feat: 重构统一记忆管理器,整合聊天历史上下文并优化记忆块转移逻辑

This commit is contained in:
Windpicker-owo
2025-11-18 20:39:05 +08:00
parent dc3ad19809
commit 999d7b285f
3 changed files with 144 additions and 614 deletions

View File

@@ -590,6 +590,7 @@ class DefaultReplyer:
search_result = await unified_manager.search_memories(
query_text=target,
use_judge=True,
recent_chat_history=chat_history, # 传递最近聊天历史
)
if not search_result:
@@ -609,7 +610,7 @@ class DefaultReplyer:
for block in perceptual_blocks[:2]: # 最多显示2个块
messages = block.messages if hasattr(block, 'messages') else []
if messages:
block_content = "".join([
block_content = "\n".join([
f"{msg.get('sender_name', msg.get('sender_id', ''))}: {msg.get('content', '')[:30]}"
for msg in messages[:3]
])
@@ -1304,7 +1305,6 @@ class DefaultReplyer:
"expression_habits": "",
"relation_info": "",
"memory_block": "",
"three_tier_memory": "",
"tool_info": "",
"prompt_info": "",
"cross_context": "",
@@ -1328,7 +1328,6 @@ class DefaultReplyer:
"expression_habits": "选取表达方式",
"relation_info": "感受关系",
"memory_block": "回忆",
"three_tier_memory": "三层记忆检索",
"tool_info": "使用工具",
"prompt_info": "获取知识",
}
@@ -1347,23 +1346,13 @@ class DefaultReplyer:
expression_habits_block = results_dict["expression_habits"]
relation_info = results_dict["relation_info"]
memory_block = results_dict["memory_block"]
three_tier_memory_block = results_dict["three_tier_memory"]
tool_info = results_dict["tool_info"]
prompt_info = results_dict["prompt_info"]
cross_context_block = results_dict["cross_context"]
notice_block = results_dict["notice_block"]
# 合并三层记忆和原记忆图记忆
# 如果三层记忆系统启用且有内容,优先使用三层记忆,否则使用原记忆图
if three_tier_memory_block:
# 三层记忆系统启用,使用新系统的结果
combined_memory_block = three_tier_memory_block
if memory_block:
# 如果原记忆图也有内容,附加到后面
combined_memory_block += "\n" + memory_block
else:
# 三层记忆系统未启用或无内容,使用原记忆图
combined_memory_block = memory_block
# 使用统一的记忆块(已整合三层记忆系统)
combined_memory_block = memory_block if memory_block else ""
# 检查是否为视频分析结果,并注入引导语
if target and ("[视频内容]" in target or "好的,我将根据您提供的" in target):

View File

@@ -1,561 +0,0 @@
"""
统一记忆管理器 (Unified Memory Manager)
整合三层记忆系统:
- 感知记忆层
- 短期记忆层
- 长期记忆层
提供统一的接口供外部调用
"""
import asyncio
from datetime import datetime
from pathlib import Path
from typing import Any
from src.common.logger import get_logger
from src.memory_graph.manager import MemoryManager
from src.memory_graph.three_tier.long_term_manager import LongTermMemoryManager
from src.memory_graph.three_tier.models import JudgeDecision, MemoryBlock, ShortTermMemory
from src.memory_graph.three_tier.perceptual_manager import PerceptualMemoryManager
from src.memory_graph.three_tier.short_term_manager import ShortTermMemoryManager
logger = get_logger(__name__)
class UnifiedMemoryManager:
"""
统一记忆管理器
整合三层记忆系统,提供统一接口
"""
def __init__(
self,
data_dir: Path | None = None,
# 感知记忆配置
perceptual_max_blocks: int = 50,
perceptual_block_size: int = 5,
perceptual_activation_threshold: int = 3,
perceptual_recall_top_k: int = 5,
perceptual_recall_threshold: float = 0.55,
# 短期记忆配置
short_term_max_memories: int = 30,
short_term_transfer_threshold: float = 0.6,
