Merge remote-tracking branch 'upstream/debug' into debug
This commit is contained in:
@@ -13,6 +13,7 @@ from .willing_manager import willing_manager
|
||||
from nonebot.rule import to_me
|
||||
from .bot import chat_bot
|
||||
from .emoji_manager import emoji_manager
|
||||
import time
|
||||
|
||||
|
||||
# 获取驱动器
|
||||
@@ -86,31 +87,27 @@ async def _(bot: Bot):
|
||||
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
|
||||
await chat_bot.handle_message(event, bot)
|
||||
|
||||
'''
|
||||
@scheduler.scheduled_job("interval", seconds=300000, id="monitor_relationships")
|
||||
async def monitor_relationships():
|
||||
"""每15秒打印一次关系数据"""
|
||||
relationship_manager.print_all_relationships()
|
||||
'''
|
||||
|
||||
# 添加build_memory定时任务
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
|
||||
async def build_memory_task():
|
||||
"""每30秒执行一次记忆构建"""
|
||||
print("\033[1;32m[记忆构建]\033[0m 开始构建记忆...")
|
||||
await hippocampus.operation_build_memory(chat_size=30)
|
||||
print("\033[1;32m[记忆构建]\033[0m 记忆构建完成")
|
||||
print("\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------")
|
||||
start_time = time.time()
|
||||
await hippocampus.operation_build_memory(chat_size=20)
|
||||
end_time = time.time()
|
||||
print(f"\033[1;32m[记忆构建]\033[0m -------------------------------------------记忆构建完成:耗时: {end_time - start_time:.2f} 秒-------------------------------------------")
|
||||
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.forget_memory_interval, id="forget_memory")
|
||||
async def forget_memory_task():
|
||||
"""每30秒执行一次记忆构建"""
|
||||
print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
|
||||
await hippocampus.operation_forget_topic(percentage=0.1)
|
||||
print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
|
||||
# print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
|
||||
# await hippocampus.operation_forget_topic(percentage=0.1)
|
||||
# print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
|
||||
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval + 10, id="build_memory")
|
||||
async def build_memory_task():
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval + 10, id="merge_memory")
|
||||
async def merge_memory_task():
|
||||
"""每30秒执行一次记忆构建"""
|
||||
print("\033[1;32m[记忆整合]\033[0m 开始整合")
|
||||
await hippocampus.operation_merge_memory(percentage=0.1)
|
||||
print("\033[1;32m[记忆整合]\033[0m 记忆整合完成")
|
||||
# print("\033[1;32m[记忆整合]\033[0m 开始整合")
|
||||
# await hippocampus.operation_merge_memory(percentage=0.1)
|
||||
# print("\033[1;32m[记忆整合]\033[0m 记忆整合完成")
|
||||
|
||||
|
||||
@@ -69,11 +69,9 @@ class ChatBot:
|
||||
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
|
||||
|
||||
|
||||
identifier=topic_identifier.identify_topic()
|
||||
if global_config.topic_extract=='llm':
|
||||
topic=await identifier(message.processed_plain_text)
|
||||
else:
|
||||
topic=identifier(message.detailed_plain_text)
|
||||
|
||||
topic=await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
||||
|
||||
|
||||
# topic1 = topic_identifier.identify_topic_jieba(message.processed_plain_text)
|
||||
# topic2 = await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
||||
|
||||
@@ -26,7 +26,7 @@ class BotConfig:
|
||||
talk_frequency_down_groups = set()
|
||||
ban_user_id = set()
|
||||
|
||||
build_memory_interval: int = 60 # 记忆构建间隔(秒)
|
||||
build_memory_interval: int = 30 # 记忆构建间隔(秒)
|
||||
forget_memory_interval: int = 300 # 记忆遗忘间隔(秒)
|
||||
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
|
||||
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
|
||||
|
||||
@@ -95,7 +95,11 @@ class ResponseGenerator:
|
||||
# return None
|
||||
|
||||
# 生成回复
|
||||
content, reasoning_content = await model.generate_response(prompt)
|
||||
try:
|
||||
content, reasoning_content = await model.generate_response(prompt)
|
||||
except Exception as e:
|
||||
print(f"生成回复时出错: {e}")
|
||||
return None
|
||||
|
||||
# 保存到数据库
|
||||
self._save_to_db(
|
||||
|
||||
@@ -36,7 +36,9 @@ class PromptBuilder:
|
||||
|
||||
memory_prompt = ''
|
||||
start_time = time.time() # 记录开始时间
|
||||
