diff --git a/src/chat/focus_chat/info_processors/relationship_processor.py b/src/chat/focus_chat/info_processors/relationship_processor.py index 36f0cc0a0..b9086f046 100644 --- a/src/chat/focus_chat/info_processors/relationship_processor.py +++ b/src/chat/focus_chat/info_processors/relationship_processor.py @@ -17,7 +17,9 @@ from json_repair import repair_json from src.person_info.person_info import get_person_info_manager import json import asyncio -from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_with_chat +from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_with_chat, get_raw_msg_by_timestamp_with_chat_inclusive, get_raw_msg_before_timestamp_with_chat, num_new_messages_since +import os +import pickle # 配置常量:是否启用小模型即时信息提取 @@ -25,6 +27,14 @@ from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_with_ch # 关闭时:使用原来的异步模式,精度更高但速度较慢 ENABLE_INSTANT_INFO_EXTRACTION = True +# 消息段清理配置 +SEGMENT_CLEANUP_CONFIG = { + "enable_cleanup": True, # 是否启用清理 + "max_segment_age_days": 7, # 消息段最大保存天数 + "max_segments_per_user": 10, # 每用户最大消息段数 + "cleanup_interval_hours": 1, # 清理间隔(小时) +} + logger = get_logger("processor") @@ -95,8 +105,19 @@ class RelationshipProcessor(BaseProcessor): self.info_fetched_cache: Dict[ str, Dict[str, any] ] = {} # {person_id: {"info": str, "ttl": int, "start_time": float}} - self.person_engaged_cache: List[Dict[str, any]] = [] # [{person_id: str, start_time: float, rounds: int}] - self.grace_period_rounds = 5 + + # 新的消息段缓存结构: + # {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]} + self.person_engaged_cache: Dict[str, List[Dict[str, any]]] = {} + + # 持久化存储文件路径 + self.cache_file_path = os.path.join("data", f"relationship_cache_{self.subheartflow_id}.pkl") + + # 最后处理的消息时间,避免重复处理相同消息 + self.last_processed_message_time = 0.0 + + # 最后清理时间,用于定期清理老消息段 + self.last_cleanup_time = 0.0 self.llm_model = LLMRequest( model=global_config.model.relation, @@ -112,7 +133,293 @@ class RelationshipProcessor(BaseProcessor): name = get_chat_manager().get_stream_name(self.subheartflow_id) self.log_prefix = f"[{name}] " + + # 加载持久化的缓存 + self._load_cache() + # ================================ + # 缓存管理模块 + # 负责持久化存储、状态管理、缓存读写 + # ================================ + + def _load_cache(self): + """从文件加载持久化的缓存""" + if os.path.exists(self.cache_file_path): + try: + with open(self.cache_file_path, 'rb') as f: + cache_data = pickle.load(f) + if isinstance(cache_data, dict) and 'person_engaged_cache' in cache_data: + # 新格式:包含额外信息的缓存 + self.person_engaged_cache = cache_data.get('person_engaged_cache', {}) + self.last_processed_message_time = cache_data.get('last_processed_message_time', 0.0) + self.last_cleanup_time = cache_data.get('last_cleanup_time', 0.0) + else: + # 旧格式:仅包含person_engaged_cache + self.person_engaged_cache = cache_data + self.last_processed_message_time = 0.0 + self.last_cleanup_time = 0.0 + logger.info(f"{self.log_prefix} 成功加载关系缓存,包含 {len(self.person_engaged_cache)} 个用户,最后处理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}") + except Exception as e: + logger.error(f"{self.log_prefix} 加载关系缓存失败: {e}") + self.person_engaged_cache = {} + self.last_processed_message_time = 0.0 + else: + logger.info(f"{self.log_prefix} 关系缓存文件不存在,使用空缓存") + + def _save_cache(self): + """保存缓存到文件""" + try: + os.makedirs(os.path.dirname(self.cache_file_path), exist_ok=True) + cache_data = { + 'person_engaged_cache': self.person_engaged_cache, + 'last_processed_message_time': self.last_processed_message_time, + 