refactor(chat): 重构planner为大脑/小脑并行架构以提升性能和可扩展性(别管能不能用先插进来再说)
将原有的单体`plan`方法重构为一个多智能体架构,包含一个"大脑"和多个并行的"小脑"。 大脑 (`plan`方法) 专注于决定是否进行聊天回复 (`reply`),并负责调度和整合所有决策。 小脑 (`sub_plan`方法) 并行处理具体的、独立的action判断。每个小脑接收一部分action,使用轻量级模型进行快速评估,从而实现并行化处理,减少了单一LLM调用的延迟。 这种新架构的主要优势包括: - **性能提升**:通过并行化action判断,显著减少了规划器的总响应时间。 - **可扩展性**:添加新的action变得更加容易,因为它们可以被分配到不同的小脑中,而不会增加主规划流程的复杂性。 - **鲁棒性**:将复杂的规划任务分解为更小的、独立的单元,降低了单个点失败导致整个规划失败的风险。 - **成本效益**:允许为小脑配置更轻量、更快速的模型,优化了资源使用。
This commit is contained in:
@@ -1,7 +1,11 @@
|
||||
import orjson
|
||||
import time
|
||||
import traceback
|
||||
from typing import Dict, Any, Optional, Tuple, List
|
||||
import asyncio
|
||||
import math
|
||||
import random
|
||||
import json
|
||||
from typing import Dict, Any, Optional, Tuple, List, TYPE_CHECKING
|
||||
from rich.traceback import install
|
||||
from datetime import datetime
|
||||
from json_repair import repair_json
|
||||
@@ -19,12 +23,15 @@ from src.chat.utils.chat_message_builder import (
|
||||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||||
from src.chat.planner_actions.action_manager import ActionManager
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ComponentType
|
||||
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ComponentType, ActionActivationType
|
||||
from src.plugin_system.core.component_registry import component_registry
|
||||
from src.schedule.schedule_manager import schedule_manager
|
||||
from src.mood.mood_manager import mood_manager
|
||||
from src.chat.memory_system.Hippocampus import hippocampus_manager
|
||||
|
||||
if TYPE_CHECKING:
|
||||
pass
|
||||
|
||||
logger = get_logger("planner")
|
||||
|
||||
install(extra_lines=3)
|
||||
@@ -110,6 +117,37 @@ def init_prompt():
|
||||
"action_prompt",
|
||||
)
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
{name_block}
|
||||
|
||||
{chat_context_description},{time_block},现在请你根据以下聊天内容,选择一个或多个合适的action。如果没有合适的action,请选择no_action。,
|
||||
{chat_content_block}
|
||||
|
||||
**要求**
|
||||
1.action必须符合使用条件,如果符合条件,就选择
|
||||
2.如果聊天内容不适合使用action,即使符合条件,也不要使用
|
||||
3.{moderation_prompt}
|
||||
4.请注意如果相同的内容已经被执行,请不要重复执行
|
||||
这是你最近执行过的动作:
|
||||
{actions_before_now_block}
|
||||
|
||||
**可用的action**
|
||||
|
||||
no_action:不选择任何动作
|
||||
{{
|
||||
"action": "no_action",
|
||||
"reason":"不动作的原因"
|
||||
}}
|
||||
|
||||
{action_options_text}
|
||||
|
||||
请选择,并说明触发action的消息id和选择该action的原因。消息id格式:m+数字
|
||||
请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容:
|
||||
""",
|
||||
"sub_planner_prompt",
|
||||
)
|
||||
|
||||
|
||||
class ActionPlanner:
|
||||
def __init__(self, chat_id: str, action_manager: ActionManager):
|
||||
@@ -117,14 +155,17 @@ class ActionPlanner:
|
||||
self.log_prefix = f"[{get_chat_manager().get_stream_name(chat_id) or chat_id}]"
|
||||
self.action_manager = action_manager
|
||||
# LLM规划器配置
|
||||
# --- 大脑 ---
|
||||
self.planner_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.planner, request_type="planner"
|
||||
) # 用于动作规划
|
||||
)
|
||||
# --- 小脑 (新增) ---
|
||||
# TODO: 可以在 model_config.toml 中为 planner_small 单独配置一个轻量级模型
|
||||
self.planner_small_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.planner, request_type="planner_small"
|
||||
)
|
||||
|
||||
self.last_obs_time_mark = 0.0
|
||||
# 添加重试计数器
|
||||