# 长期记忆配置
long_term_batch_size: int = 10,
long_term_search_top_k: int = 5,
long_term_decay_factor: float = 0.95,
# 智能检索配置
judge_confidence_threshold: float = 0.7,
):
"""
初始化统一记忆管理器
Args:
data_dir: 数据存储目录
perceptual_max_blocks: 感知记忆堆最大容量
perceptual_block_size: 每个记忆块的消息数量
perceptual_activation_threshold: 激活阈值(召回次数)
perceptual_recall_top_k: 召回时返回的最大块数
perceptual_recall_threshold: 召回的相似度阈值
short_term_max_memories: 短期记忆最大数量
short_term_transfer_threshold: 转移到长期记忆的重要性阈值
long_term_batch_size: 批量处理的短期记忆数量
long_term_search_top_k: 检索相似记忆的数量
long_term_decay_factor: 长期记忆的衰减因子
judge_confidence_threshold: 裁判模型的置信度阈值
"""
self.data_dir = data_dir or Path("data/memory_graph/three_tier")
self.data_dir.mkdir(parents=True, exist_ok=True)
# 配置参数
self.judge_confidence_threshold = judge_confidence_threshold
# 三层管理器
self.perceptual_manager: PerceptualMemoryManager
self.short_term_manager: ShortTermMemoryManager
self.long_term_manager: LongTermMemoryManager
# 底层 MemoryManager长期记忆
self.memory_manager: MemoryManager
# 配置参数存储(用于初始化)
self._config = {
"perceptual": {
"max_blocks": perceptual_max_blocks,
"block_size": perceptual_block_size,
"activation_threshold": perceptual_activation_threshold,
"recall_top_k": perceptual_recall_top_k,
"recall_similarity_threshold": perceptual_recall_threshold,
},
"short_term": {
"max_memories": short_term_max_memories,
"transfer_importance_threshold": short_term_transfer_threshold,
},
"long_term": {
"batch_size": long_term_batch_size,
"search_top_k": long_term_search_top_k,
"long_term_decay_factor": long_term_decay_factor,
},
}
# 状态
self._initialized = False
self._auto_transfer_task: asyncio.Task | None = None
logger.info("统一记忆管理器已创建")
async def initialize(self) -> None:
"""初始化统一记忆管理器"""
if self._initialized:
logger.warning("统一记忆管理器已经初始化")
return
try:
logger.info("开始初始化统一记忆管理器...")
# 初始化底层 MemoryManager长期记忆
self.memory_manager = MemoryManager(data_dir=self.data_dir.parent)
await self.memory_manager.initialize()
# 初始化感知记忆层
self.perceptual_manager = PerceptualMemoryManager(
data_dir=self.data_dir,
**self._config["perceptual"],
)
await self.perceptual_manager.initialize()
# 初始化短期记忆层
self.short_term_manager = ShortTermMemoryManager(
data_dir=self.data_dir,
**self._config["short_term"],
)
await self.short_term_manager.initialize()
# 初始化长期记忆层
self.long_term_manager = LongTermMemoryManager(
memory_manager=self.memory_manager,
**self._config["long_term"],
)
await self.long_term_manager.initialize()
self._initialized = True
logger.info("✅ 统一记忆管理器初始化完成")
# 启动自动转移任务
self._start_auto_transfer_task()
except Exception as e:
logger.error(f"统一记忆管理器初始化失败: {e}", exc_info=True)
raise
async def add_message(self, message: dict[str, Any]) -> MemoryBlock | None:
"""
添加消息到感知记忆层
Args:
message: 消息字典
Returns:
如果创建了新块,返回 MemoryBlock
"""
if not self._initialized:
await self.initialize()
new_block = await self.perceptual_manager.add_message(message)
# 注意:感知→短期的转移由召回触发,不是由添加消息触发
# 转移逻辑在 search_memories 中处理
return new_block
# 已移除 _process_activated_blocks 方法
# 转移逻辑现在在 search_memories 中处理:
# 当召回某个记忆块时,如果其 recall_count >= activation_threshold
# 立即将该块转移到短期记忆
async def search_memories(