'last_cleanup_time': self.last_cleanup_time + } + with open(self.cache_file_path, 'wb') as f: + pickle.dump(cache_data, f) + logger.debug(f"{self.log_prefix} 成功保存关系缓存") + except Exception as e: + logger.error(f"{self.log_prefix} 保存关系缓存失败: {e}") + + # ================================ + # 消息段管理模块 + # 负责跟踪用户消息活动、管理消息段、清理过期数据 + # ================================ + + def _update_message_segments(self, person_id: str, message_time: float): + """更新用户的消息段 + + Args: + person_id: 用户ID + message_time: 消息时间戳 + """ + if person_id not in self.person_engaged_cache: + self.person_engaged_cache[person_id] = [] + + segments = self.person_engaged_cache[person_id] + current_time = time.time() + + # 获取该消息前5条消息的时间作为潜在的开始时间 + before_messages = get_raw_msg_before_timestamp_with_chat(self.subheartflow_id, message_time, limit=5) + if before_messages: + # 由于get_raw_msg_before_timestamp_with_chat返回按时间升序排序的消息,最后一个是最接近message_time的 + # 我们需要第一个消息作为开始时间,但应该确保至少包含5条消息或该用户之前的消息 + potential_start_time = before_messages[0]['time'] + else: + # 如果没有前面的消息,就从当前消息开始 + potential_start_time = message_time + + # 如果没有现有消息段,创建新的 + if not segments: + new_segment = { + "start_time": potential_start_time, + "end_time": message_time, + "last_msg_time": message_time, + "message_count": self._count_messages_in_timerange(potential_start_time, message_time) + } + segments.append(new_segment) + logger.info(f"{self.log_prefix} 为用户 {person_id} 创建新消息段: 时间范围 {time.strftime('%H:%M:%S', time.localtime(potential_start_time))} - {time.strftime('%H:%M:%S', time.localtime(message_time))}, 消息数: {new_segment['message_count']}") + self._save_cache() + return + + # 获取最后一个消息段 + last_segment = segments[-1] + + # 计算从最后一条消息到当前消息之间的消息数量(不包含边界) + messages_between = self._count_messages_between(last_segment["last_msg_time"], message_time) + + if messages_between <= 10: + # 在10条消息内,延伸当前消息段 + last_segment["end_time"] = message_time + last_segment["last_msg_time"] = message_time + # 重新计算整个消息段的消息数量 + last_segment["message_count"] = self._count_messages_in_timerange( + last_segment["start_time"], last_segment["end_time"] + ) + logger.info(f"{self.log_prefix} 延伸用户 {person_id} 的消息段: {last_segment}") + else: + # 超过10条消息,结束当前消息段并创建新的 + # 结束当前消息段:延伸到原消息段最后一条消息后5条消息的时间 + after_messages = get_raw_msg_by_timestamp_with_chat( + self.subheartflow_id, last_segment["last_msg_time"], current_time, limit=5, limit_mode="earliest" + ) + if after_messages and len(after_messages) >= 5: + # 如果有足够的后续消息,使用第5条消息的时间作为结束时间 + last_segment["end_time"] = after_messages[4]['time'] + else: + # 如果没有足够的后续消息,保持原有的结束时间 + pass + + # 重新计算当前消息段的消息数量 + last_segment["message_count"] = self._count_messages_in_timerange( + last_segment["start_time"], last_segment["end_time"] + ) + + # 创建新的消息段 + new_segment = { + "start_time": potential_start_time, + "end_time": message_time, + "last_msg_time": message_time, + "message_count": self._count_messages_in_timerange(potential_start_time, message_time) + } + segments.append(new_segment) + logger.info(f"{self.log_prefix} 为用户 {person_id} 创建新消息段(超过10条消息间隔): {new_segment}") + + self._save_cache() + + def _count_messages_in_timerange(self, start_time: float, end_time: float) -> int: + """计算指定时间范围内的消息数量(包含边界)""" + messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.subheartflow_id, start_time, end_time) + return len(messages) + + def _count_messages_between(self, start_time: float, end_time: float) -> int: + """计算两个时间点之间的消息数量(不包含边界),用于间隔检查""" + return num_new_messages_since(self.subheartflow_id, start_time, end_time) + + def _get_total_message_count(self, person_id: str) -> int: + """获取用户所有消息段的总消息数量""" + if person_id not in self.person_engaged_cache: + return 0 + + total_count = 0 + for segment in self.person_engaged_cache[person_id]: + total_count += segment["message_count"] + + return total_count + + def _cleanup_old_segments(self) -> bool: + """清理老旧的消息段 + + Returns: + bool: 是否执行了清理操作 + """ + if not SEGMENT_CLEANUP_CONFIG["enable_cleanup"]: + return False + + current_time = time.time() + + # 检查是否需要执行清理(基于时间间隔) + cleanup_interval_seconds = SEGMENT_CLEANUP_CONFIG["cleanup_interval_hours"] * 3600 + if current_time - self.last_cleanup_time < cleanup_interval_seconds: + return False + + logger.info(f"{self.log_prefix} 开始执行老消息段清理...") + + cleanup_stats = { + "users_cleaned": 0, + "segments_removed": 0, + "total_segments_before": 0, + "total_segments_after": 0 + } + + max_age_seconds = SEGMENT_CLEANUP_CONFIG["max_segment_age_days"] * 24 * 3600 + max_segments_per_user = SEGMENT_CLEANUP_CONFIG["max_segments_per_user"] + + users_to_remove = [] + + for person_id, segments in self.person_engaged_cache.items(): + cleanup_stats["total_segments_before"] += len(segments) + original_segment_count = len(segments) + + # 1. 按时间清理:移除过期的消息段 + segments_after_age_cleanup = [] + for segment in segments: + segment_age = current_time - segment["end_time"] + if segment_age <= max_age_seconds: + segments_after_age_cleanup.append(segment) + else: + cleanup_stats["segments_removed"] += 1 + logger.debug(f"{self.log_prefix} 移除用户 {person_id} 的过期消息段: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['start_time']))} - {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['end_time']))}") + + # 2. 按数量清理:如果消息段数量仍然过多,保留最新的 + if len(segments_after_age_cleanup) > max_segments_per_user: + # 按end_time排序,保留最新的 + segments_after_age_cleanup.sort(key=lambda x: x["end_time"], reverse=True) + segments_removed_count = len(segments_after_age_cleanup) - max_segments_per_user + cleanup_stats["segments_removed"] += segments_removed_count + segments_after_age_cleanup = segments_after_age_cleanup[:max_segments_per_user] + logger.debug(f"{self.log_prefix} 用户 {person_id} 消息段数量过多,移除 {segments_removed_count} 个最老的消息段") + + # 使用清理后的消息段 + + # 更新缓存 + if len(segments_after_age_cleanup) == 0: + # 如果没有剩余消息段,标记用户为待移除 + users_to_remove.append(person_id) + else: + self.person_engaged_cache[person_id] = segments_after_age_cleanup + cleanup_stats["total_segments_after"] += len(segments_after_age_cleanup) + + if original_segment_count != len(segments_after_age_cleanup): + cleanup_stats["users_cleaned"] += 1 + + # 移除没有消息段的用户 + for person_id in users_to_remove: + del self.person_engaged_cache[person_id] + logger.debug(f"{self.log_prefix} 移除用户 {person_id}:没有剩余消息段") + + # 更新最后清理时间 + self.last_cleanup_time = current_time + + # 保存缓存 + if cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0: + self._save_cache() + logger.info(f"{self.log_prefix} 清理完成 - 影响用户: {cleanup_stats['users_cleaned']}, 移除消息段: {cleanup_stats['segments_removed']}, 移除用户: {len(users_to_remove)}") + logger.info(f"{self.log_prefix} 消息段统计 - 清理前: {cleanup_stats['total_segments_before']}, 清理后: {cleanup_stats['total_segments_after']}") + else: + logger.debug(f"{self.log_prefix} 清理完成 - 无需清理任何内容") + + return cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0 + + def force_cleanup_user_segments(self, person_id: str) -> bool: + """强制清理指定用户的所有消息段 + + Args: + person_id: 用户ID + + Returns: + bool: 是否成功清理 + """ + if person_id in self.person_engaged_cache: + segments_count = len(self.person_engaged_cache[person_id]) + del self.person_engaged_cache[person_id] + self._save_cache() + logger.info(f"{self.log_prefix} 强制清理用户 {person_id} 的 {segments_count} 个消息段") + return True + return False + + def get_cache_status(self) -> str: + """获取缓存状态信息,用于调试和监控""" + if not self.person_engaged_cache: + return f"{self.log_prefix} 关系缓存为空" + + status_lines = [f"{self.log_prefix} 关系缓存状态:"] + status_lines.append(f"最后处理消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}") + status_lines.append(f"最后清理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_cleanup_time)) if self.last_cleanup_time > 0 else '未执行'}") + status_lines.append(f"总用户数:{len(self.person_engaged_cache)}") + status_lines.append(f"清理配置:{'启用' if SEGMENT_CLEANUP_CONFIG['enable_cleanup'] else '禁用'} (最大保存{SEGMENT_CLEANUP_CONFIG['max_segment_age_days']}天, 每用户最多{SEGMENT_CLEANUP_CONFIG['max_segments_per_user']}段)") + status_lines.append("") + + for person_id, segments in self.person_engaged_cache.items(): + total_count = self._get_total_message_count(person_id) + status_lines.append(f"用户 {person_id}:") + status_lines.append(f" 总消息数:{total_count} ({total_count}/45)") + status_lines.append(f" 消息段数:{len(segments)}") + + for i, segment in enumerate(segments): + start_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['start_time'])) + end_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['end_time'])) + last_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['last_msg_time'])) + status_lines.append(f" 段{i+1}: {start_str} -> {end_str} (最后消息: {last_str}, 消息数: {segment['message_count']})") + status_lines.append("") + + return "\n".join(status_lines) + + # ================================ + # 主要处理流程 + # 统筹各模块协作、对外提供服务接口 + # ================================ + async def process_info(self, observations: List[Observation] = None, *infos) -> List[InfoBase]: """处理信息对象 @@ -140,7 +447,10 @@ class RelationshipProcessor(BaseProcessor): """ 在回复前进行思考,生成内心想法并收集工具调用结果 """ - # 0. 从观察信息中提取所需数据 + # 0. 执行定期清理 + self._cleanup_old_segments() + + # 1. 从观察信息中提取所需数据 # 需要兼容私聊 chat_observe_info = "" @@ -149,36 +459,52 @@ class RelationshipProcessor(BaseProcessor): for observation in observations: if isinstance(observation, ChattingObservation): chat_observe_info = observation.get_observe_info() + + # 从聊天观察中提取用户信息并更新消息段 + # 获取最新的非bot消息来更新消息段 + latest_messages = get_raw_msg_by_timestamp_with_chat( + self.subheartflow_id, self.last_processed_message_time, current_time, limit=50 # 获取自上次处理后的消息 + ) + if latest_messages: + # 处理所有新的非bot消息 + for latest_msg in latest_messages: + user_id = latest_msg.get('user_id') + platform = latest_msg.get('user_platform') or latest_msg.get('chat_info_platform') + msg_time = latest_msg.get('time', 0) + + if user_id and platform and user_id != global_config.bot.qq_account and msg_time > self.last_processed_message_time: + from src.person_info.person_info import PersonInfoManager + person_id = PersonInfoManager.get_person_id(platform, user_id) + self._update_message_segments(person_id, msg_time) + logger.debug(f"{self.log_prefix} 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}") + self.last_processed_message_time = max(self.last_processed_message_time, msg_time) break - # 1. 