self.plan_retry_count = 0
|
||||
self.max_plan_retries = 3
|
||||
|
||||
async def _get_long_term_memory_context(self) -> str:
|
||||
"""
|
||||
@@ -237,6 +278,168 @@ class ActionPlanner:
|
||||
# 假设消息列表是按时间顺序排列的,最后一个是最新的
|
||||
return message_id_list[-1].get("message")
|
||||
|
||||
def _parse_single_action(
|
||||
self,
|
||||
action_json: dict,
|
||||
message_id_list: list, # 使用 planner.py 的 list of dict
|
||||
current_available_actions: list, # 使用 planner.py 的 list of tuple
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
[注释] 解析单个小脑LLM返回的action JSON,并将其转换为标准化的字典。
|
||||
"""
|
||||
parsed_actions = []
|
||||
try:
|
||||
action = action_json.get("action", "no_action")
|
||||
reasoning = action_json.get("reason", "未提供原因")
|
||||
action_data = {k: v for k, v in action_json.items() if k not in ["action", "reason"]}
|
||||
|
||||
target_message = None
|
||||
if action != "no_action":
|
||||
if target_message_id := action_json.get("target_message_id"):
|
||||
target_message = self.find_message_by_id(target_message_id, message_id_list)
|
||||
if target_message is None:
|
||||
logger.warning(f"{self.log_prefix}无法找到target_message_id '{target_message_id}'")
|
||||
target_message = self.get_latest_message(message_id_list)
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}动作'{action}'缺少target_message_id")
|
||||
|
||||
available_action_names = [name for name, _ in current_available_actions]
|
||||
if action not in ["no_action", "reply"] and action not in available_action_names:
|
||||
logger.warning(
|
||||
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {available_action_names}),将强制使用 'no_action'"
|
||||
)
|
||||
reasoning = f"LLM 返回了当前不可用的动作 '{action}' (可用: {available_action_names})。原始理由: {reasoning}"
|
||||
action = "no_action"
|
||||
|
||||
# 将列表转换为字典格式以供将来使用
|
||||
available_actions_dict = dict(current_available_actions)
|
||||
parsed_actions.append(
|
||||
{
|
||||
"action_type": action,
|
||||
"reasoning": reasoning,
|
||||
"action_data": action_data,
|
||||
"action_message": target_message,
|
||||
"available_actions": available_actions_dict,
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}解析单个action时出错: {e}")
|
||||
parsed_actions.append(
|
||||
{
|
||||
"action_type": "no_action",
|
||||
"reasoning": f"解析action时出错: {e}",
|
||||
"action_data": {},
|
||||
"action_message": None,
|
||||
"available_actions": dict(current_available_actions),
|
||||
}
|
||||
)
|
||||
return parsed_actions
|
||||
|
||||
def _filter_no_actions(self, action_list: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
[注释] 从一个action字典列表中过滤掉所有的 'no_action'。
|
||||
如果过滤后列表为空, 则返回一个空的列表, 或者根据需要返回一个默认的no_action字典。
|
||||
"""
|
||||
non_no_actions = [a for a in action_list if a.get("action_type") not in ["no_action", "no_reply"]]
|
||||
if non_no_actions:
|
||||
return non_no_actions
|
||||
# 如果都是 no_action,则返回一个包含第一个 no_action 的列表,以保留 reason
|
||||
return action_list[:1] if action_list else []
|
||||
|
||||
async def sub_plan(
|
||||
self,
|
||||
action_list: list, # 使用 planner.py 的 list of tuple
|
||||
chat_content_block: str,
|
||||
message_id_list: list, # 使用 planner.py 的 list of dict
|
||||
is_group_chat: bool = False,
|
||||
chat_target_info: Optional[dict] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
