@@ -17,7 +17,9 @@ from json_repair import repair_json
from src . person_info . person_info import get_person_info_manager
import json
import asyncio
from src . chat . utils . chat_message_builder import get_raw_msg_by_timestamp_with_chat
from src . chat . utils . chat_message_builder import get_raw_msg_by_timestamp_with_chat , get_raw_msg_by_timestamp_with_chat_inclusive , get_raw_msg_before_timestamp_with_chat , num_new_messages_since
import os
import pickle
# 配置常量:是否启用小模型即时信息提取
@@ -25,6 +27,14 @@ from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_with_ch
# 关闭时:使用原来的异步模式,精度更高但速度较慢
ENABLE_INSTANT_INFO_EXTRACTION = True
# 消息段清理配置
SEGMENT_CLEANUP_CONFIG = {
" enable_cleanup " : True , # 是否启用清理
" max_segment_age_days " : 7 , # 消息段最大保存天数
" max_segments_per_user " : 10 , # 每用户最大消息段数
" cleanup_interval_hours " : 1 , # 清理间隔(小时)
}
logger = get_logger ( " processor " )
@@ -95,8 +105,19 @@ class RelationshipProcessor(BaseProcessor):
self . info_fetched_cache : Dict [
str , Dict [ str , any ]
] = { } # {person_id: {"info": str, "ttl": int, "start_time": float}}
self . person_engaged_cache : List [ Dict [ str , any ] ] = [ ] # [{person_id: str, start_time: float, rounds: int}]
self . grace_period_rounds = 5
# 新的消息段缓存结构:
# {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]}
self . person_engaged_cache : Dict [ str , List [ Dict [ str , any ] ] ] = { }
# 持久化存储文件路径
self . cache_file_path = os . path . join ( " data " , f " relationship_cache_ { self . subheartflow_id } .pkl " )
# 最后处理的消息时间,避免重复处理相同消息
self . last_processed_message_time = 0.0
# 最后清理时间,用于定期清理老消息段
self . last_cleanup_time = 0.0
self . llm_model = LLMRequest (
model = global_config . model . relation ,
@@ -113,6 +134,292 @@ class RelationshipProcessor(BaseProcessor):
name = get_chat_manager ( ) . get_stream_name ( self . subheartflow_id )
self . log_prefix = f " [ { name } ] "
# 加载持久化的缓存
self . _load_cache ( )
# ================================
# 缓存管理模块
# 负责持久化存储、状态管理、缓存读写
# ================================
def _load_cache ( self ) :
""" 从文件加载持久化的缓存 """
if os . path . exists ( self . cache_file_path ) :
try :
with open ( self . cache_file_path , ' rb ' ) as f :
cache_data = pickle . load ( f )
if isinstance ( cache_data , dict ) and ' person_engaged_cache ' in cache_data :
# 新格式:包含额外信息的缓存
self . person_engaged_cache = cache_data . get ( ' person_engaged_cache ' , { } )
self . last_processed_message_time = cache_data . get ( ' last_processed_message_time ' , 0.0 )
self . last_cleanup_time = cache_data . get ( ' last_cleanup_time ' , 0.0 )
else :
# 旧格式: 仅包含person_engaged_cache
self . person_engaged_cache = cache_data
self . last_processed_message_time = 0.0
self . last_cleanup_time = 0.0
logger . info ( f " { self . log_prefix } 成功加载关系缓存,包含 { len ( self . person_engaged_cache ) } 个用户,最后处理时间: { time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( self . last_processed_message_time ) ) if self . last_processed_message_time > 0 else ' 未设置 ' } " )
except Exception as e :
logger . error ( f " { self . log_prefix } 加载关系缓存失败: { e } " )
self . person_engaged_cache = { }
self . last_processed_message_time = 0.0
else :
logger . info ( f " { self . log_prefix } 关系缓存文件不存在,使用空缓存 " )
def _save_cache ( self ) :
""" 保存缓存到文件 """
try :
os . makedirs ( os . path . dirname ( self . cache_file_path ) , exist_ok = True )
cache_data = {
' person_engaged_cache ' : self . person_engaged_cache ,
' last_processed_message_time ' : self . last_processed_message_time ,
