Merge branch 'dev' of https://github.com/MoFox-Studio/MoFox_Bot into dev
This commit is contained in:
@@ -199,16 +199,16 @@ class RelationshipEnergyCalculator(EnergyCalculator):
|
||||
if not user_id:
|
||||
return 0.3
|
||||
|
||||
# 使用插件内部的兴趣度评分系统获取关系分
|
||||
# 使用统一的评分API获取关系分
|
||||
try:
|
||||
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import chatter_interest_scoring_system
|
||||
from src.plugin_system.apis.scoring_api import scoring_api
|
||||
|
||||
relationship_score = await chatter_interest_scoring_system._calculate_relationship_score(user_id)
|
||||
logger.debug(f"使用插件内部系统计算关系分: {relationship_score:.3f}")
|
||||
return max(0.0, min(1.0, relationship_score))
|
||||
relationship_score = await scoring_api.get_user_relationship_score(user_id)
|
||||
logger.debug(f"使用统一评分API计算关系分: {relationship_score:.3f}")
|
||||
return relationship_score
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"插件内部关系分计算失败,使用默认值: {e}")
|
||||
logger.warning(f"关系分计算失败,使用默认值: {e}")
|
||||
return 0.3 # 默认基础分
|
||||
|
||||
def get_weight(self) -> float:
|
||||
|
||||
@@ -578,6 +578,21 @@ class ChatBot:
|
||||
logger.error(f"存储消息到数据库失败: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
# 情绪系统更新 - 在消息存储后触发情绪更新
|
||||
try:
|
||||
if global_config.mood.enable_mood:
|
||||
# 获取兴趣度用于情绪更新
|
||||
interest_rate = getattr(message, "interest_value", 0.0)
|
||||
logger.debug(f"开始更新情绪状态,兴趣度: {interest_rate:.2f}")
|
||||
|
||||
# 获取当前聊天的情绪对象并更新情绪状态
|
||||
chat_mood = mood_manager.get_mood_by_chat_id(message.chat_stream.stream_id)
|
||||
await chat_mood.update_mood_by_message(message, interest_rate)
|
||||
logger.debug("情绪状态更新完成")
|
||||
except Exception as e:
|
||||
logger.error(f"更新情绪状态失败: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
if template_group_name:
|
||||
async with global_prompt_manager.async_message_scope(template_group_name):
|
||||
await preprocess()
|
||||
|
||||
@@ -405,18 +405,18 @@ class ChatStream:
|
||||
|
||||
async def _get_user_relationship_score(self) -> float:
|
||||
"""获取用户关系分"""
|
||||
# 使用插件内部的兴趣度评分系统
|
||||
# 使用统一的评分API
|
||||
try:
|
||||
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import chatter_interest_scoring_system
|
||||
from src.plugin_system.apis.scoring_api import scoring_api
|
||||
|
||||
if self.user_info and hasattr(self.user_info, "user_id"):
|
||||
user_id = str(self.user_info.user_id)
|
||||
relationship_score = await chatter_interest_scoring_system._calculate_relationship_score(user_id)
|
||||
relationship_score = await scoring_api.get_user_relationship_score(user_id)
|
||||
logger.debug(f"ChatStream {self.stream_id}: 用户关系分 = {relationship_score:.3f}")
|
||||
return max(0.0, min(1.0, relationship_score))
|
||||
return relationship_score
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"ChatStream {self.stream_id}: 插件内部关系分计算失败: {e}")
|
||||
logger.warning(f"ChatStream {self.stream_id}: 关系分计算失败: {e}")
|
||||
|
||||
# 默认基础分
|
||||
return 0.3
|
||||
|
||||
@@ -436,17 +436,17 @@ class OptimizedChatStream:
|
||||
async def _get_user_relationship_score(self) -> float:
|
||||
"""获取用户关系分"""
|
||||
try:
|
||||
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import chatter_interest_scoring_system
|
||||
from src.plugin_system.apis.scoring_api import scoring_api
|
||||
|
||||
effective_user_info = self._get_effective_user_info()
|
||||
if effective_user_info and hasattr(effective_user_info, "user_id"):
|
||||
user_id = str(effective_user_info.user_id)
|
||||
relationship_score = await chatter_interest_scoring_system._calculate_relationship_score(user_id)
|
||||
relationship_score = await scoring_api.get_user_relationship_score(user_id)
|
||||
logger.debug(f"OptimizedChatStream {self.stream_id}: 用户关系分 = {relationship_score:.3f}")
|
||||
return max(0.0, min(1.0, relationship_score))
|
||||
return relationship_score
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"OptimizedChatStream {self.stream_id}: 插件内部关系分计算失败: {e}")
|
||||
logger.warning(f"OptimizedChatStream {self.stream_id}: 关系分计算失败: {e}")
|
||||
|
||||
return 0.3
|
||||
|
||||
|
||||
@@ -1676,49 +1676,42 @@ class DefaultReplyer:
|
||||
logger.warning(f"未找到用户 {sender} 的ID,跳过信息提取")
|
||||
return f"你完全不认识{sender},不理解ta的相关信息。"
|
||||
|
||||
# 使用AFC关系追踪器获取关系信息
|
||||
# 使用统一评分API获取关系信息
|
||||
try:
|
||||
# 创建关系追踪器实例
|
||||
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import chatter_interest_scoring_system
|
||||
from src.plugins.built_in.affinity_flow_chatter.relationship_tracker import ChatterRelationshipTracker
|
||||
from src.plugin_system.apis.scoring_api import scoring_api
|
||||
|
||||
relationship_tracker = ChatterRelationshipTracker(chatter_interest_scoring_system)
|
||||
if relationship_tracker:
|
||||
# 获取用户信息以获取真实的user_id
|
||||
user_info = await person_info_manager.get_values(person_id, ["user_id", "platform"])
|
||||
user_id = user_info.get("user_id", "unknown")
|
||||
# 获取用户信息以获取真实的user_id
|
||||
user_info = await person_info_manager.get_values(person_id, ["user_id", "platform"])
|
||||
user_id = user_info.get("user_id", "unknown")