[注释] "小脑"规划器。接收一小组actions,使用轻量级LLM判断其中哪些应该被触发。
|
||||
这是一个独立的、并行的思考单元。返回一个包含action字典的列表。
|
||||
"""
|
||||
try:
|
||||
actions_before_now = get_actions_by_timestamp_with_chat(
|
||||
chat_id=self.chat_id,
|
||||
timestamp_start=time.time() - 1200,
|
||||
timestamp_end=time.time(),
|
||||
limit=20,
|
||||
)
|
||||
action_names_in_list = [name for name, _ in action_list]
|
||||
filtered_actions = [
|
||||
record for record in actions_before_now if record.get("action_name") in action_names_in_list
|
||||
]
|
||||
actions_before_now_block = build_readable_actions(actions=filtered_actions)
|
||||
|
||||
chat_context_description = "你现在正在一个群聊中"
|
||||
if not is_group_chat and chat_target_info:
|
||||
chat_target_name = chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
|
||||
chat_context_description = f"你正在和 {chat_target_name} 私聊"
|
||||
|
||||
action_options_block = ""
|
||||
for using_actions_name, using_actions_info in action_list:
|
||||
param_text = ""
|
||||
if using_actions_info.action_parameters:
|
||||
param_text = "\n" + "\n".join(
|
||||
f' "{p_name}":"{p_desc}"'
|
||||
for p_name, p_desc in using_actions_info.action_parameters.items()
|
||||
)
|
||||
require_text = "\n".join(f"- {req}" for req in using_actions_info.action_require)
|
||||
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
|
||||
action_options_block += using_action_prompt.format(
|
||||
action_name=using_actions_name,
|
||||
action_description=using_actions_info.description,
|
||||
action_parameters=param_text,
|
||||
action_require=require_text,
|
||||
)
|
||||
|
||||
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
|
||||
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
bot_name = global_config.bot.nickname
|
||||
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" if global_config.bot.alias_names else ""
|
||||
name_block = f"你的名字是{bot_name}{bot_nickname},请注意哪些是你自己的发言。"
|
||||
|
||||
planner_prompt_template = await global_prompt_manager.get_prompt_async("sub_planner_prompt")
|
||||
prompt = planner_prompt_template.format(
|
||||
time_block=time_block,
|
||||
chat_context_description=chat_context_description,
|
||||
chat_content_block=chat_content_block,
|
||||
actions_before_now_block=actions_before_now_block,
|
||||
action_options_text=action_options_block,
|
||||
moderation_prompt=moderation_prompt_block,
|
||||
name_block=name_block,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"构建小脑提示词时出错: {e}\n{traceback.format_exc()}")
|
||||
return [{"action_type": "no_action", "reasoning": f"构建小脑Prompt时出错: {e}"}]
|
||||
|
||||
action_dicts: List[Dict[str, Any]] = []
|
||||
try:
|
||||
llm_content, (reasoning_content, _, _) = await self.planner_small_llm.generate_response_async(prompt=prompt)
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"{self.log_prefix}小脑原始提示词: {prompt}")
|
||||
logger.info(f"{self.log_prefix}小脑原始响应: {llm_content}")
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}小脑原始响应: {llm_content}")
|
||||
|
||||
if llm_content:
|
||||
parsed_json = orjson.loads(repair_json(llm_content))
|
||||
if isinstance(parsed_json, list):
|
||||
for item in parsed_json:
|
||||
if isinstance(item, dict):
|
||||
action_dicts.extend(self._parse_single_action(item, message_id_list, action_list))
|
||||
elif isinstance(parsed_json, dict):