topic = topic_identifier.identify_topic_jieba(message_txt)
|
||||
# topic = await topic_identifier.identify_topic_llm(message_txt)
|
||||
topic = topic_identifier.identify_topic_snownlp(message_txt)
|
||||
|
||||
# print(f"\033[1;32m[pb主题识别]\033[0m 主题: {topic}")
|
||||
|
||||
all_first_layer_items = [] # 存储所有第一层记忆
|
||||
@@ -64,15 +66,7 @@ class PromptBuilder:
|
||||
if overlap:
|
||||
# print(f"\033[1;32m[前额叶]\033[0m 发现主题 '{current_topic}' 和 '{other_topic}' 有共同的第二层记忆: {overlap}")
|
||||
overlapping_second_layer.update(overlap)
|
||||
|
||||
# 合并所有需要的记忆
|
||||
# if all_first_layer_items:
|
||||
# print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆1: {all_first_layer_items}")
|
||||
# if overlapping_second_layer:
|
||||
# print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆2: {list(overlapping_second_layer)}")
|
||||
|
||||
# 使用集合去重
|
||||
# 从每个来源随机选择2条记忆(如果有的话)
|
||||
|
||||
selected_first_layer = random.sample(all_first_layer_items, min(2, len(all_first_layer_items))) if all_first_layer_items else []
|
||||
selected_second_layer = random.sample(list(overlapping_second_layer), min(2, len(overlapping_second_layer))) if overlapping_second_layer else []
|
||||
|
||||
|
||||
@@ -15,16 +15,6 @@ class TopicIdentifier:
|
||||
self.llm_client = LLM_request(model=global_config.llm_topic_extract)
|
||||
self.select=global_config.topic_extract
|
||||
|
||||
def identify_topic(self):
|
||||
if self.select=='jieba':
|
||||
return self.identify_topic_jieba
|
||||
elif self.select=='snownlp':
|
||||
return self.identify_topic_snownlp
|
||||
elif self.select=='llm':
|
||||
return self.identify_topic_llm
|
||||
else:
|
||||
return self.identify_topic_snownlp
|
||||
|
||||
|
||||
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
|
||||
"""识别消息主题,返回主题列表"""
|
||||
@@ -48,56 +38,10 @@ class TopicIdentifier:
|
||||
|
||||
# 解析主题字符串为列表
|
||||
topic_list = [t.strip() for t in topic.split(",") if t.strip()]
|
||||
|
||||
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}")
|
||||
return topic_list if topic_list else None
|
||||
|
||||
def identify_topic_jieba(self, text: str) -> Optional[str]:
|
||||
"""使用jieba识别主题"""
|
||||
words = jieba.lcut(text)
|
||||
# 去除停用词和标点符号
|
||||
stop_words = {
|
||||
'的', '了', '和', '是', '就', '都', '而', '及', '与', '这', '那', '但', '然', '却',
|
||||
'因为', '所以', '如果', '虽然', '一个', '我', '你', '他', '她', '它', '我们', '你们',
|
||||
'他们', '在', '有', '个', '把', '被', '让', '给', '从', '向', '到', '又', '也', '很',
|
||||
'啊', '吧', '呢', '吗', '呀', '哦', '哈', '么', '嘛', '啦', '哎', '唉', '哇', '嗯',
|
||||
'哼', '哪', '什么', '怎么', '为什么', '怎样', '如何', '什么样', '这样', '那样', '这么',
|
||||
'那么', '多少', '几', '谁', '哪里', '哪儿', '什么时候', '何时', '为何', '怎么办',
|
||||
'怎么样', '这些', '那些', '一些', '一点', '一下', '一直', '一定', '一般', '一样',
|
||||
'一会儿', '一边', '一起',
|
||||
# 添加更多量词
|
||||
'个', '只', '条', '张', '片', '块', '本', '册', '页', '幅', '面', '篇', '份',
|
||||
'朵', '颗', '粒', '座', '幢', '栋', '间', '层', '家', '户', '位', '名', '群',
|
||||
'双', '对', '打', '副', '套', '批', '组', '串', '包', '箱', '袋', '瓶', '罐',
|
||||
# 添加更多介词
|
||||
'按', '按照', '把', '被', '比', '比如', '除', '除了', '当', '对', '对于',
|
||||
'根据', '关于', '跟', '和', '将', '经', '经过', '靠', '连', '论', '通过',
|
||||
'同', '往', '为', '为了', '围绕', '于', '由', '由于', '与', '在', '沿', '沿着',
|
||||
'依', '依照', '以', '因', '因为', '用', '由', '与', '自', '自从'
|
||||
}
|
||||
|
||||
# 过滤掉停用词和标点符号,只保留名词和动词
|
||||
filtered_words = []
|
||||
for word in words:
|
||||
if word not in stop_words and not word.strip() in {
|
||||
'。', ',', '、', ':', ';', '!', '?', '"', '"', ''', ''',
|
||||
'(', ')', '【', '】', '《', '》', '…', '—', '·', '、', '~',
|
||||
'~', '+', '=', '-', '/', '\\', '|', '*', '#', '@', '$', '%',
|
||||
'^', '&', '[', ']', '{', '}', '<', '>', '`', '_', '.', ',',
|
||||
';', ':', '\'', '"', '(', ')', '?', '!', '±', '×', '÷', '≠',
|
||||
'≈', '∈', '∉', '⊆', '⊇', '⊂', '⊃', '∪', '∩', '∧', '∨'
|
||||
}:
|
||||
filtered_words.append(word)
|
||||
|
||||
# 统计词频
|
||||
word_freq = {}
|
||||
for word in filtered_words:
|
||||
word_freq[word] = word_freq.get(word, 0) + 1
|
||||
|
||||
# 按词频排序,取前3个
|
||||
sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
|