|
||||
|
||||
# 从数据库获取关系数据
|
||||
relationship_data = await relationship_tracker._get_user_relationship_from_db(user_id)
|
||||
if relationship_data:
|
||||
relationship_text = relationship_data.get("relationship_text", "")
|
||||
relationship_score = relationship_data.get("relationship_score", 0.3)
|
||||
# 从统一API获取关系数据
|
||||
relationship_data = await scoring_api.get_user_relationship_data(user_id)
|
||||
if relationship_data:
|
||||
relationship_text = relationship_data.get("relationship_text", "")
|
||||
relationship_score = relationship_data.get("relationship_score", 0.3)
|
||||
|
||||
# 构建丰富的关系信息描述
|
||||
if relationship_text:
|
||||
# 转换关系分数为描述性文本
|
||||
if relationship_score >= 0.8:
|
||||
relationship_level = "非常亲密的朋友"
|
||||
elif relationship_score >= 0.6:
|
||||
relationship_level = "好朋友"
|
||||
elif relationship_score >= 0.4:
|
||||
relationship_level = "普通朋友"
|
||||
elif relationship_score >= 0.2:
|
||||
relationship_level = "认识的人"
|
||||
else:
|
||||
relationship_level = "陌生人"
|
||||
|
||||
return f"你与{sender}的关系:{relationship_level}(关系分:{relationship_score:.2f}/1.0)。{relationship_text}"
|
||||
# 构建丰富的关系信息描述
|
||||
if relationship_text:
|
||||
# 转换关系分数为描述性文本
|
||||
if relationship_score >= 0.8:
|
||||
relationship_level = "非常亲密的朋友"
|
||||
elif relationship_score >= 0.6:
|
||||
relationship_level = "好朋友"
|
||||
elif relationship_score >= 0.4:
|
||||
relationship_level = "普通朋友"
|
||||
elif relationship_score >= 0.2:
|
||||
relationship_level = "认识的人"
|
||||
else:
|
||||
return f"你与{sender}是初次见面,关系分:{relationship_score:.2f}/1.0。"
|
||||
relationship_level = "陌生人"
|
||||
|
||||
return f"你与{sender}的关系:{relationship_level}(关系分:{relationship_score:.2f}/1.0)。{relationship_text}"
|
||||
else:
|
||||
return f"你完全不认识{sender},这是第一次互动。"
|
||||
return f"你与{sender}是初次见面,关系分:{relationship_score:.2f}/1.0。"
|
||||
else:
|
||||
logger.warning("AFC关系追踪器未初始化,使用默认关系信息")
|
||||
return f"你与{sender}是普通朋友关系。"
|
||||
return f"你完全不认识{sender},这是第一次互动。"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取AFC关系信息失败: {e}")
|
||||
logger.error(f"获取关系信息失败: {e}")
|
||||
return f"你与{sender}是普通朋友关系。"
|
||||
|
||||
async def _store_chat_memory_async(self, reply_to: str, reply_message: dict[str, Any] | None = None):
|
||||
|
||||
@@ -84,13 +84,10 @@ class Individuality:
|
||||
# 组合完整的人设描述
|
||||
full_personality = f"{personality_result},{identity_result}"
|
||||
|
||||
# 获取全局兴趣评分系统实例
|
||||
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import (
|
||||
chatter_interest_scoring_system as interest_scoring_system,
|
||||
)
|
||||
# 使用统一的评分API初始化智能兴趣系统
|
||||
from src.plugin_system.apis.scoring_api import scoring_api
|
||||
|
||||
# 初始化智能兴趣系统
|
||||
await interest_scoring_system.initialize_smart_interests(
|
||||
await scoring_api.initialize_smart_interests(
|
||||
personality_description=full_personality, personality_id=self.bot_person_id
|
||||
)
|
||||
|
||||
|
||||
@@ -58,24 +58,50 @@ class ChatMood:
|
||||
async def _initialize(self):
|
||||
"""异步初始化方法"""
|
||||
if not self._initialized:
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
try:
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
|
||||
chat_manager = get_chat_manager()
|
||||
self.chat_stream = await chat_manager.get_stream(self.chat_id)
|
||||
chat_manager = get_chat_manager()
|
||||
self.chat_stream = await chat_manager.get_stream(self.chat_id)
|
||||
|
||||
if not self.chat_stream:
|
||||
raise ValueError(f"Chat stream for chat_id {self.chat_id} not found")
|
||||
if not self.chat_stream:
|
||||
# 如果找不到聊天流,使用基础日志前缀但不抛出异常
|
||||
self.log_prefix = f"[{self.chat_id}]"
|
||||
logger.warning(f"Chat stream for chat_id {self.chat_id} not found during mood initialization")
|
||||
else:
|
||||
self.log_prefix = f"[{self.chat_stream.group_info.group_name if self.chat_stream.group_info else self.chat_stream.user_info.user_nickname}]"
|
||||
|
||||
self.log_prefix = f"[{self.chat_stream.group_info.group_name if self.chat_stream.group_info else self.chat_stream.user_info.user_nickname}]"
|
||||
self._initialized = True
|
||||
# 初始化回归计数
|
||||
if not hasattr(self, 'regression_count'):
|
||||
self.regression_count = 0
|
||||
|
||||
self.regression_count: int = 0
|
||||
# 初始化情绪模型
|
||||
if not hasattr(self, 'mood_model'):
|
||||
self.mood_model = LLMRequest(model_set=model_config.model_task_config.emotion, request_type="mood")
|
||||
|
||||
self.mood_model = LLMRequest(model_set=model_config.model_task_config.emotion, request_type="mood")
|
||||
# 初始化最后变化时间
|
||||
if not hasattr(self, 'last_change_time'):
|
||||
self.last_change_time = 0
|
||||
|
||||
self.last_change_time: float = 0
|
||||
self._initialized = True
|
||||
logger.debug(f"{self.log_prefix} 情绪系统初始化完成")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"情绪系统初始化失败: {e}")
|
||||
# 设置基础初始化状态,避免重复尝试
|
||||
self.log_prefix = f"[{self.chat_id}]"
|
||||
self._initialized = True
|
||||
if not hasattr(self, 'regression_count'):
|
||||
self.regression_count = 0
|
||||
if not hasattr(self, 'mood_model'):
|
||||