|
||||
action_dicts.extend(self._parse_single_action(parsed_json, message_id_list, action_list))
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"{self.log_prefix}解析小脑响应JSON失败: {e}. LLM原始输出: '{llm_content}'")
|
||||
action_dicts.append({"action_type": "no_action", "reasoning": f"解析小脑响应失败: {e}"})
|
||||
|
||||
if not action_dicts:
|
||||
action_dicts.append({"action_type": "no_action", "reasoning": "小脑未返回有效action"})
|
||||
|
||||
return action_dicts
|
||||
|
||||
async def plan(
|
||||
self,
|
||||
mode: ChatMode = ChatMode.FOCUS,
|
||||
@@ -244,153 +447,180 @@ class ActionPlanner:
|
||||
available_actions: Optional[Dict[str, ActionInfo]] = None,
|
||||
) -> Tuple[List[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
||||
"""
|
||||
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
|
||||
[注释] "大脑"规划器。
|
||||
1. 启动多个并行的"小脑"(sub_plan)来决定是否执行具体的actions。
|
||||
2. 自己(大脑)则专注于决定是否进行聊天回复(reply)。
|
||||
3. 整合大脑和小脑的决策,返回最终要执行的动作列表。
|
||||
"""
|
||||
# --- 1. 准备上下文信息 ---
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=self.chat_id,
|
||||
timestamp=time.time(),
|
||||
limit=int(global_config.chat.max_context_size * 0.6),
|
||||
)
|
||||
# 大脑使用较长的上下文
|
||||
chat_content_block, message_id_list = build_readable_messages_with_id(
|
||||
messages=message_list_before_now,
|
||||
timestamp_mode="normal",
|
||||
read_mark=self.last_obs_time_mark,
|
||||
truncate=True,
|
||||
show_actions=True,
|
||||
)
|
||||
# 小脑使用较短、较新的上下文
|
||||
message_list_before_now_short = message_list_before_now[-int(global_config.chat.max_context_size * 0.3) :]
|
||||
chat_content_block_short, message_id_list_short = build_readable_messages_with_id(
|
||||
messages=message_list_before_now_short,
|
||||
timestamp_mode="normal",
|
||||
truncate=False,
|
||||
show_actions=False,
|
||||
)
|
||||
self.last_obs_time_mark = time.time()
|
||||
|
||||
action = "no_reply" # 默认动作
|
||||
reasoning = "规划器初始化默认"
|
||||
action_data = {}
|
||||
current_available_actions: Dict[str, ActionInfo] = {}
|
||||
target_message: Optional[Dict[str, Any]] = None # 初始化target_message变量
|
||||
prompt: str = ""
|
||||
message_id_list: list = []
|
||||
is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info()
|
||||
if available_actions is None:
|
||||
available_actions = current_available_actions
|
||||
|
||||
# --- 2. 启动小脑并行思考 ---
|
||||
all_sub_planner_results: List[Dict[str, Any]] = []
|
||||
try:
|
||||
is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info()
|
||||
sub_planner_actions: Dict[str, ActionInfo] = {}
|
||||
for action_name, action_info in available_actions.items():
|
||||
if action_info.activation_type in [ActionActivationType.LLM_JUDGE, ActionActivationType.ALWAYS]:
|
||||
sub_planner_actions[action_name] = action_info
|
||||
elif action_info.activation_type == ActionActivationType.RANDOM:
|
||||
if random.random() < action_info.random_activation_probability:
|
||||
sub_planner_actions[action_name] = action_info
|
||||
elif action_info.activation_type == ActionActivationType.KEYWORD:
|
||||
if any(keyword in chat_content_block_short for keyword in action_info.activation_keywords):
|
||||
sub_planner_actions[action_name] = action_info
|
||||
|
||||
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
|
||||