处理person_engaged_cache - for record in list(self.person_engaged_cache): - record["rounds"] += 1 - time_elapsed = current_time - record["start_time"] - message_count = len( - get_raw_msg_by_timestamp_with_chat(self.subheartflow_id, record["start_time"], current_time) - ) - - print(record) - - # 根据消息数量和时间设置不同的触发条件 - should_trigger = ( - message_count >= 50 # 50条消息必定满足 - or (message_count >= 35 and time_elapsed >= 300) # 35条且10分钟 - or (message_count >= 25 and time_elapsed >= 900) # 25条且30分钟 - or (message_count >= 10 and time_elapsed >= 2000) # 10条且1小时 - ) - - if should_trigger: + # 1. 检查是否有用户达到关系构建条件(总消息数达到45条) + users_to_build_relationship = [] + for person_id, segments in self.person_engaged_cache.items(): + total_message_count = self._get_total_message_count(person_id) + if total_message_count >= 45: + users_to_build_relationship.append(person_id) logger.info( - f"{self.log_prefix} 用户 {record['person_id']} 满足关系构建条件,开始构建关系。消息数:{message_count},时长:{time_elapsed:.0f}秒" + f"{self.log_prefix} 用户 {person_id} 满足关系构建条件,总消息数:{total_message_count},消息段数:{len(segments)}" ) - asyncio.create_task( - self.update_impression_on_cache_expiry( - record["person_id"], self.subheartflow_id, record["start_time"], current_time - ) + elif total_message_count > 0: + # 记录进度信息 + logger.debug( + f"{self.log_prefix} 用户 {person_id} 进度:{total_message_count}/45 条消息,{len(segments)} 个消息段" ) - self.person_engaged_cache.remove(record) + + # 2. 为满足条件的用户构建关系 + for person_id in users_to_build_relationship: + segments = self.person_engaged_cache[person_id] + # 异步执行关系构建 + asyncio.create_task( + self.update_impression_on_segments(person_id, self.subheartflow_id, segments) + ) + # 移除已处理的用户缓存 + del self.person_engaged_cache[person_id] + self._save_cache() # 2. 减少info_fetched_cache中所有信息的TTL for person_id in list(self.info_fetched_cache.keys()): @@ -260,12 +586,8 @@ class RelationshipProcessor(BaseProcessor): logger.info(f"{self.log_prefix} 调取用户 {person_name} 的 {info_type} 信息。") - # 检查person_engaged_cache中是否已存在该person_id - person_exists = any(record["person_id"] == person_id for record in self.person_engaged_cache) - if not person_exists: - self.person_engaged_cache.append( - {"person_id": person_id, "start_time": time.time(), "rounds": 0} - ) + # 这里不需要检查person_engaged_cache,因为消息段的管理由_update_message_segments处理 + # 信息提取和消息段管理是独立的流程 if ENABLE_INSTANT_INFO_EXTRACTION: # 收集即时提取任务 @@ -336,6 +658,79 @@ class RelationshipProcessor(BaseProcessor): return persons_infos_str + # ================================ + # 关系构建模块 + # 负责触发关系构建、整合消息段、更新用户印象 + # ================================ + + async def update_impression_on_segments(self, person_id: str, chat_id: str, segments: List[Dict[str, any]]): + """ + 基于消息段更新用户印象 + + Args: + person_id: 用户ID + chat_id: 聊天ID + segments: 消息段列表 + """ + logger.info(f"开始为 {person_id} 基于 {len(segments)} 个消息段更新印象") + try: + processed_messages = [] + + for i, segment in enumerate(segments): + start_time = segment["start_time"] + end_time = segment["end_time"] + message_count = segment["message_count"] + start_date = time.strftime('%Y-%m-%d %H:%M', time.localtime(start_time)) + + # 获取该段的消息(包含边界) + segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.subheartflow_id, start_time, end_time) + logger.info(f"消息段 {i+1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}") + + if segment_messages: + # 如果不是第一个消息段,在消息列表前添加间隔标识 + if i > 0: + # 创建一个特殊的间隔消息 + gap_message = { + "time": start_time - 0.1, # 稍微早于段开始时间 + "user_id": "system", + "user_platform": "system", + "user_nickname": "系统", + "user_cardname": "", + "display_message": f"...