self.mood_model = LLMRequest(model_set=model_config.model_task_config.emotion, request_type="mood")
|
||||
if not hasattr(self, 'last_change_time'):
|
||||
self.last_change_time = 0
|
||||
|
||||
async def update_mood_by_message(self, message: MessageRecv | DatabaseMessages, interested_rate: float):
|
||||
# 确保异步初始化已完成
|
||||
await self._initialize()
|
||||
|
||||
# 如果当前聊天处于失眠状态,则锁定情绪,不允许更新
|
||||
if self.chat_id in mood_manager.insomnia_chats:
|
||||
logger.debug(f"{self.log_prefix} 处于失眠状态,情绪已锁定,跳过更新。")
|
||||
@@ -89,7 +115,8 @@ class ChatMood:
|
||||
else: # DatabaseMessages
|
||||
message_time = message.time
|
||||
|
||||
during_last_time = message_time - self.last_change_time
|
||||
# 防止负时间差
|
||||
during_last_time = max(0, message_time - self.last_change_time)
|
||||
|
||||
base_probability = 0.05
|
||||
time_multiplier = 4 * (1 - math.exp(-0.01 * during_last_time))
|
||||
@@ -107,6 +134,7 @@ class ChatMood:
|
||||
)
|
||||
|
||||
if random.random() > update_probability:
|
||||
logger.debug(f"{self.log_prefix} 情绪更新概率未达到阈值,跳过更新。概率: {update_probability:.3f}")
|
||||
return
|
||||
|
||||
logger.debug(
|
||||
|
||||
113
src/plugin_system/apis/scoring_api.py
Normal file
113
src/plugin_system/apis/scoring_api.py
Normal file
@@ -0,0 +1,113 @@
|
||||
"""
|
||||
统一评分系统API
|
||||
提供系统级的关系分和兴趣管理服务,供所有插件和主项目组件使用
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system.services.interest_service import interest_service
|
||||
from src.plugin_system.services.relationship_service import relationship_service
|
||||
|
||||
logger = get_logger("scoring_api")
|
||||
|
||||
|
||||
class ScoringAPI:
|
||||
"""
|
||||
统一评分系统API - 系统级服务
|
||||
|
||||
提供关系分和兴趣管理的统一接口,替代原有的插件依赖方式。
|
||||
所有插件和主项目组件都应该通过此API访问评分功能。
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
async def get_user_relationship_score(user_id: str) -> float:
|
||||
"""
|
||||
获取用户关系分
|
||||
|
||||
Args:
|
||||
user_id: 用户ID
|
||||
|
||||
Returns:
|
||||
关系分 (0.0 - 1.0)
|
||||
"""
|
||||
return await relationship_service.get_user_relationship_score(user_id)
|
||||
|
||||
@staticmethod
|
||||
async def get_user_relationship_data(user_id: str) -> dict:
|
||||
"""
|
||||
获取用户完整关系数据
|
||||
|
||||
Args:
|
||||
user_id: 用户ID
|
||||
|
||||
Returns:
|
||||
包含关系分、关系文本等的字典
|
||||
"""
|
||||
return await relationship_service.get_user_relationship_data(user_id)
|
||||
|
||||
@staticmethod
|
||||
async def update_user_relationship(user_id: str, relationship_score: float, relationship_text: str = None, user_name: str = None):
|
||||
"""
|
||||
更新用户关系数据
|
||||
|
||||
Args:
|
||||
user_id: 用户ID
|
||||
relationship_score: 关系分 (0.0 - 1.0)
|
||||
relationship_text: 关系描述文本
|
||||
user_name: 用户名称
|
||||
"""
|
||||
await relationship_service.update_user_relationship(user_id, relationship_score, relationship_text, user_name)
|
||||
|
||||
@staticmethod
|
||||
async def initialize_smart_interests(personality_description: str, personality_id: str = "default"):
|
||||
"""
|
||||
初始化智能兴趣系统
|
||||
|
||||
Args:
|
||||
personality_description: 机器人性格描述
|
||||
personality_id: 性格ID
|
||||
"""
|
||||
await interest_service.initialize_smart_interests(personality_description, personality_id)
|
||||
|
||||
@staticmethod
|
||||
async def calculate_interest_match(content: str, keywords: list[str] = None):
|
||||
"""
|
||||
计算内容与兴趣的匹配度
|
||||
|
||||
Args:
|
||||
content: 消息内容
|
||||
keywords: 关键词列表
|
||||
|
||||
Returns:
|
||||
匹配结果
|
||||
"""
|
||||
return await interest_service.calculate_interest_match(content, keywords)
|
||||
|
||||
@staticmethod
|
||||
def get_system_stats() -> dict[str, Any]:
|
||||
"""
|
||||
获取系统统计信息
|
||||
|
||||
Returns:
|
||||
包含各子系统统计的字典
|
||||
"""
|
||||
return {
|
||||
"relationship_service": relationship_service.get_cache_stats(),
|
||||
"interest_service": interest_service.get_interest_stats()
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def clear_caches(user_id: str = None):
|
||||
"""
|
||||
清理缓存
|
||||
|
||||
Args:
|
||||
user_id: 特定用户ID,如果为None则清理所有缓存
|
||||
"""
|
||||
relationship_service.clear_cache(user_id)
|
||||
logger.info(f"清理缓存: {user_id if user_id else '全部'}")
|
||||
|
||||
|
||||
# 创建全局API实例 - 系统级服务
|
||||
scoring_api = ScoringAPI()
|
||||
108
src/plugin_system/services/interest_service.py
Normal file
108
src/plugin_system/services/interest_service.py
Normal file
@@ -0,0 +1,108 @@
|
||||
"""
|
||||
兴趣系统服务
|
||||
提供独立的兴趣管理功能,不依赖任何插件
|
||||
"""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from src.chat.interest_system import bot_interest_manager
|
||||
from src.common.logger import get_logger
|
||||
|
||||
logger = get_logger("interest_service")
|
||||
|
||||
|
||||
class InterestService:
|
||||
"""兴趣系统服务 - 独立于插件的兴趣管理"""
|
||||
|
||||
def __init__(self):
|
||||
self.is_initialized = bot_interest_manager.is_initialized
|
||||
|
||||
async def initialize_smart_interests(self, personality_description: str, personality_id: str = "default"):
|
||||
"""
|
||||
初始化智能兴趣系统
|
||||
|
||||
Args:
|
||||
personality_description: 机器人性格描述
|
||||
personality_id: 性格ID
|
||||
"""
|
||||
try:
|
||||
logger.info("开始初始化智能兴趣系统...")