' last_cleanup_time ' : self . last_cleanup_time
}
with open ( self . cache_file_path , ' wb ' ) as f :
pickle . dump ( cache_data , f )
logger . debug ( f " { self . log_prefix } 成功保存关系缓存 " )
except Exception as e :
logger . error ( f " { self . log_prefix } 保存关系缓存失败: { e } " )
# ================================
# 消息段管理模块
# 负责跟踪用户消息活动、管理消息段、清理过期数据
# ================================
def _update_message_segments ( self , person_id : str , message_time : float ) :
""" 更新用户的消息段
Args:
person_id: 用户ID
message_time: 消息时间戳
"""
if person_id not in self . person_engaged_cache :
self . person_engaged_cache [ person_id ] = [ ]
segments = self . person_engaged_cache [ person_id ]
current_time = time . time ( )
# 获取该消息前5条消息的时间作为潜在的开始时间
before_messages = get_raw_msg_before_timestamp_with_chat ( self . subheartflow_id , message_time , limit = 5 )
if before_messages :
# 由于get_raw_msg_before_timestamp_with_chat返回按时间升序排序的消息, 最后一个是最接近message_time的
# 我们需要第一个消息作为开始时间, 但应该确保至少包含5条消息或该用户之前的消息
potential_start_time = before_messages [ 0 ] [ ' time ' ]
else :
# 如果没有前面的消息,就从当前消息开始
potential_start_time = message_time
# 如果没有现有消息段,创建新的
if not segments :
new_segment = {
" start_time " : potential_start_time ,
" end_time " : message_time ,
" last_msg_time " : message_time ,
" message_count " : self . _count_messages_in_timerange ( potential_start_time , message_time )
}
segments . append ( new_segment )
logger . info ( f " { self . log_prefix } 为用户 { person_id } 创建新消息段: 时间范围 { time . strftime ( ' % H: % M: % S ' , time . localtime ( potential_start_time ) ) } - { time . strftime ( ' % H: % M: % S ' , time . localtime ( message_time ) ) } , 消息数: { new_segment [ ' message_count ' ] } " )
self . _save_cache ( )
return
# 获取最后一个消息段
last_segment = segments [ - 1 ]
# 计算从最后一条消息到当前消息之间的消息数量(不包含边界)
messages_between = self . _count_messages_between ( last_segment [ " last_msg_time " ] , message_time )
if messages_between < = 10 :
# 在10条消息内, 延伸当前消息段
last_segment [ " end_time " ] = message_time
last_segment [ " last_msg_time " ] = message_time
# 重新计算整个消息段的消息数量
last_segment [ " message_count " ] = self . _count_messages_in_timerange (
last_segment [ " start_time " ] , last_segment [ " end_time " ]
)
logger . info ( f " { self . log_prefix } 延伸用户 { person_id } 的消息段: { last_segment } " )
else :
# 超过10条消息, 结束当前消息段并创建新的
# 结束当前消息段: 延伸到原消息段最后一条消息后5条消息的时间
after_messages = get_raw_msg_by_timestamp_with_chat (
self . subheartflow_id , last_segment [ " last_msg_time " ] , current_time , limit = 5 , limit_mode = " earliest "
)
if after_messages and len ( after_messages ) > = 5 :
# 如果有足够的后续消息, 使用第5条消息的时间作为结束时间
last_segment [ " end_time " ] = after_messages [ 4 ] [ ' time ' ]
else :
# 如果没有足够的后续消息,保持原有的结束时间
pass
# 重新计算当前消息段的消息数量
last_segment [ " message_count " ] = self . _count_messages_in_timerange (
last_segment [ " start_time " ] , last_segment [ " end_time " ]
)
# 创建新的消息段
new_segment = {
" start_time " : potential_start_time ,
" end_time " : message_time ,
" last_msg_time " : message_time ,
" message_count " : self . _count_messages_in_timerange ( potential_start_time , message_time )
}
segments . append ( new_segment )
logger . info ( f " { self . log_prefix } 为用户 { person_id } 创建新消息段( 超过10条消息间隔) : { new_segment } " )
self . _save_cache ( )
def _count_messages_in_timerange ( self , start_time : float , end_time : float ) - > int :
""" 计算指定时间范围内的消息数量(包含边界) """