prompt, message_id_list = await self.build_planner_prompt(
|
||||
is_group_chat=is_group_chat, # <-- Pass HFC state
|
||||
chat_target_info=chat_target_info, # <-- 传递获取到的聊天目标信息
|
||||
current_available_actions=current_available_actions, # <-- Pass determined actions
|
||||
if sub_planner_actions:
|
||||
sub_planner_actions_num = len(sub_planner_actions)
|
||||
# TODO: 您可以在 config.toml 的 [chat] 部分添加 planner_size = 5.0 来自定义此值
|
||||
planner_size_config = getattr(global_config.chat, "planner_size", 5.0)
|
||||
sub_planner_size = int(planner_size_config) + (
|
||||
1 if random.random() < planner_size_config - int(planner_size_config) else 0
|
||||
)
|
||||
sub_planner_num = math.ceil(sub_planner_actions_num / sub_planner_size)
|
||||
logger.info(f"{self.log_prefix}使用{sub_planner_num}个小脑进行思考 (尺寸: {sub_planner_size})")
|
||||
|
||||
action_items = list(sub_planner_actions.items())
|
||||
random.shuffle(action_items)
|
||||
sub_planner_lists = [action_items[i::sub_planner_num] for i in range(sub_planner_num)]
|
||||
|
||||
sub_plan_tasks = [
|
||||
self.sub_plan(
|
||||
action_list=action_group,
|
||||
chat_content_block=chat_content_block_short,
|
||||
message_id_list=message_id_list_short,
|
||||
is_group_chat=is_group_chat,
|
||||
chat_target_info=chat_target_info,
|
||||
)
|
||||
for action_group in sub_planner_lists
|
||||
]
|
||||
sub_plan_results = await asyncio.gather(*sub_plan_tasks)
|
||||
for sub_result in sub_plan_results:
|
||||
all_sub_planner_results.extend(sub_result)
|
||||
|
||||
sub_actions_str = ", ".join(
|
||||
a["action_type"] for a in all_sub_planner_results if a["action_type"] != "no_action"
|
||||
) or "no_action"
|
||||
logger.info(f"{self.log_prefix}小脑决策: [{sub_actions_str}]")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}小脑调度过程中出错: {e}\n{traceback.format_exc()}")
|
||||
|
||||
# --- 3. 大脑独立思考是否回复 ---
|
||||
action, reasoning, action_data, target_message = "no_reply", "大脑初始化默认", {}, None
|
||||
try:
|
||||
prompt, _ = await self.build_planner_prompt(
|
||||
is_group_chat=is_group_chat,
|
||||
chat_target_info=chat_target_info,
|
||||
current_available_actions={}, # 大脑不考虑具体action
|
||||
mode=mode,
|
||||
chat_content_block_override=chat_content_block,
|
||||
message_id_list_override=message_id_list,
|
||||
)
|
||||
|
||||
# --- 调用 LLM (普通文本生成) ---
|
||||
llm_content = None
|
||||
try:
|
||||
llm_content, (reasoning_content, _, _) = await self.planner_llm.generate_response_async(prompt=prompt)
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
|
||||
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
|
||||
if reasoning_content:
|
||||
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}规划器原始提示词: {prompt}")
|
||||
logger.debug(f"{self.log_prefix}规划器原始响应: {llm_content}")
|
||||
if reasoning_content:
|
||||
logger.debug(f"{self.log_prefix}规划器推理: {reasoning_content}")
|
||||
|
||||
except Exception as req_e:
|
||||
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
|
||||
reasoning = f"LLM 请求失败,模型出现问题: {req_e}"
|
||||
action = "no_reply"
|
||||
llm_content, _ = await self.planner_llm.generate_response_async(prompt=prompt)
|
||||
|
||||
if llm_content:
|
||||
try:
|
||||
parsed_json = orjson.loads(repair_json(llm_content))
|
||||
|
||||
if isinstance(parsed_json, list):
|
||||
if parsed_json:
|
||||