|
||||
logger.info(f"人设ID: {personality_id}, 描述长度: {len(personality_description)}")
|
||||
|
||||
await bot_interest_manager.initialize(personality_description, personality_id)
|
||||
self.is_initialized = True
|
||||
logger.info("智能兴趣系统初始化完成。")
|
||||
|
||||
# 显示初始化后的统计信息
|
||||
stats = bot_interest_manager.get_interest_stats()
|
||||
logger.info(f"兴趣系统统计: {stats}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"初始化智能兴趣系统失败: {e}")
|
||||
self.is_initialized = False
|
||||
|
||||
async def calculate_interest_match(self, content: str, keywords: Optional[list[str]] = None):
|
||||
"""
|
||||
计算内容与兴趣的匹配度
|
||||
|
||||
Args:
|
||||
content: 消息内容
|
||||
keywords: 关键词列表
|
||||
|
||||
Returns:
|
||||
匹配结果
|
||||
"""
|
||||
if not self.is_initialized:
|
||||
logger.warning("兴趣系统未初始化,无法计算匹配度")
|
||||
return None
|
||||
|
||||
try:
|
||||
if not keywords:
|
||||
# 如果没有关键词,尝试从内容提取
|
||||
keywords = self._extract_keywords_from_content(content)
|
||||
|
||||
return await bot_interest_manager.calculate_interest_match(content, keywords)
|
||||
except Exception as e:
|
||||
logger.error(f"计算兴趣匹配度失败: {e}")
|
||||
return None
|
||||
|
||||
def _extract_keywords_from_content(self, content: str) -> list[str]:
|
||||
"""从内容中提取关键词"""
|
||||
import re
|
||||
|
||||
# 清理文本
|
||||
content = re.sub(r"[^\w\s\u4e00-\u9fff]", " ", content) # 保留中文、英文、数字
|
||||
words = content.split()
|
||||
|
||||
# 过滤和关键词提取
|
||||
keywords = []
|
||||
for word in words:
|
||||
word = word.strip()
|
||||
if (
|
||||
len(word) >= 2 # 至少2个字符
|
||||
and word.isalnum() # 字母数字
|
||||
and not word.isdigit()
|
||||
): # 不是纯数字
|
||||
keywords.append(word.lower())
|
||||
|
||||
# 去重并限制数量
|
||||
unique_keywords = list(set(keywords))
|
||||
return unique_keywords[:10] # 返回前10个唯一关键词
|
||||
|
||||
def get_interest_stats(self) -> dict:
|
||||
"""获取兴趣系统统计信息"""
|
||||
if not self.is_initialized:
|
||||
return {"initialized": False}
|
||||
|
||||
try:
|
||||
return {
|
||||
"initialized": True,
|
||||
**bot_interest_manager.get_interest_stats()
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"获取兴趣系统统计失败: {e}")
|
||||
return {"initialized": True, "error": str(e)}
|
||||
|
||||
|
||||
# 创建全局实例
|
||||
interest_service = InterestService()
|
||||
232
src/plugin_system/services/relationship_service.py
Normal file
232
src/plugin_system/services/relationship_service.py
Normal file
@@ -0,0 +1,232 @@
|
||||
"""
|
||||
用户关系分服务
|
||||
提供独立的关系分获取和管理功能,不依赖任何插件
|
||||
"""
|
||||
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
from src.common.database.sqlalchemy_models import UserRelationships, get_db_session
|
||||
from src.common.logger import get_logger
|
||||
from src.config.config import global_config
|
||||
|
||||
logger = get_logger("relationship_service")
|
||||
|
||||
|
||||
class RelationshipService:
|
||||
"""用户关系分服务 - 独立于插件的数据库直接访问层"""
|
||||
|
||||
def __init__(self):
|
||||
self._cache: dict[str, dict] = {} # user_id -> {score, text, last_updated}
|
||||
self._cache_ttl = 300 # 缓存5分钟
|
||||
|
||||
async def get_user_relationship_score(self, user_id: str) -> float:
|
||||
"""
|
||||
获取用户关系分
|
||||
|
||||
Args:
|
||||
user_id: 用户ID
|
||||
|
||||
Returns:
|
||||
关系分 (0.0 - 1.0)
|
||||
"""
|
||||
try:
|
||||
# 先检查缓存
|
||||
cached_data = self._get_from_cache(user_id)
|
||||
if cached_data is not None:
|
||||
return cached_data["score"]
|
||||
|
||||
# 从数据库获取
|
||||
relationship_data = await self._fetch_from_database(user_id)
|
||||
if relationship_data:
|
||||
score = relationship_data.relationship_score
|
||||
# 更新缓存
|
||||
self._update_cache(user_id, score, relationship_data.relationship_text)
|
||||
logger.debug(f"从数据库获取用户关系分: {user_id} -> {score:.3f}")
|
||||
return max(0.0, min(1.0, score))
|
||||
else:
|
||||
# 用户不存在,返回默认分数并创建记录
|
||||
default_score = global_config.affinity_flow.base_relationship_score
|
||||
await self._create_default_relationship(user_id)
|
||||
self._update_cache(user_id, default_score, "新用户")
|
||||
logger.debug(f"创建默认关系分: {user_id} -> {default_score:.3f}")
|
||||
return default_score
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取用户关系分失败: {user_id}, 错误: {e}")
|
||||
return global_config.affinity_flow.base_relationship_score
|
||||
|
||||
async def get_user_relationship_data(self, user_id: str) -> dict:
|
||||
"""
|
||||
获取用户完整关系数据
|
||||
|
||||
Args:
|
||||
user_id: 用户ID
|
||||
|
||||
Returns:
|
||||
包含关系分、关系文本等的字典
|
||||
"""
|
||||
try:
|
||||
# 先检查缓存
|
||||
cached_data = self._get_from_cache(user_id)
|
||||
if cached_data is not None:
|
||||
return {
|
||||
"relationship_score": cached_data["score"],
|
||||
"relationship_text": cached_data["text"],
|
||||
"last_updated": cached_data["last_updated"]
|
||||
}
|
||||
|
||||
# 从数据库获取
|
||||
relationship_data = await self._fetch_from_database(user_id)
|
||||
if relationship_data:
|
||||
result = {
|
||||
"relationship_score": relationship_data.relationship_score,
|
||||
"relationship_text": relationship_data.relationship_text or "",
|
||||
"last_updated": relationship_data.last_updated,
|
||||
"user_name": relationship_data.user_name or ""
|
||||
}
|
||||
# 更新缓存
|
||||
self._update_cache(user_id, result["relationship_score"], result["relationship_text"])
|
||||
return result
|
||||
else:
|
||||
# 创建默认记录
|
||||
default_score = global_config.affinity_flow.base_relationship_score
|
||||
await self._create_default_relationship(user_id)
|
||||
default_result = {
|
||||
"relationship_score": default_score,
|
||||
"relationship_text": "新用户",
|
||||
"last_updated": time.time(),
|
||||
"user_name": ""
|
||||
}
|
||||
self._update_cache(user_id, default_score, "新用户")
|
||||
return default_result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取用户关系数据失败: {user_id}, 错误: {e}")
|
||||
return {
|
||||
"relationship_score": global_config.affinity_flow.base_relationship_score,
|
||||
"relationship_text": "新用户",
|
||||
"last_updated": time.time(),
|
||||
"user_name": ""
|
||||
}
|
||||
|
||||
async def update_user_relationship(self, user_id: str, relationship_score: float, relationship_text: Optional[str] = None, user_name: Optional[str] = None):
|
||||
"""
|
||||
更新用户关系数据
|
||||
|
||||
Args:
|
||||
user_id: 用户ID
|
||||
relationship_score: 关系分 (0.0 - 1.0)
|
||||
relationship_text: 关系描述文本
|
||||
user_name: 用户名称
|
||||
"""
|
||||
try:
|
||||
# 限制分数范围
|
||||
score = max(0.0, min(1.0, relationship_score))
|
||||
|
||||
async with get_db_session() as session:
|
||||
# 查找现有记录
|
||||
from sqlalchemy import select
|
||||
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
|
||||
result = await session.execute(stmt)
|
||||
existing = result.scalar_one_or_none()
|
||||
|
||||
if existing:
|
||||
# 更新现有记录
|
||||
existing.relationship_score = score
|
||||
existing.last_updated = time.time()
|
||||
if relationship_text is not None:
|
||||
existing.relationship_text = relationship_text
|
||||
if user_name is not None:
|
||||
existing.user_name = user_name
|
||||
logger.debug(f"更新用户关系: {user_id} -> {score:.3f}")
|
||||
else:
|
||||
# 创建新记录
|
||||
new_relationship = UserRelationships(
|
||||
user_id=user_id,
|
||||
user_name=user_name or "",
|
||||
relationship_text=relationship_text or "新用户",
|
||||
relationship_score=score,
|
||||
last_updated=time.time()
|
||||
)
|
||||
session.add(new_relationship)
|
||||
logger.debug(f"创建用户关系: {user_id} -> {score:.3f}")
|
||||
|
||||
await session.commit()
|
||||
|
||||
# 更新缓存
|
||||
self._update_cache(user_id, score, relationship_text or "新用户")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"更新用户关系失败: {user_id}, 错误: {e}")
|
||||
|
||||
def _get_from_cache(self, user_id: str) -> Optional[dict]:
|
||||
"""从缓存获取数据"""
|
||||
if user_id in self._cache:
|
||||
cached_data = self._cache[user_id]
|
||||
if time.time() - cached_data["last_updated"] < self._cache_ttl:
|
||||
return cached_data
|
||||
else:
|
||||
# 缓存过期,删除
|
||||
del self._cache[user_id]
|
||||
return None
|
||||
|
||||
def _update_cache(self, user_id: str, score: float, text: str):
|
||||
"""更新缓存"""
|
||||
self._cache[user_id] = {
|
||||
"score": score,
|
||||
"text": text,
|
||||
"last_updated": time.time()
|
||||
}
|
||||
|
||||
async def _fetch_from_database(self, user_id: str) -> Optional[UserRelationships]:
|
||||
"""从数据库获取关系数据"""
|
||||
try:
|
||||
async with get_db_session() as session:
|
||||
from sqlalchemy import select
|
||||
stmt = select(UserRelationships).where(UserRelationships.user_id == user_id)
|
||||
result = await session.execute(stmt)
|
||||
return result.scalar_one_or_none()
|
||||
except Exception as e:
|
||||
logger.error(f"从数据库获取关系数据失败: {user_id}, 错误: {e}")
|
||||
return None
|
||||
|
||||
async def _create_default_relationship(self, user_id: str):
|
||||
"""创建默认关系记录"""
|
||||
try:
|
||||
default_score = global_config.affinity_flow.base_relationship_score
|
||||
async with get_db_session() as session:
|
||||
new_relationship = UserRelationships(
|
||||
user_id=user_id,
|
||||
user_name="",
|
||||
relationship_text="新用户",
|
||||
relationship_score=default_score,
|
||||
last_updated=time.time()
|
||||
)
|
||||
session.add(new_relationship)
|
||||
await session.commit()
|
||||
logger.debug(f"创建默认关系记录: {user_id} -> {default_score:.3f}")
|
||||
except Exception as e:
|
||||
logger.error(f"创建默认关系记录失败: {user_id}, 错误: {e}")
|
||||
|
||||
def get_cache_stats(self) -> dict:
|
||||
"""获取缓存统计信息"""
|
||||
return {
|
||||
"cached_users": len(self._cache),
|
||||
"cache_ttl": self._cache_ttl,
|
||||
"cache_keys": list(self._cache.keys())
|
||||
}
|
||||
|
||||
def clear_cache(self, user_id: Optional[str] = None):
|
||||
"""清理缓存"""
|
||||
if user_id:
|
||||
if user_id in self._cache:
|
||||
del self._cache[user_id]
|
||||
logger.debug(f"清理用户缓存: {user_id}")
|
||||
else:
|
||||
self._cache.clear()
|
||||
logger.debug("清理所有缓存")
|
||||
|
||||
|
||||
# 创建全局实例
|
||||
relationship_service = RelationshipService()
|
||||
@@ -1,333 +0,0 @@
|
||||
"""
|
||||
兴趣度评分系统
|
||||
基于多维度评分机制,包括兴趣匹配度、用户关系分、提及度和时间因子
|
||||
现在使用embedding计算智能兴趣匹配
|
||||
"""
|
||||
|
||||
import traceback
|
||||
from typing import Any
|
||||
|
||||
from src.chat.interest_system import bot_interest_manager
|
||||
from src.common.data_models.database_data_model import DatabaseMessages
|
||||
from src.common.data_models.info_data_model import InterestScore
|
||||
from src.common.logger import get_logger
|
||||
from src.config.config import global_config
|
||||
|
||||
logger = get_logger("chatter_interest_scoring")
|
||||
|
||||
# 定义颜色
|
||||