self, query_text: str, use_judge: bool = True
) -> dict[str, Any]:
"""
智能检索记忆
流程:
1. 优先检索感知记忆和短期记忆
2. 使用裁判模型评估是否充足
3. 如果不充足,生成补充 query 并检索长期记忆
Args:
query_text: 查询文本
use_judge: 是否使用裁判模型
Returns:
检索结果字典,包含:
- perceptual_blocks: 感知记忆块列表
- short_term_memories: 短期记忆列表
- long_term_memories: 长期记忆列表
- judge_decision: 裁判决策(如果使用)
"""
if not self._initialized:
await self.initialize()
try:
result = {
"perceptual_blocks": [],
"short_term_memories": [],
"long_term_memories": [],
"judge_decision": None,
}
# 步骤1: 检索感知记忆和短期记忆
perceptual_blocks = await self.perceptual_manager.recall_blocks(query_text)
short_term_memories = await self.short_term_manager.search_memories(query_text)
# 步骤1.5: 检查并处理需要转移的记忆块
# 当某个块的召回次数达到阈值时,立即转移到短期记忆
blocks_to_transfer = [
block for block in perceptual_blocks
if block.metadata.get("needs_transfer", False)
]
if blocks_to_transfer:
logger.info(f"检测到 {len(blocks_to_transfer)} 个记忆块需要转移到短期记忆")
for block in blocks_to_transfer:
# 转换为短期记忆
stm = await self.short_term_manager.add_from_block(block)
if stm:
# 从感知记忆中移除
await self.perceptual_manager.remove_block(block.id)
logger.info(f"✅ 记忆块 {block.id} 已转为短期记忆 {stm.id}")
# 将新创建的短期记忆加入结果
short_term_memories.append(stm)
result["perceptual_blocks"] = perceptual_blocks
result["short_term_memories"] = short_term_memories
logger.info(
f"初步检索: 感知记忆 {len(perceptual_blocks)} 块, "
f"短期记忆 {len(short_term_memories)}"
)
# 步骤2: 裁判模型评估
if use_judge:
judge_decision = await self._judge_retrieval_sufficiency(
query_text, perceptual_blocks, short_term_memories
)
result["judge_decision"] = judge_decision
# 步骤3: 如果不充足,检索长期记忆
if not judge_decision.is_sufficient:
logger.info("裁判判定记忆不充足,启动长期记忆检索")
# 使用额外的 query 检索
long_term_memories = []
queries = [query_text] + judge_decision.additional_queries
for q in queries:
memories = await self.memory_manager.search_memories(
query=q,
top_k=5,
use_multi_query=False,
)
long_term_memories.extend(memories)
# 去重
seen_ids = set()
unique_memories = []
for mem in long_term_memories:
if mem.id not in seen_ids:
unique_memories.append(mem)
seen_ids.add(mem.id)
result["long_term_memories"] = unique_memories
logger.info(f"长期记忆检索: {len(unique_memories)}")
else:
# 不使用裁判,直接检索长期记忆
long_term_memories = await self.memory_manager.search_memories(
query=query_text,
top_k=5,
use_multi_query=False,
)
result["long_term_memories"] = long_term_memories
return result
except Exception as e:
logger.error(f"智能检索失败: {e}", exc_info=True)
return {
"perceptual_blocks": [],
"short_term_memories": [],
"long_term_memories": [],
"error": str(e),
}
async def _judge_retrieval_sufficiency(
self,
query: str,
perceptual_blocks: list[MemoryBlock],
short_term_memories: list[ShortTermMemory],
) -> JudgeDecision:
"""
使用裁判模型评估检索结果是否充足
Args:
query: 原始查询
perceptual_blocks: 感知记忆块
short_term_memories: 短期记忆
Returns:
裁判决策
"""
try:
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
from src.memory_graph.utils.memory_formatter import format_memory_for_prompt
# 构建提示词 - 使用优化的格式
# 防御性处理:确保 combined_text 是字符串
perceptual_texts = []
for i, block in enumerate(perceptual_blocks):