messages = get_raw_msg_by_timestamp_with_chat_inclusive ( self . subheartflow_id , start_time , end_time )
return len ( messages )
def _count_messages_between ( self , start_time : float , end_time : float ) - > int :
""" 计算两个时间点之间的消息数量(不包含边界),用于间隔检查 """
return num_new_messages_since ( self . subheartflow_id , start_time , end_time )
def _get_total_message_count ( self , person_id : str ) - > int :
""" 获取用户所有消息段的总消息数量 """
if person_id not in self . person_engaged_cache :
return 0
total_count = 0
for segment in self . person_engaged_cache [ person_id ] :
total_count + = segment [ " message_count " ]
return total_count
def _cleanup_old_segments ( self ) - > bool :
""" 清理老旧的消息段
Returns:
bool: 是否执行了清理操作
"""
if not SEGMENT_CLEANUP_CONFIG [ " enable_cleanup " ] :
return False
current_time = time . time ( )
# 检查是否需要执行清理(基于时间间隔)
cleanup_interval_seconds = SEGMENT_CLEANUP_CONFIG [ " cleanup_interval_hours " ] * 3600
if current_time - self . last_cleanup_time < cleanup_interval_seconds :
return False
logger . info ( f " { self . log_prefix } 开始执行老消息段清理... " )
cleanup_stats = {
" users_cleaned " : 0 ,
" segments_removed " : 0 ,
" total_segments_before " : 0 ,
" total_segments_after " : 0
}
max_age_seconds = SEGMENT_CLEANUP_CONFIG [ " max_segment_age_days " ] * 24 * 3600
max_segments_per_user = SEGMENT_CLEANUP_CONFIG [ " max_segments_per_user " ]
users_to_remove = [ ]
for person_id , segments in self . person_engaged_cache . items ( ) :
cleanup_stats [ " total_segments_before " ] + = len ( segments )
original_segment_count = len ( segments )
# 1. 按时间清理:移除过期的消息段
segments_after_age_cleanup = [ ]
for segment in segments :
segment_age = current_time - segment [ " end_time " ]
if segment_age < = max_age_seconds :
segments_after_age_cleanup . append ( segment )
else :
cleanup_stats [ " segments_removed " ] + = 1
logger . debug ( f " { self . log_prefix } 移除用户 { person_id } 的过期消息段: { time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( segment [ ' start_time ' ] ) ) } - { time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( segment [ ' end_time ' ] ) ) } " )
# 2. 按数量清理:如果消息段数量仍然过多,保留最新的
if len ( segments_after_age_cleanup ) > max_segments_per_user :
# 按end_time排序, 保留最新的
segments_after_age_cleanup . sort ( key = lambda x : x [ " end_time " ] , reverse = True )
segments_removed_count = len ( segments_after_age_cleanup ) - max_segments_per_user
cleanup_stats [ " segments_removed " ] + = segments_removed_count
segments_after_age_cleanup = segments_after_age_cleanup [ : max_segments_per_user ]
logger . debug ( f " { self . log_prefix } 用户 { person_id } 消息段数量过多,移除 { segments_removed_count } 个最老的消息段 " )
# 使用清理后的消息段
# 更新缓存
if len ( segments_after_age_cleanup ) == 0 :
# 如果没有剩余消息段,标记用户为待移除
users_to_remove . append ( person_id )
else :
self . person_engaged_cache [ person_id ] = segments_after_age_cleanup
cleanup_stats [ " total_segments_after " ] + = len ( segments_after_age_cleanup )
if original_segment_count != len ( segments_after_age_cleanup ) :
cleanup_stats [ " users_cleaned " ] + = 1
# 移除没有消息段的用户
for person_id in users_to_remove :
del self . person_engaged_cache [ person_id ]
logger . debug ( f " { self . log_prefix } 移除用户 { person_id } :没有剩余消息段 " )
# 更新最后清理时间
self . last_cleanup_time = current_time
# 保存缓存
if cleanup_stats [ " segments_removed " ] > 0 or len ( users_to_remove ) > 0 :
self . _save_cache ( )
logger . info ( f " { self . log_prefix } 清理完成 - 影响用户: { cleanup_stats [ ' users_cleaned ' ] } , 移除消息段: { cleanup_stats [ ' segments_removed ' ] } , 移除用户: { len ( users_to_remove ) } " )