SOFT_BLUE = "\033[38;5;67m"
|
||||
RESET_COLOR = "\033[0m"
|
||||
|
||||
|
||||
class ChatterInterestScoringSystem:
|
||||
"""兴趣度评分系统"""
|
||||
|
||||
def __init__(self):
|
||||
# 智能兴趣匹配配置
|
||||
self.use_smart_matching = True
|
||||
|
||||
# 从配置加载评分权重
|
||||
affinity_config = global_config.affinity_flow
|
||||
self.score_weights = {
|
||||
"interest_match": affinity_config.keyword_match_weight, # 兴趣匹配度权重
|
||||
"relationship": affinity_config.relationship_weight, # 关系分权重
|
||||
"mentioned": affinity_config.mention_bot_weight, # 是否提及bot权重
|
||||
}
|
||||
|
||||
# 评分阈值
|
||||
self.reply_threshold = affinity_config.reply_action_interest_threshold # 回复动作兴趣阈值
|
||||
self.mention_threshold = affinity_config.mention_bot_adjustment_threshold # 提及bot后的调整阈值
|
||||
|
||||
# 连续不回复概率提升
|
||||
self.no_reply_count = 0
|
||||
self.max_no_reply_count = affinity_config.max_no_reply_count
|
||||
self.probability_boost_per_no_reply = (
|
||||
affinity_config.no_reply_threshold_adjustment / affinity_config.max_no_reply_count
|
||||
) # 每次不回复增加的概率
|
||||
|
||||
# 用户关系数据
|
||||
self.user_relationships: dict[str, float] = {} # user_id -> relationship_score
|
||||
|
||||
async def calculate_interest_scores(
|
||||
self, messages: list[DatabaseMessages], bot_nickname: str
|
||||
) -> list[InterestScore]:
|
||||
"""计算消息的兴趣度评分"""
|
||||
user_messages = [msg for msg in messages if str(msg.user_info.user_id) != str(global_config.bot.qq_account)]
|
||||
if not user_messages:
|
||||
return []
|
||||
|
||||
scores = []
|
||||
for _, msg in enumerate(user_messages, 1):
|
||||
score = await self._calculate_single_message_score(msg, bot_nickname)
|
||||
scores.append(score)
|
||||
|
||||
return scores
|
||||
|
||||
async def _calculate_single_message_score(self, message: DatabaseMessages, bot_nickname: str) -> InterestScore:
|
||||
"""计算单条消息的兴趣度评分"""
|
||||
|
||||
keywords = self._extract_keywords_from_database(message)
|
||||
interest_match_score = await self._calculate_interest_match_score(message.processed_plain_text, keywords)
|
||||
relationship_score = await self._calculate_relationship_score(message.user_info.user_id)
|
||||
mentioned_score = self._calculate_mentioned_score(message, bot_nickname)
|
||||
|
||||
total_score = (
|
||||
interest_match_score * self.score_weights["interest_match"]
|
||||
+ relationship_score * self.score_weights["relationship"]
|
||||
+ mentioned_score * self.score_weights["mentioned"]
|
||||
)
|
||||
|
||||
details = {
|
||||
"interest_match": f"兴趣匹配: {interest_match_score:.3f}",
|
||||
"relationship": f"关系: {relationship_score:.3f}",
|
||||
"mentioned": f"提及: {mentioned_score:.3f}",
|
||||
}
|
||||
|
||||
logger.debug(
|
||||
f"消息得分详情: {total_score:.3f} (匹配: {interest_match_score:.2f}, 关系: {relationship_score:.2f}, 提及: {mentioned_score:.2f})"
|
||||
)
|
||||
|
||||
return InterestScore(
|
||||
message_id=message.message_id,
|
||||
total_score=total_score,
|
||||
interest_match_score=interest_match_score,
|
||||
relationship_score=relationship_score,
|
||||
mentioned_score=mentioned_score,
|
||||
details=details,
|
||||
)
|
||||
|
||||
async def _calculate_interest_match_score(self, content: str, keywords: list[str] | None = None) -> float:
|
||||
"""计算兴趣匹配度 - 使用智能embedding匹配"""
|
||||
if not content:
|
||||
return 0.0
|
||||
|
||||
# 使用智能匹配(embedding)
|
||||
if self.use_smart_matching and bot_interest_manager.is_initialized:
|
||||
return await self._calculate_smart_interest_match(content, keywords)
|
||||
else:
|
||||
# 智能匹配未初始化,返回默认分数
|
||||
return 0.3
|
||||
|
||||
async def _calculate_smart_interest_match(self, content: str, keywords: list[str] | None = None) -> float:
|
||||
"""使用embedding计算智能兴趣匹配"""
|
||||
try:
|
||||
# 如果没有传入关键词,则提取
|
||||
if not keywords:
|
||||
keywords = self._extract_keywords_from_content(content)
|
||||
|
||||
# 使用机器人兴趣管理器计算匹配度
|
||||
match_result = await bot_interest_manager.calculate_interest_match(content, keywords)
|
||||
|
||||
if match_result:
|
||||
# 返回匹配分数,考虑置信度和匹配标签数量
|
||||
affinity_config = global_config.affinity_flow
|
||||
match_count_bonus = min(
|
||||
len(match_result.matched_tags) * affinity_config.match_count_bonus, affinity_config.max_match_bonus
|
||||
)
|
||||
final_score = match_result.overall_score * 1.15 * match_result.confidence + match_count_bonus
|
||||
return final_score
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"智能兴趣匹配计算失败: {e}")
|
||||
return 0.0
|
||||
|
||||
def _extract_keywords_from_database(self, message: DatabaseMessages) -> list[str]:
|
||||
"""从数据库消息中提取关键词"""
|
||||
keywords = []
|
||||
|
||||
# 尝试从 key_words 字段提取(存储的是JSON字符串)
|
||||
if message.key_words:
|
||||
try:
|
||||
import orjson
|
||||
|
||||
keywords = orjson.loads(message.key_words)
|
||||
if not isinstance(keywords, list):
|
||||
keywords = []
|
||||
except (orjson.JSONDecodeError, TypeError):
|
||||
keywords = []
|
||||
|
||||
# 如果没有 keywords,尝试从 key_words_lite 提取
|
||||
if not keywords and message.key_words_lite:
|
||||
try:
|
||||
import orjson
|
||||
|
||||
keywords = orjson.loads(message.key_words_lite)
|
||||
if not isinstance(keywords, list):
|
||||
keywords = []
|
||||
except (orjson.JSONDecodeError, TypeError):
|
||||
keywords = []
|
||||
|
||||
# 如果还是没有,从消息内容中提取(降级方案)
|
||||