parsed_json = parsed_json[-1]
|
||||
logger.warning(f"{self.log_prefix}LLM返回了多个JSON对象,使用最后一个: {parsed_json}")
|
||||
else:
|
||||
parsed_json = {}
|
||||
|
||||
if not isinstance(parsed_json, dict):
|
||||
logger.error(f"{self.log_prefix}解析后的JSON不是字典类型: {type(parsed_json)}")
|
||||
parsed_json = {}
|
||||
|
||||
parsed_json = orjson.loads(repair_json(llm_content))
|
||||
parsed_json = parsed_json[-1] if isinstance(parsed_json, list) and parsed_json else parsed_json
|
||||
if isinstance(parsed_json, dict):
|
||||
action = parsed_json.get("action", "no_reply")
|
||||
reasoning = parsed_json.get("reason", "未提供原因")
|
||||
|
||||
# 将所有其他属性添加到action_data
|
||||
for key, value in parsed_json.items():
|
||||
if key not in ["action", "reason"]:
|
||||
action_data[key] = value
|
||||
|
||||
# 非no_reply动作需要target_message_id
|
||||
action_data = {k: v for k, v in parsed_json.items() if k not in ["action", "reason"]}
|
||||
if action != "no_reply":
|
||||
if target_message_id := parsed_json.get("target_message_id"):
|
||||
# 根据target_message_id查找原始消息
|
||||
target_message = self.find_message_by_id(target_message_id, message_id_list)
|
||||
# 如果获取的target_message为None,输出warning并重新plan
|
||||
if target_message is None:
|
||||
self.plan_retry_count += 1
|
||||
logger.warning(
|
||||
f"{self.log_prefix}无法找到target_message_id '{target_message_id}' 对应的消息,重试次数: {self.plan_retry_count}/{self.max_plan_retries}"
|
||||
)
|
||||
if target_id := parsed_json.get("target_message_id"):
|
||||
target_message = self.find_message_by_id(target_id, message_id_list)
|
||||
if not target_message:
|
||||
target_message = self.get_latest_message(message_id_list)
|
||||
logger.info(f"{self.log_prefix}大脑决策: [{action}]")
|
||||
|
||||
# 如果连续三次plan均为None,输出error并选取最新消息
|
||||
if self.plan_retry_count >= self.max_plan_retries:
|
||||
logger.error(
|
||||
f"{self.log_prefix}连续{self.max_plan_retries}次plan获取target_message失败,选择最新消息作为target_message"
|
||||
)
|
||||
target_message = self.get_latest_message(message_id_list)
|
||||
self.plan_retry_count = 0 # 重置计数器
|
||||
else:
|
||||
# 递归重新plan
|
||||
return await self.plan(mode, loop_start_time, available_actions)
|
||||
else:
|
||||
# 成功获取到target_message,重置计数器
|
||||
self.plan_retry_count = 0
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}动作'{action}'缺少target_message_id")
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}大脑处理过程中发生意外错误: {e}\n{traceback.format_exc()}")
|
||||
action, reasoning = "no_reply", f"大脑处理错误: {e}"
|
||||
|
||||
if action != "no_reply" and action != "reply" and action not in current_available_actions:
|
||||
logger.warning(
|
||||
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
|
||||
)
|
||||
reasoning = f"LLM 返回了当前不可用的动作 '{action}' (可用: {list(current_available_actions.keys())})。原始理由: {reasoning}"
|
||||
action = "no_reply"
|
||||
|
||||
except Exception as json_e:
|
||||
logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'")
|
||||
traceback.print_exc()
|
||||
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
|
||||
action = "no_reply"
|
||||
|
||||
except Exception as outer_e:
|
||||
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}")
|
||||
traceback.print_exc()
|
||||
action = "no_reply"
|
||||
reasoning = f"Planner 内部处理错误: {outer_e}"
|
||||
|
||||