(中间省略一些消息){start_date} 之后的消息如下...", + "is_action_record": True, + "chat_info_platform": segment_messages[0].get("chat_info_platform", ""), + "chat_id": chat_id + } + processed_messages.append(gap_message) + + # 添加该段的所有消息 + processed_messages.extend(segment_messages) + + if processed_messages: + # 按时间排序所有消息(包括间隔标识) + processed_messages.sort(key=lambda x: x['time']) + + logger.info(f"为 {person_id} 获取到总共 {len(processed_messages)} 条消息(包含间隔标识)用于印象更新") + relationship_manager = get_relationship_manager() + + # 调用原有的更新方法 + await relationship_manager.update_person_impression( + person_id=person_id, + timestamp=time.time(), + bot_engaged_messages=processed_messages + ) + else: + logger.info(f"没有找到 {person_id} 的消息段对应的消息,不更新印象") + + except Exception as e: + logger.error(f"为 {person_id} 更新印象时发生错误: {e}") + logger.error(traceback.format_exc()) + + # ================================ + # 信息调取模块 + # 负责实时分析对话需求、提取用户信息、管理信息缓存 + # ================================ + async def _execute_instant_extraction_batch(self, instant_tasks: list): """ 批量执行即时提取任务 @@ -526,25 +921,7 @@ class RelationshipProcessor(BaseProcessor): logger.error(f"{self.log_prefix} 执行LLM请求获取用户信息时出错: {e}") logger.error(traceback.format_exc()) - async def update_impression_on_cache_expiry(self, person_id: str, chat_id: str, start_time: float, end_time: float): - """ - 在缓存过期时,获取聊天记录并更新用户印象 - """ - logger.info(f"缓存过期,开始为 {person_id} 更新印象。时间范围:{start_time} -> {end_time}") - try: - impression_messages = get_raw_msg_by_timestamp_with_chat(chat_id, start_time, end_time) - if impression_messages: - logger.info(f"为 {person_id} 获取到 {len(impression_messages)} 条消息用于印象更新。") - relationship_manager = get_relationship_manager() - await relationship_manager.update_person_impression( - person_id=person_id, timestamp=end_time, bot_engaged_messages=impression_messages - ) - else: - logger.info(f"在指定时间范围内没有找到 {person_id} 的消息,不更新印象。") - except Exception as e: - logger.error(f"为 {person_id} 更新印象时发生错误: {e}") - logger.error(traceback.format_exc()) init_prompt() diff --git a/src/chat/normal_chat/normal_chat.py b/src/chat/normal_chat/normal_chat.py index 57cd32039..a38deae71 100644 --- a/src/chat/normal_chat/normal_chat.py +++ b/src/chat/normal_chat/normal_chat.py @@ -851,7 +851,7 @@ class NormalChat: reply_ratio = reply_count / total_messages if total_messages > 0 else 0 # 使用对数函数让低比率时概率上升更快:log(1 + ratio * k) / log(1 + k) + base # k=7时,0.05比率对应约0.4概率,0.1比率对应约0.6概率,0.2比率对应约0.8概率 - k_reply = 7 * global_config.relationship.relation_frequency + k_reply = 10 * global_config.relationship.relation_frequency base_reply_prob = 0.1 # 基础概率10% reply_build_probability = ( (math.log(1 + reply_ratio * k_reply) / math.log(1 + k_reply)) * 0.9 + base_reply_prob @@ -862,7 +862,7 @@ class NormalChat: # 计算接收概率(receive_count的影响) receive_ratio = receive_count / total_messages if total_messages > 0 else 0 # 接收概率使用更温和的对数曲线,最大0.5,基础0.08 - k_receive = 6 * global_config.relationship.relation_frequency + k_receive = 10 * global_config.relationship.relation_frequency base_receive_prob = 0.08 # 基础概率8% receive_build_probability = ( (math.log(1 + receive_ratio * k_receive) / math.log(1 + k_receive)) * 0.42 + base_receive_prob diff --git a/src/chat/utils/chat_message_builder.py b/src/chat/utils/chat_message_builder.py index 12a57f60f..4f1348639 100644 --- a/src/chat/utils/chat_message_builder.py +++ b/src/chat/utils/chat_message_builder.py @@ -41,6 +41,20 @@ def get_raw_msg_by_timestamp_with_chat( return find_messages(message_filter=filter_query, sort=sort_order, limit=limit, limit_mode=limit_mode) +def get_raw_msg_by_timestamp_with_chat_inclusive( + chat_id: str, timestamp_start: float, timestamp_end: float, limit: int = 0, limit_mode: str = "latest" +) -> List[Dict[str, Any]]: + """获取在特定聊天从指定时间戳到指定时间戳的消息(包含边界),按时间升序排序,返回消息列表 + limit: 限制返回的消息数量,0为不限制 + limit_mode: 当 limit > 0 时生效。 