if not keywords:
|
||||
keywords = self._extract_keywords_from_content(message.processed_plain_text)
|
||||
|
||||
return keywords[:15] # 返回前15个关键词
|
||||
|
||||
def _extract_keywords_from_content(self, content: str) -> list[str]:
|
||||
"""从内容中提取关键词(降级方案)"""
|
||||
import re
|
||||
|
||||
# 清理文本
|
||||
content = re.sub(r"[^\w\s\u4e00-\u9fff]", " ", content) # 保留中文、英文、数字
|
||||
words = content.split()
|
||||
|
||||
# 过滤和关键词提取
|
||||
keywords = []
|
||||
for word in words:
|
||||
word = word.strip()
|
||||
if (
|
||||
len(word) >= 2 # 至少2个字符
|
||||
and word.isalnum() # 字母数字
|
||||
and not word.isdigit()
|
||||
): # 不是纯数字
|
||||
keywords.append(word.lower())
|
||||
|
||||
# 去重并限制数量
|
||||
unique_keywords = list(set(keywords))
|
||||
return unique_keywords[:10] # 返回前10个唯一关键词
|
||||
|
||||
async def _calculate_relationship_score(self, user_id: str) -> float:
|
||||
"""计算关系分 - 从数据库获取关系分"""
|
||||
# 优先使用内存中的关系分
|
||||
if user_id in self.user_relationships:
|
||||
relationship_value = self.user_relationships[user_id]
|
||||
return min(relationship_value, 1.0)
|
||||
|
||||
# 如果内存中没有,尝试从关系追踪器获取
|
||||
if hasattr(self, "relationship_tracker") and self.relationship_tracker:
|
||||
try:
|
||||
relationship_score = await self.relationship_tracker.get_user_relationship_score(user_id)
|
||||
# 同时更新内存缓存
|
||||
self.user_relationships[user_id] = relationship_score
|
||||
return relationship_score
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
# 尝试从全局关系追踪器获取
|
||||
try:
|
||||
from .relationship_tracker import ChatterRelationshipTracker
|
||||
|
||||
global_tracker = ChatterRelationshipTracker()
|
||||
if global_tracker:
|
||||
relationship_score = await global_tracker.get_user_relationship_score(user_id)
|
||||
# 同时更新内存缓存
|
||||
self.user_relationships[user_id] = relationship_score
|
||||
return relationship_score
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# 默认新用户的基础分
|
||||
return global_config.affinity_flow.base_relationship_score
|
||||
|
||||
def _calculate_mentioned_score(self, msg: DatabaseMessages, bot_nickname: str) -> float:
|
||||
"""计算提及分数"""
|
||||
if not msg.processed_plain_text:
|
||||
return 0.0
|
||||
|
||||
# 检查是否被提及
|
||||
bot_aliases = [bot_nickname, *global_config.bot.alias_names]
|
||||
is_mentioned = msg.is_mentioned or any(alias in msg.processed_plain_text for alias in bot_aliases if alias)
|
||||
|
||||
# 如果被提及或是私聊,都视为提及了bot
|
||||
if is_mentioned or not hasattr(msg, "chat_info_group_id"):
|
||||
return global_config.affinity_flow.mention_bot_interest_score
|
||||
|
||||
return 0.0
|
||||
|
||||
def should_reply(self, score: InterestScore, message: "DatabaseMessages") -> bool:
|
||||
"""判断是否应该回复"""
|
||||
base_threshold = self.reply_threshold
|
||||
|
||||
# 如果被提及,降低阈值
|
||||
if score.mentioned_score >= global_config.affinity_flow.mention_bot_adjustment_threshold:
|
||||
base_threshold = self.mention_threshold
|
||||
|
||||
# 计算连续不回复的概率提升
|
||||
probability_boost = min(self.no_reply_count * self.probability_boost_per_no_reply, 0.8)
|
||||
effective_threshold = base_threshold - probability_boost
|
||||
|
||||
# 做出决策
|
||||
should_reply = score.total_score >= effective_threshold
|
||||
decision = "回复" if should_reply else "不回复"
|
||||
logger.info(
|
||||
f"{SOFT_BLUE}决策: {decision} (兴趣度: {score.total_score:.3f} / 阈值: {effective_threshold:.3f}){RESET_COLOR}"
|
||||
)
|
||||
|
||||
return should_reply, score.total_score
|
||||
|
||||
def record_reply_action(self, did_reply: bool):
|
||||
"""记录回复动作"""
|
||||
old_count = self.no_reply_count
|
||||
if did_reply:
|
||||
self.no_reply_count = max(0, self.no_reply_count - global_config.affinity_flow.reply_cooldown_reduction)
|
||||
action = "回复"
|
||||
else:
|
||||
self.no_reply_count += 1
|
||||
action = "不回复"
|
||||
|
||||
# 限制最大计数
|
||||
self.no_reply_count = min(self.no_reply_count, self.max_no_reply_count)
|
||||
logger.info(f"动作: {action}, 连续不回复次数: {old_count} -> {self.no_reply_count}")
|
||||
|
||||
def update_user_relationship(self, user_id: str, relationship_change: float):
|
||||
"""更新用户关系"""
|
||||
old_score = self.user_relationships.get(
|
||||
user_id, global_config.affinity_flow.base_relationship_score
|
||||
) # 默认新用户分数
|
||||
new_score = max(0.0, min(1.0, old_score + relationship_change))
|
||||
|
||||
self.user_relationships[user_id] = new_score
|
||||
|
||||
logger.info(f"用户关系: {user_id} | {old_score:.3f} → {new_score:.3f}")
|
||||
|
||||
def get_user_relationship(self, user_id: str) -> float:
|
||||
"""获取用户关系分"""
|
||||
return self.user_relationships.get(user_id, 0.3)
|
||||
|
||||
def get_scoring_stats(self) -> dict:
|
||||
"""获取评分系统统计"""
|
||||
return {
|
||||
"no_reply_count": self.no_reply_count,
|
||||
"max_no_reply_count": self.max_no_reply_count,
|
||||
"reply_threshold": self.reply_threshold,
|
||||
"mention_threshold": self.mention_threshold,
|
||||
"user_relationships": len(self.user_relationships),
|
||||
}
|
||||
|
||||
def reset_stats(self):
|
||||
"""重置统计信息"""
|
||||
self.no_reply_count = 0
|
||||
logger.info("重置兴趣度评分系统统计")
|
||||
|
||||
async def initialize_smart_interests(self, personality_description: str, personality_id: str = "default"):
|
||||
"""初始化智能兴趣系统"""
|
||||
try:
|
||||
logger.info("开始初始化智能兴趣系统...")