text = block.combined_text
if isinstance(text, list):
text = " ".join(str(item) for item in text)
elif not isinstance(text, str):
text = str(text)
perceptual_texts.append(f"记忆块{i+1}:\n{text}")
perceptual_desc = "\n\n".join(perceptual_texts)
# 短期记忆使用 "主体-主题(属性)" 格式
short_term_texts = []
for mem in short_term_memories:
formatted = format_memory_for_prompt(mem, include_metadata=False)
if formatted: # 只添加非空的格式化结果
short_term_texts.append(f"- {formatted}")
short_term_desc = "\n".join(short_term_texts)
prompt = f"""你是一个记忆检索评估专家。请判断检索到的记忆是否足以回答用户的问题。
**用户查询:**
{query}
**检索到的感知记忆块:**
{perceptual_desc or '(无)'}
**检索到的短期记忆(结构化记忆,格式:主体-主题(属性)**
{short_term_desc or '(无)'}
**任务要求:**
1. 判断这些记忆是否足以回答用户的问题
2. 如果不充足,分析缺少哪些方面的信息
3. 生成额外需要检索的 query用于在长期记忆中检索
**输出格式JSON**
```json
{{
"is_sufficient": true/false,
"confidence": 0.85,
"reasoning": "判断理由",
"missing_aspects": ["缺失的信息1", "缺失的信息2"],
"additional_queries": ["补充query1", "补充query2"]
}}
```
请输出JSON"""
# 调用记忆裁判模型
llm = LLMRequest(
model_set=model_config.model_task_config.memory_judge,
request_type="unified_memory.judge",
)
response, _ = await llm.generate_response_async(
prompt,
temperature=0.1,
max_tokens=600,
)
# 解析响应
import json
import re
json_match = re.search(r"```json\s*(.*?)\s*```", response, re.DOTALL)
if json_match:
json_str = json_match.group(1)
else:
json_str = response.strip()
data = json.loads(json_str)
decision = JudgeDecision(
is_sufficient=data.get("is_sufficient", False),
confidence=data.get("confidence", 0.5),
reasoning=data.get("reasoning", ""),
additional_queries=data.get("additional_queries", []),
missing_aspects=data.get("missing_aspects", []),
)
logger.info(f"裁判决策: {decision}")
return decision
except Exception as e:
logger.error(f"裁判模型评估失败: {e}", exc_info=True)
# 默认判定为不充足,需要检索长期记忆
return JudgeDecision(
is_sufficient=False,
confidence=0.3,
reasoning=f"裁判模型失败: {e}",
additional_queries=[query],
)
def _start_auto_transfer_task(self) -> None:
"""启动自动转移任务"""
if self._auto_transfer_task and not self._auto_transfer_task.done():
logger.warning("自动转移任务已在运行")
return
self._auto_transfer_task = asyncio.create_task(self._auto_transfer_loop())
logger.info("自动转移任务已启动")
async def _auto_transfer_loop(self) -> None:
"""自动转移循环(批量缓存模式)"""
transfer_cache = [] # 缓存待转移的短期记忆
cache_size_threshold = self._config["long_term"]["batch_size"] # 使用配置的批量大小
while True:
try:
# 每 10 分钟检查一次
await asyncio.sleep(600)
# 检查短期记忆是否有需要转移的
memories_to_transfer = self.short_term_manager.get_memories_for_transfer()
if memories_to_transfer:
# 添加到缓存
transfer_cache.extend(memories_to_transfer)
logger.info(
f"缓存待转移记忆: 新增{len(memories_to_transfer)}条, "
f"缓存总数{len(transfer_cache)}/{cache_size_threshold}"
)
# 检查是否达到批量转移阈值或短期记忆已满
should_transfer = (
len(transfer_cache) >= cache_size_threshold or
len(self.short_term_manager.memories) >= self.short_term_manager.max_memories
)
if should_transfer and transfer_cache:
logger.info(f"触发批量转移: {len(transfer_cache)}条短期记忆→长期记忆")
# 执行批量转移
result = await self.long_term_manager.transfer_from_short_term(
transfer_cache
)
# 清除已转移的记忆
if result.get("transferred_memory_ids"):