logger . info ( f " { self . log_prefix } 消息段统计 - 清理前: { cleanup_stats [ ' total_segments_before ' ] } , 清理后: { cleanup_stats [ ' total_segments_after ' ] } " )
else :
logger . debug ( f " { self . log_prefix } 清理完成 - 无需清理任何内容 " )
return cleanup_stats [ " segments_removed " ] > 0 or len ( users_to_remove ) > 0
def force_cleanup_user_segments ( self , person_id : str ) - > bool :
""" 强制清理指定用户的所有消息段
Args:
person_id: 用户ID
Returns:
bool: 是否成功清理
"""
if person_id in self . person_engaged_cache :
segments_count = len ( self . person_engaged_cache [ person_id ] )
del self . person_engaged_cache [ person_id ]
self . _save_cache ( )
logger . info ( f " { self . log_prefix } 强制清理用户 { person_id } 的 { segments_count } 个消息段 " )
return True
return False
def get_cache_status ( self ) - > str :
""" 获取缓存状态信息,用于调试和监控 """
if not self . person_engaged_cache :
return f " { self . log_prefix } 关系缓存为空 "
status_lines = [ f " { self . log_prefix } 关系缓存状态: " ]
status_lines . append ( f " 最后处理消息时间: { time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( self . last_processed_message_time ) ) if self . last_processed_message_time > 0 else ' 未设置 ' } " )
status_lines . append ( f " 最后清理时间: { time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( self . last_cleanup_time ) ) if self . last_cleanup_time > 0 else ' 未执行 ' } " )
status_lines . append ( f " 总用户数: { len ( self . person_engaged_cache ) } " )
status_lines . append ( f " 清理配置: { ' 启用 ' if SEGMENT_CLEANUP_CONFIG [ ' enable_cleanup ' ] else ' 禁用 ' } (最大保存 { SEGMENT_CLEANUP_CONFIG [ ' max_segment_age_days ' ] } 天, 每用户最多 { SEGMENT_CLEANUP_CONFIG [ ' max_segments_per_user ' ] } 段) " )
status_lines . append ( " " )
for person_id , segments in self . person_engaged_cache . items ( ) :
total_count = self . _get_total_message_count ( person_id )
status_lines . append ( f " 用户 { person_id } : " )
status_lines . append ( f " 总消息数: { total_count } ( { total_count } /45) " )
status_lines . append ( f " 消息段数: { len ( segments ) } " )
for i , segment in enumerate ( segments ) :
start_str = time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( segment [ ' start_time ' ] ) )
end_str = time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( segment [ ' end_time ' ] ) )
last_str = time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( segment [ ' last_msg_time ' ] ) )
status_lines . append ( f " 段 { i + 1 } : { start_str } -> { end_str } (最后消息: { last_str } , 消息数: { segment [ ' message_count ' ] } ) " )
status_lines . append ( " " )
return " \n " . join ( status_lines )
# ================================
# 主要处理流程
# 统筹各模块协作、对外提供服务接口
# ================================
async def process_info ( self , observations : List [ Observation ] = None , * infos ) - > List [ InfoBase ] :
""" 处理信息对象
@@ -140,7 +447,10 @@ class RelationshipProcessor(BaseProcessor):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
"""
# 0. 从观察信息中提取所需数据
# 0. 执行定期清理
self . _cleanup_old_segments ( )
# 1. 从观察信息中提取所需数据
# 需要兼容私聊
chat_observe_info = " "
@@ -149,36 +459,52 @@ class RelationshipProcessor(BaseProcessor):
for observation in observations :
if isinstance ( observation , ChattingObservation ) :
chat_observe_info = observation . get_observe_info ( )
# 从聊天观察中提取用户信息并更新消息段
# 获取最新的非bot消息来更新消息段
latest_messages = get_raw_msg_by_timestamp_with_chat (
self . subheartflow_id , self . last_processed_message_time , current_time , limit = 50 # 获取自上次处理后的消息