'earliest' 表示获取最早的记录, 'latest' 表示获取最新的记录。默认为 'latest'。 + """ + filter_query = {"chat_id": chat_id, "time": {"$gte": timestamp_start, "$lte": timestamp_end}} + # 只有当 limit 为 0 时才应用外部 sort + sort_order = [("time", 1)] if limit == 0 else None + # 直接将 limit_mode 传递给 find_messages + return find_messages(message_filter=filter_query, sort=sort_order, limit=limit, limit_mode=limit_mode) + + def get_raw_msg_by_timestamp_with_chat_users( chat_id: str, timestamp_start: float, diff --git a/src/person_info/relationship_manager.py b/src/person_info/relationship_manager.py index a4e26a4e2..1562c5407 100644 --- a/src/person_info/relationship_manager.py +++ b/src/person_info/relationship_manager.py @@ -208,6 +208,9 @@ class RelationshipManager: readable_messages = self.build_focus_readable_messages(messages=user_messages, target_person_id=person_id) + if not readable_messages: + return + for original_name, mapped_name in name_mapping.items(): # print(f"original_name: {original_name}, mapped_name: {mapped_name}") readable_messages = readable_messages.replace(f"{original_name}", f"{mapped_name}") @@ -470,60 +473,14 @@ class RelationshipManager: logger.info(f"印象更新完成 for {person_name}") def build_focus_readable_messages(self, messages: list, target_person_id: str = None) -> str: - """格式化消息,只保留目标用户和bot消息附近的内容""" - # 找到目标用户和bot的消息索引 - target_indices = [] - for i, msg in enumerate(messages): - user_id = msg.get("user_id") - platform = msg.get("chat_info_platform") - person_id = PersonInfoManager.get_person_id(platform, user_id) - if person_id == target_person_id: - target_indices.append(i) - - if not target_indices: + """格式化消息,处理所有消息内容""" + if not messages: return "" - # 获取需要保留的消息索引 - keep_indices = set() - for idx in target_indices: - # 获取前后5条消息的索引 - start_idx = max(0, idx - 5) - end_idx = min(len(messages), idx + 6) - keep_indices.update(range(start_idx, end_idx)) - - print(keep_indices) - - # 将索引排序 - keep_indices = sorted(list(keep_indices)) - - # 按顺序构建消息组 - message_groups = [] - current_group = [] - - for i in range(len(messages)): - if i in keep_indices: - current_group.append(messages[i]) - elif current_group: - # 如果当前组不为空,且遇到不保留的消息,则结束当前组 - if current_group: - message_groups.append(current_group) - current_group = [] - - # 添加最后一组 - if current_group: - message_groups.append(current_group) - - # 构建最终的消息文本 - result = [] - for i, group in enumerate(message_groups): - if i > 0: - result.append("...") - group_text = build_readable_messages( - messages=group, replace_bot_name=True, timestamp_mode="normal_no_YMD", truncate=False - ) - result.append(group_text) - - return "\n".join(result) + # 直接处理所有消息,不进行过滤 + return build_readable_messages( + messages=messages, replace_bot_name=True, timestamp_mode="normal_no_YMD", truncate=False + ) def calculate_time_weight(self, point_time: str, current_time: str) -> float: """计算基于时间的权重系数""" diff --git a/src/plugins/built_in/mute_plugin/config.toml b/src/plugins/built_in/mute_plugin/config.toml index a9bccdaa3..00474a886 100644 --- a/src/plugins/built_in/mute_plugin/config.toml +++ b/src/plugins/built_in/mute_plugin/config.toml @@ -8,7 +8,7 @@ description = "群聊禁言管理插件,提供智能禁言功能" # 组件启用控制 [components] -enable_smart_mute = true # 启用智能禁言Action +enable_smart_mute = true # 启用智能禁言Action enable_mute_command = false # 启用禁言命令Command # 禁言配置