await self.short_term_manager.clear_transferred_memories(
result["transferred_memory_ids"]
)
# 从缓存中移除已转移的
transferred_ids = set(result["transferred_memory_ids"])
transfer_cache = [
m for m in transfer_cache
if m.id not in transferred_ids
]
logger.info(f"✅ 批量转移完成: {result}")
except asyncio.CancelledError:
logger.info("自动转移任务已取消")
break
except Exception as e:
logger.error(f"自动转移任务错误: {e}", exc_info=True)
# 继续运行
async def manual_transfer(self) -> dict[str, Any]:
"""
手动触发短期记忆到长期记忆的转移
Returns:
转移结果
"""
if not self._initialized:
await self.initialize()
try:
memories_to_transfer = self.short_term_manager.get_memories_for_transfer()
if not memories_to_transfer:
logger.info("没有需要转移的短期记忆")
return {"message": "没有需要转移的记忆", "transferred_count": 0}
# 执行转移
result = await self.long_term_manager.transfer_from_short_term(memories_to_transfer)
# 清除已转移的记忆
if result.get("transferred_memory_ids"):
await self.short_term_manager.clear_transferred_memories(
result["transferred_memory_ids"]
)
logger.info(f"手动转移完成: {result}")
return result
except Exception as e:
logger.error(f"手动转移失败: {e}", exc_info=True)
return {"error": str(e), "transferred_count": 0}
def get_statistics(self) -> dict[str, Any]:
"""获取三层记忆系统的统计信息"""
if not self._initialized:
return {}
return {
"perceptual": self.perceptual_manager.get_statistics(),
"short_term": self.short_term_manager.get_statistics(),
"long_term": self.long_term_manager.get_statistics(),
"total_system_memories": (
self.perceptual_manager.get_statistics().get("total_messages", 0)
+ self.short_term_manager.get_statistics().get("total_memories", 0)
+ self.long_term_manager.get_statistics().get("total_memories", 0)
),
}
async def shutdown(self) -> None:
"""关闭统一记忆管理器"""
if not self._initialized:
return
try:
logger.info("正在关闭统一记忆管理器...")
# 取消自动转移任务
if self._auto_transfer_task and not self._auto_transfer_task.done():
self._auto_transfer_task.cancel()
try:
await self._auto_transfer_task
except asyncio.CancelledError:
pass
# 关闭各层管理器
if self.perceptual_manager:
await self.perceptual_manager.shutdown()
if self.short_term_manager:
await self.short_term_manager.shutdown()
if self.long_term_manager:
await self.long_term_manager.shutdown()
if self.memory_manager:
await self.memory_manager.shutdown()
self._initialized = False
logger.info("✅ 统一记忆管理器已关闭")
except Exception as e:
logger.error(f"关闭统一记忆管理器失败: {e}", exc_info=True)

View File

@@ -177,7 +177,7 @@ class UnifiedMemoryManager:
# 立即将该块转移到短期记忆
async def search_memories(
self, query_text: str, use_judge: bool = True
self, query_text: str, use_judge: bool = True, recent_chat_history: str = ""
) -> dict[str, Any]:
"""
智能检索记忆
@@ -190,6 +190,7 @@ class UnifiedMemoryManager:
Args:
query_text: 查询文本
use_judge: 是否使用裁判模型
recent_chat_history: 最近的聊天历史上下文(可选)
Returns:
检索结果字典,包含:
@@ -213,24 +214,20 @@ class UnifiedMemoryManager:
perceptual_blocks = await self.perceptual_manager.recall_blocks(query_text)
short_term_memories = await self.short_term_manager.search_memories(query_text)
# 步骤1.5: 检查并处理需要转移的记忆块
# 当某个块的召回次数达到阈值时,立即转移到短期记忆
# 步骤1.5: 检查需要转移的感知块,推迟到后台处理
blocks_to_transfer = [
block for block in perceptual_blocks