is_parallel = False
|
||||
if mode == ChatMode.NORMAL and action in current_available_actions:
|
||||
is_parallel = current_available_actions[action].parallel_action
|
||||
# --- 4. 整合大脑和小脑的决策 ---
|
||||
is_parallel = True
|
||||
for info in all_sub_planner_results:
|
||||
action_type = info.get("action_type")
|
||||
if action_type and action_type not in ["no_action", "no_reply"]:
|
||||
action_info = available_actions.get(action_type)
|
||||
if action_info and not action_info.parallel_action:
|
||||
is_parallel = False
|
||||
break
|
||||
|
||||
action_data["loop_start_time"] = loop_start_time
|
||||
final_actions: List[Dict[str, Any]] = []
|
||||
|
||||
actions = []
|
||||
if is_parallel:
|
||||
logger.info(f"{self.log_prefix}决策模式: 大脑与小脑并行")
|
||||
if action not in ["no_action", "no_reply"]:
|
||||
final_actions.append(
|
||||
{
|
||||
"action_type": action,
|
||||
"reasoning": reasoning,
|
||||
"action_data": action_data,
|
||||
"action_message": target_message,
|
||||
"available_actions": available_actions,
|
||||
}
|
||||
)
|
||||
final_actions.extend(all_sub_planner_results)
|
||||
else:
|
||||
logger.info(f"{self.log_prefix}决策模式: 小脑优先 (检测到非并行action)")
|
||||
final_actions.extend(all_sub_planner_results)
|
||||
|
||||
# 1. 添加Planner取得的动作
|
||||
actions.append(
|
||||
{
|
||||
"action_type": action,
|
||||
"reasoning": reasoning,
|
||||
"action_data": action_data,
|
||||
"action_message": target_message,
|
||||
"available_actions": available_actions, # 添加这个字段
|
||||
}
|
||||
)
|
||||
final_actions = self._filter_no_actions(final_actions)
|
||||
|
||||
if action != "reply" and is_parallel:
|
||||
actions.append(
|
||||
{"action_type": "reply", "action_message": target_message, "available_actions": available_actions}
|
||||
)
|
||||
if not final_actions:
|
||||
final_actions = [
|
||||
{
|
||||
"action_type": "no_action",
|
||||
"reasoning": "所有规划器都选择不执行动作",
|
||||
"action_data": {}, "action_message": None, "available_actions": available_actions
|
||||
}
|
||||
]
|
||||
|
||||
return actions, target_message
|
||||
final_target_message = target_message
|
||||
if not final_target_message and final_actions:
|
||||
final_target_message = next((act.get("action_message") for act in final_actions if act.get("action_message")), None)
|
||||
|
||||
actions_str = ", ".join([a.get('action_type', 'N/A') for a in final_actions])
|
||||
logger.info(f"{self.log_prefix}最终执行动作 ({len(final_actions)}): [{actions_str}]")
|
||||
|
||||
return final_actions, final_target_message
|
||||
|
||||
async def build_planner_prompt(
|
||||
self,
|
||||
is_group_chat: bool, # Now passed as argument
|
||||
chat_target_info: Optional[dict], # Now passed as argument
|
||||
is_group_chat: bool,
|
||||
chat_target_info: Optional[dict],
|
||||
current_available_actions: Dict[str, ActionInfo],
|
||||
refresh_time: bool = False,
|
||||
mode: ChatMode = ChatMode.FOCUS,
|
||||
) -> tuple[str, list]: # sourcery skip: use-join
|
||||
chat_content_block_override: Optional[str] = None,
|
||||
message_id_list_override: Optional[List] = None,
|
||||
refresh_time: bool = False, # 添加缺失的参数
|
||||
) -> tuple[str, list]:
|
||||
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
|
||||
try:
|
||||
# --- 通用信息获取 ---
|
||||
|
||||
Reference in New Issue
Block a user