)
if latest_messages :
# 处理所有新的非bot消息
for latest_msg in latest_messages :
user_id = latest_msg . get ( ' user_id ' )
platform = latest_msg . get ( ' user_platform ' ) or latest_msg . get ( ' chat_info_platform ' )
msg_time = latest_msg . get ( ' time ' , 0 )
if user_id and platform and user_id != global_config . bot . qq_account and msg_time > self . last_processed_message_time :
from src . person_info . person_info import PersonInfoManager
person_id = PersonInfoManager . get_person_id ( platform , user_id )
self . _update_message_segments ( person_id , msg_time )
logger . debug ( f " { self . log_prefix } 更新用户 { person_id } 的消息段,消息时间: { time . strftime ( ' % Y- % m- %d % H: % M: % S ' , time . localtime ( msg_time ) ) } " )
self . last_processed_message_time = max ( self . last_processed_message_time , msg_time )
break
# 1. 处理person_engaged_cache
for record in list ( self . person_engaged_cache ) :
record [ " rounds " ] + = 1
time_elapsed = current_time - record [ " start_time " ]
message_count = len (
get_raw_msg_by_timestamp_with_chat ( self . subheartflow_id , record [ " start_time " ] , current_time )
)
print ( record )
# 根据消息数量和时间设置不同的触发条件
should_trigger = (
message_count > = 50 # 50条消息必定满足
or ( message_count > = 35 and time_elapsed > = 300 ) # 35条且10分钟
or ( message_count > = 25 and time_elapsed > = 900 ) # 25条且30分钟
or ( message_count > = 10 and time_elapsed > = 2000 ) # 10条且1小时
)
if should_trigger :
# 1. 检查是否有用户达到关系构建条件( 总消息数达到45条)
users_to_build_relationship = [ ]
for person_id , segments in self . person_engaged_cache . items ( ) :
total_message_count = self . _get_total_message_count ( person_id )
if total_ message_count > = 45 :
users_to_build_relationship . append ( person_id )
logger . info (
f " { self . log_prefix } 用户 { record [ ' person_id' ] } 满足关系构建条件,开始构建关系。 消息数: { message_count } , 时长 : { time_elapsed : .0f } 秒 "
f " { self . log_prefix } 用户 { person_id } 满足关系构建条件,总 消息数: { total_ message_count} , 消息段数 : { len ( segments ) } "
)
elif total_message_count > 0 :
# 记录进度信息
logger . debug (
f " { self . log_prefix } 用户 { person_id } 进度: { total_message_count } /45 条消息, { len ( segments ) } 个消息段 "
)
# 2. 为满足条件的用户构建关系
for person_id in users_to_build_relationship :
segments = self . person_engaged_cache [ person_id ]
# 异步执行关系构建
asyncio . create_task (
self . update_impression_on_cache_expiry (
record [ " person_id " ] , self . subheartflow_id , record [ " start_time " ] , current_time
self . update_impression_on_segments ( person_id , self . subheartflow_id , segments )
)
)
self . person_engaged_cache . remove ( recor d)
# 移除已处理的用户缓存
del self . person_engaged_cache [ person_i d]
self . _save_cache ( )
# 2. 减少info_fetched_cache中所有信息的TTL
for person_id in list ( self . info_fetched_cache . keys ( ) ) :
@@ -260,12 +586,8 @@ class RelationshipProcessor(BaseProcessor):
logger . info ( f " { self . log_prefix } 调取用户 { person_name } 的 { info_type } 信息。 " )
# 检查person_engaged_cache中是否已存在该person_id
person_exists = any ( record [ " person_id " ] == person_id for record in self . person_engaged_cache )
if not person_exists :
self . person_engaged_cache . append (
{ " person_id " : person_id , " start_time " : time . time ( ) , " rounds " : 0 }
)
# 这里不需要 检查person_engaged_cache, 因为消息段的管理由_update_message_segments处理
# 信息提取和消息段管理是独立的流程
if ENABLE_INSTANT_INFO_EXTRACTION :
# 收集即时提取任务
@@ -336,6 +658,79 @@ class RelationshipProcessor(BaseProcessor):