block
for block in perceptual_blocks
if block.metadata.get("needs_transfer", False)
]
if blocks_to_transfer:
logger.info(f"检测到 {len(blocks_to_transfer)} 个记忆块需要转移到短期记忆")
logger.info(
f"检测到 {len(blocks_to_transfer)} 个感知记忆需要转移,已交由后台后处理任务执行"
)
for block in blocks_to_transfer:
# 转换为短期记忆
stm = await self.short_term_manager.add_from_block(block)
if stm:
# 从感知记忆中移除
await self.perceptual_manager.remove_block(block.id)
logger.info(f"✅ 记忆块 {block.id} 已转为短期记忆 {stm.id}")
# 将新创建的短期记忆加入结果
short_term_memories.append(stm)
block.metadata["needs_transfer"] = False
self._schedule_perceptual_block_transfer(blocks_to_transfer)
result["perceptual_blocks"] = perceptual_blocks
result["short_term_memories"] = short_term_memories
@@ -243,36 +240,23 @@ class UnifiedMemoryManager:
# 步骤2: 裁判模型评估
if use_judge:
judge_decision = await self._judge_retrieval_sufficiency(
query_text, perceptual_blocks, short_term_memories
query_text, perceptual_blocks, short_term_memories, recent_chat_history
)
result["judge_decision"] = judge_decision
# 步骤3: 如果不充足,检索长期记忆
if not judge_decision.is_sufficient:
logger.info("裁判判定记忆不足,启动长期记忆检索")
logger.info("判官判断记忆不足,开始检索长期记忆")
# 使用额外的 query 检索
long_term_memories = []
queries = [query_text] + judge_decision.additional_queries
long_term_memories = await self._retrieve_long_term_memories(
base_query=query_text,
queries=queries,
recent_chat_history=recent_chat_history,
)
for q in queries:
memories = await self.memory_manager.search_memories(
query=q,
top_k=5,
use_multi_query=False,
)
long_term_memories.extend(memories)
result["long_term_memories"] = long_term_memories
# 去重
seen_ids = set()
unique_memories = []
for mem in long_term_memories:
if mem.id not in seen_ids:
unique_memories.append(mem)
seen_ids.add(mem.id)
result["long_term_memories"] = unique_memories
logger.info(f"长期记忆检索: {len(unique_memories)}")
else:
# 不使用裁判,直接检索长期记忆
long_term_memories = await self.memory_manager.search_memories(
@@ -298,6 +282,7 @@ class UnifiedMemoryManager:
query: str,
perceptual_blocks: list[MemoryBlock],
short_term_memories: list[ShortTermMemory],
recent_chat_history: str = "",
) -> JudgeDecision:
"""
使用裁判模型评估检索结果是否充足
@@ -306,6 +291,7 @@ class UnifiedMemoryManager:
query: 原始查询
perceptual_blocks: 感知记忆块
short_term_memories: 短期记忆
recent_chat_history: 最近的聊天历史上下文(可选)
Returns:
裁判决策
@@ -326,7 +312,7 @@ class UnifiedMemoryManager:
text = str(text)
perceptual_texts.append(f"记忆块{i+1}:\n{text}")
perceptual_desc = "\n\n".join(perceptual_texts)
perceptual_desc = "\n\n".join(str(item) for item in perceptual_texts)
# 短期记忆使用 "主体-主题(属性)" 格式
short_term_texts = []
@@ -335,14 +321,22 @@ class UnifiedMemoryManager:
if formatted: # 只添加非空的格式化结果
short_term_texts.append(f"- {formatted}")
short_term_desc = "\n".join(short_term_texts)
short_term_desc = "\n".join(str(item) for item in short_term_texts)
# 构建聊天历史块(如果提供)
chat_history_block = ""
if recent_chat_history:
chat_history_block = f"""**最近的聊天历史:**
{recent_chat_history}
"""
prompt = f"""你是一个记忆检索评估专家。请判断检索到的记忆是否足以回答用户的问题。
**用户查询:**
{query}
**检索到的感知记忆块:**
{chat_history_block}**检索到的感知记忆块:**
{perceptual_desc or '(无)'}