|
||||
logger.info(f"人设ID: {personality_id}, 描述长度: {len(personality_description)}")
|
||||
|
||||
await bot_interest_manager.initialize(personality_description, personality_id)
|
||||
logger.info("智能兴趣系统初始化完成。")
|
||||
|
||||
# 显示初始化后的统计信息
|
||||
bot_interest_manager.get_interest_stats()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"初始化智能兴趣系统失败: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
def get_matching_config(self) -> dict[str, Any]:
|
||||
"""获取匹配配置信息"""
|
||||
return {
|
||||
"use_smart_matching": self.use_smart_matching,
|
||||
"smart_system_initialized": bot_interest_manager.is_initialized,
|
||||
"smart_system_stats": bot_interest_manager.get_interest_stats()
|
||||
if bot_interest_manager.is_initialized
|
||||
else None,
|
||||
}
|
||||
|
||||
|
||||
# 创建全局兴趣评分系统实例
|
||||
chatter_interest_scoring_system = ChatterInterestScoringSystem()
|
||||
@@ -27,7 +27,9 @@ class ChatterRelationshipTracker:
|
||||
self.update_interval_minutes = 30
|
||||
self.last_update_time = time.time()
|
||||
self.relationship_history: list[dict] = []
|
||||
self.interest_scoring_system = interest_scoring_system
|
||||
|
||||
# 兼容性:保留参数但不直接使用,转而使用统一API
|
||||
self.interest_scoring_system = None # 废弃,不再使用
|
||||
|
||||
# 用户关系缓存 (user_id -> {"relationship_text": str, "relationship_score": float, "last_tracked": float})
|
||||
self.user_relationship_cache: dict[str, dict] = {}
|
||||
@@ -63,8 +65,9 @@ class ChatterRelationshipTracker:
|
||||
)
|
||||
|
||||
def set_interest_scoring_system(self, interest_scoring_system):
|
||||
"""设置兴趣度评分系统引用"""
|
||||
self.interest_scoring_system = interest_scoring_system
|
||||
"""设置兴趣度评分系统引用(已废弃,使用统一API)"""
|
||||
# 不再需要设置,直接使用统一API
|
||||
logger.info("set_interest_scoring_system 已废弃,现在使用统一评分API")
|
||||
|
||||
def add_interaction(self, user_id: str, user_name: str, user_message: str, bot_reply: str, reply_timestamp: float):
|
||||
"""添加用户交互记录"""
|
||||
@@ -75,10 +78,10 @@ class ChatterRelationshipTracker:
|
||||
)
|
||||
del self.tracking_users[oldest_user]
|
||||
|
||||
# 获取当前关系分
|
||||
# 获取当前关系分 - 使用缓存数据
|
||||
current_relationship_score = global_config.affinity_flow.base_relationship_score # 默认值
|
||||
if self.interest_scoring_system:
|
||||
current_relationship_score = self.interest_scoring_system.get_user_relationship(user_id)
|
||||
if user_id in self.user_relationship_cache:
|
||||
current_relationship_score = self.user_relationship_cache[user_id].get("relationship_score", current_relationship_score)
|
||||
|
||||
self.tracking_users[user_id] = {
|
||||
"user_id": user_id,
|
||||
@@ -178,10 +181,11 @@ class ChatterRelationshipTracker:
|
||||
),
|
||||
)
|
||||
|
||||
if self.interest_scoring_system:
|
||||
self.interest_scoring_system.update_user_relationship(
|
||||
interaction["user_id"], new_score - interaction["current_relationship_score"]
|
||||
)
|
||||
# 使用统一API更新关系分
|
||||
from src.plugin_system.apis.scoring_api import scoring_api
|
||||
await scoring_api.update_user_relationship(
|
||||
interaction["user_id"], new_score
|
||||
)
|
||||
|
||||
return {
|
||||
"user_id": interaction["user_id"],
|
||||
@@ -252,12 +256,14 @@ class ChatterRelationshipTracker:
|
||||
self.update_interval_minutes = update_interval_minutes
|
||||
logger.info(f"更新关系更新间隔: {update_interval_minutes} 分钟")
|
||||
|
||||
def force_update_relationship(self, user_id: str, new_score: float, reasoning: str = ""):
|
||||
async def force_update_relationship(self, user_id: str, new_score: float, reasoning: str = ""):
|
||||
"""强制更新用户关系分"""
|
||||
if user_id in self.tracking_users:
|
||||
current_score = self.tracking_users[user_id]["current_relationship_score"]
|
||||
if self.interest_scoring_system:
|
||||
self.interest_scoring_system.update_user_relationship(user_id, new_score - current_score)
|
||||
|
||||
# 使用统一API更新关系分
|
||||
from src.plugin_system.apis.scoring_api import scoring_api
|
||||
await scoring_api.update_user_relationship(user_id, new_score)
|
||||
|
||||
update_info = {
|
||||
"user_id": user_id,
|
||||
@@ -605,9 +611,8 @@ class ChatterRelationshipTracker:
|
||||
"last_tracked": time.time(),
|
||||
}
|
||||
|
||||
# 如果有兴趣度评分系统,也更新内存中的关系分
|
||||
if self.interest_scoring_system:
|
||||
self.interest_scoring_system.update_user_relationship(user_id, new_score - current_score)
|
||||
# 使用统一API更新关系分(内存缓存已通过数据库更新自动处理)
|
||||
# 数据库更新后,缓存会在下次访问时自动同步
|
||||
|
||||
# 记录分析历史
|
||||
analysis_record = {
|
||||
|
||||
Reference in New Issue
Block a user