, Any]]:
|
||||
async def get_task_info(self, schedule_id: str) -> dict[str, Any] | None:
|
||||
"""获取任务信息"""
|
||||
async with self._lock:
|
||||
task = self._tasks.get(schedule_id)
|
||||
@@ -449,7 +450,7 @@ class UnifiedScheduler:
|
||||
"trigger_config": task.trigger_config.copy(),
|
||||
}
|
||||
|
||||
async def list_tasks(self, trigger_type: Optional[TriggerType] = None) -> list[dict[str, Any]]:
|
||||
async def list_tasks(self, trigger_type: TriggerType | None = None) -> list[dict[str, Any]]:
|
||||
"""列出所有任务或指定类型的任务"""
|
||||
async with self._lock:
|
||||
tasks = []
|
||||
@@ -499,11 +500,11 @@ async def initialize_scheduler():
|
||||
logger.info("正在启动统一调度器...")
|
||||
await unified_scheduler.start()
|
||||
logger.info("统一调度器启动成功")
|
||||
|
||||
|
||||
# 获取初始统计信息
|
||||
stats = unified_scheduler.get_statistics()
|
||||
logger.info(f"调度器状态: {stats}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"启动统一调度器失败: {e}", exc_info=True)
|
||||
raise
|
||||
@@ -516,20 +517,20 @@ async def shutdown_scheduler():
|
||||
"""
|
||||
try:
|
||||
logger.info("正在关闭统一调度器...")
|
||||
|
||||
|
||||
# 显示最终统计
|
||||
stats = unified_scheduler.get_statistics()
|
||||
logger.info(f"调度器最终统计: {stats}")
|
||||
|
||||
|
||||
# 列出剩余任务
|
||||
remaining_tasks = await unified_scheduler.list_tasks()
|
||||
if remaining_tasks:
|
||||
logger.warning(f"检测到 {len(remaining_tasks)} 个未清理的任务:")
|
||||
for task in remaining_tasks:
|
||||
logger.warning(f" - {task['task_name']} (ID: {task['schedule_id'][:8]}...)")
|
||||
|
||||
|
||||
await unified_scheduler.stop()
|
||||
logger.info("统一调度器已关闭")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"关闭统一调度器失败: {e}", exc_info=True)
|
||||
logger.error(f"关闭统一调度器失败: {e}", exc_info=True)
|
||||
|
||||
Reference in New Issue
Block a user