return persons_infos_str
# ================================
# 关系构建模块
# 负责触发关系构建、整合消息段、更新用户印象
# ================================
async def update_impression_on_segments ( self , person_id : str , chat_id : str , segments : List [ Dict [ str , any ] ] ) :
"""
基于消息段更新用户印象
Args:
person_id: 用户ID
chat_id: 聊天ID
segments: 消息段列表
"""
logger . info ( f " 开始为 { person_id } 基于 { len ( segments ) } 个消息段更新印象 " )
try :
processed_messages = [ ]
for i , segment in enumerate ( segments ) :
start_time = segment [ " start_time " ]
end_time = segment [ " end_time " ]
message_count = segment [ " message_count " ]
start_date = time . strftime ( ' % Y- % m- %d % H: % M ' , time . localtime ( start_time ) )
# 获取该段的消息(包含边界)
segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive ( self . subheartflow_id , start_time , end_time )
logger . info ( f " 消息段 { i + 1 } : { start_date } - { time . strftime ( ' % Y- % m- %d % H: % M ' , time . localtime ( end_time ) ) } , 消息数: { len ( segment_messages ) } " )
if segment_messages :
# 如果不是第一个消息段,在消息列表前添加间隔标识
if i > 0 :
# 创建一个特殊的间隔消息
gap_message = {
" time " : start_time - 0.1 , # 稍微早于段开始时间
" user_id " : " system " ,
" user_platform " : " system " ,
" user_nickname " : " 系统 " ,
" user_cardname " : " " ,
" display_message " : f " ...(中间省略一些消息) { start_date } 之后的消息如下... " ,
" is_action_record " : True ,
" chat_info_platform " : segment_messages [ 0 ] . get ( " chat_info_platform " , " " ) ,
" chat_id " : chat_id
}
processed_messages . append ( gap_message )
# 添加该段的所有消息
processed_messages . extend ( segment_messages )
if processed_messages :
# 按时间排序所有消息(包括间隔标识)
processed_messages . sort ( key = lambda x : x [ ' time ' ] )
logger . info ( f " 为 { person_id } 获取到总共 { len ( processed_messages ) } 条消息(包含间隔标识)用于印象更新 " )
relationship_manager = get_relationship_manager ( )
# 调用原有的更新方法
await relationship_manager . update_person_impression (
person_id = person_id ,
timestamp = time . time ( ) ,
bot_engaged_messages = processed_messages
)
else :
logger . info ( f " 没有找到 { person_id } 的消息段对应的消息,不更新印象 " )
except Exception as e :
logger . error ( f " 为 { person_id } 更新印象时发生错误: { e } " )
logger . error ( traceback . format_exc ( ) )
# ================================
# 信息调取模块
# 负责实时分析对话需求、提取用户信息、管理信息缓存
# ================================
async def _execute_instant_extraction_batch ( self , instant_tasks : list ) :
"""
批量执行即时提取任务
@@ -526,25 +921,7 @@ class RelationshipProcessor(BaseProcessor):
logger . error ( f " { self . log_prefix } 执行LLM请求获取用户信息时出错: { e } " )
logger . error ( traceback . format_exc ( ) )
async def update_impression_on_cache_expiry ( self , person_id : str , chat_id : str , start_time : float , end_time : float ) :
"""
在缓存过期时,获取聊天记录并更新用户印象
"""
logger . info ( f " 缓存过期,开始为 { person_id } 更新印象。时间范围: { start_time } -> { end_time } " )
try :
impression_messages = get_raw_msg_by_timestamp_with_chat ( chat_id , start_time , end_time )
if impression_messages :
logger . info ( f " 为 { person_id } 获取到 { len ( impression_messages ) } 条消息用于印象更新。 " )
relationship_manager = get_relationship_manager ( )
await relationship_manager . update_person_impression (
person_id = person_id , timestamp = end_time , bot_engaged_messages = impression_messages
)
else :
logger . info ( f " 在指定时间范围内没有找到 { person_id } 的消息,不更新印象。 " )
except Exception as e :
logger . error ( f " 为 { person_id } 更新印象时发生错误: { e } " )
logger . error ( traceback . format_exc ( ) )
init_prompt ( )