**检索到的短期记忆(结构化记忆,格式:主体-主题(属性)**
@@ -411,6 +405,114 @@ class UnifiedMemoryManager:
additional_queries=[query],
)
def _schedule_perceptual_block_transfer(self, blocks: list[MemoryBlock]) -> None:
"""将感知记忆块转移到短期记忆,后台执行以避免阻塞"""
if not blocks:
return
task = asyncio.create_task(
self._transfer_blocks_to_short_term(list(blocks))
)
self._attach_background_task_callback(task, "perceptual->short-term transfer")
def _attach_background_task_callback(self, task: asyncio.Task, task_name: str) -> None:
"""确保后台任务异常被记录"""
def _callback(done_task: asyncio.Task) -> None:
try:
done_task.result()
except asyncio.CancelledError:
logger.info(f"{task_name} 后台任务已取消")
except Exception as exc:
logger.error(f"{task_name} 后台任务失败: {exc}", exc_info=True)
task.add_done_callback(_callback)
async def _transfer_blocks_to_short_term(self, blocks: list[MemoryBlock]) -> None:
"""实际转换逻辑在后台执行"""
logger.info(f"正在后台处理 {len(blocks)} 个感知记忆块")
for block in blocks:
try:
stm = await self.short_term_manager.add_from_block(block)
if not stm:
continue
await self.perceptual_manager.remove_block(block.id)
logger.info(f"✓ 记忆块 {block.id} 已被转移到短期记忆 {stm.id}")
except Exception as exc:
logger.error(f"后台转移失败,记忆块 {block.id}: {exc}", exc_info=True)
def _build_manual_multi_queries(self, queries: list[str]) -> list[dict[str, float]]:
"""去重裁判查询并附加权重以进行多查询搜索"""
deduplicated: list[str] = []
seen = set()
for raw in queries:
text = (raw or "").strip()
if not text or text in seen:
continue
deduplicated.append(text)
seen.add(text)
if len(deduplicated) <= 1:
return []
manual_queries: list[dict[str, float]] = []
decay = 0.15
for idx, text in enumerate(deduplicated):
weight = max(0.3, 1.0 - idx * decay)
manual_queries.append({"text": text, "weight": round(weight, 2)})
return manual_queries
async def _retrieve_long_term_memories(
self,
base_query: str,
queries: list[str],
recent_chat_history: str = "",
) -> list[Any]:
"""可一次性运行多查询搜索的集中式长期检索条目"""
manual_queries = self._build_manual_multi_queries(queries)
context: dict[str, Any] = {}
if recent_chat_history:
context["chat_history"] = recent_chat_history
if manual_queries:
context["manual_multi_queries"] = manual_queries
search_params: dict[str, Any] = {
"query": base_query,
"top_k": self._config["long_term"]["search_top_k"],
"use_multi_query": bool(manual_queries),
}
if context:
search_params["context"] = context
memories = await self.memory_manager.search_memories(**search_params)
unique_memories = self._deduplicate_memories(memories)
query_count = len(manual_queries) if manual_queries else 1
logger.info(
f"Long-term retrieval done: {len(unique_memories)} hits (queries fused={query_count})"
)
return unique_memories
def _deduplicate_memories(self, memories: list[Any]) -> list[Any]:
"""通过 memory.id 去重"""
seen_ids: set[str] = set()
unique_memories: list[Any] = []
for mem in memories:
mem_id = getattr(mem, "id", None)
if mem_id and mem_id in seen_ids:
continue
unique_memories.append(mem)
if mem_id:
seen_ids.add(mem_id)
return unique_memories
def _start_auto_transfer_task(self) -> None:
"""启动自动转移任务"""
if self._auto_transfer_task and not self._auto_transfer_task.done():