||||
top_words = [word for word, freq in sorted_words[:3]]
|
||||
|
||||
return top_words if top_words else None
|
||||
|
||||
def identify_topic_snownlp(self, text: str) -> Optional[List[str]]:
|
||||
"""使用 SnowNLP 进行主题识别
|
||||
|
||||
@@ -113,7 +57,7 @@ class TopicIdentifier:
|
||||
try:
|
||||
s = SnowNLP(text)
|
||||
# 提取前3个关键词作为主题
|
||||
keywords = s.keywords(3)
|
||||
keywords = s.keywords(5)
|
||||
return keywords if keywords else None
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m SnowNLP 处理失败: {str(e)}")
|
||||
|
||||
@@ -75,13 +75,11 @@ def cosine_similarity(v1, v2):
|
||||
norm2 = np.linalg.norm(v2)
|
||||
return dot_product / (norm1 * norm2)
|
||||
|
||||
def calculate_information_content(text):
|
||||
def calculate_information_content(text):
|
||||
"""计算文本的信息量(熵)"""
|
||||
# 统计字符频率
|
||||
char_count = Counter(text)
|
||||
total_chars = len(text)
|
||||
|
||||
# 计算熵
|
||||
entropy = 0
|
||||
for count in char_count.values():
|
||||
probability = count / total_chars
|
||||
@@ -90,27 +88,37 @@ def calculate_information_content(text):
|
||||
return entropy
|
||||
|
||||
def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
# 从数据库中根据时间戳获取离其最近的聊天记录
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
|
||||
chat_text = ''
|
||||
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
|
||||
# print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
|
||||
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
|
||||
|
||||
if closest_record:
|
||||
if closest_record and closest_record.get('memorized', 0) < 4:
|
||||
closest_time = closest_record['time']
|
||||
group_id = closest_record['group_id'] # 获取groupid
|
||||
# 获取该时间戳之后的length条消息,且groupid相同
|
||||
chat_record = list(db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
|
||||
for record in chat_record:
|
||||
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
|
||||
try:
|
||||
displayname="[(%s)%s]%s" % (record["user_id"],record["user_nickname"],record["user_cardname"])
|
||||
except:
|
||||
displayname=record["user_nickname"] or "用户" + str(record["user_id"])
|
||||
chat_text += f'[{time_str}] {displayname}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
|
||||
chat_records = list(db.db.messages.find(
|
||||
{"time": {"$gt": closest_time}, "group_id": group_id}
|
||||
).sort('time', 1).limit(length))
|
||||
|
||||
# 更新每条消息的memorized属性
|
||||
for record in chat_records:
|
||||
# 检查当前记录的memorized值
|
||||
current_memorized = record.get('memorized', 0)
|
||||
if current_memorized > 3:
|
||||
# print(f"消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
# 更新memorized值
|
||||
db.db.messages.update_one(
|
||||
{"_id": record["_id"]},
|
||||
{"$set": {"memorized": current_memorized + 1}}
|
||||
)
|
||||
|
||||
chat_text += record["detailed_plain_text"]
|
||||
|
||||
return chat_text
|
||||
|
||||
return [] # 如果没有找到记录,返回空列表
|
||||
|
||||
print(f"消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
||||
"""从数据库获取群组最近的消息记录
|
||||
|
||||
@@ -52,8 +52,8 @@ class WillingManager:
|
||||
reply_probability = reply_probability / 3.5
|
||||
|
||||
reply_probability = min(reply_probability, 1)
|
||||
if reply_probability < 0.1:
|
||||
reply_probability = 0.1
|
||||
if reply_probability < 0:
|
||||
reply_probability = 0
|
||||
return reply_probability
|
||||
|
||||
def change_reply_willing_sent(self, group_id: int):
|
||||
|
||||
@@ -79,7 +79,7 @@ class KnowledgeLibrary:
|
||||
content = f.read()
|
||||
|
||||
# 按1024字符分段
|
||||
segments = [content[i:i+400] for i in range(0, len(content), 400)]
|
||||
segments = [content[i:i+600] for i in range(0, len(content), 600)]
|
||||
|
||||
# 处理每个分段
|
||||
for segment in segments:
|
||||
|
||||
@@ -9,8 +9,14 @@ import random
|
||||
import time
|
||||
from ..chat.config import global_config
|
||||
from ...common.database import Database # 使用正确的导入语法
|
||||
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
|
||||
from ..models.utils_model import LLM_request
|
||||
import math
|
||||
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class Memory_graph:
|
||||
def __init__(self):
|
||||
self.G = nx.Graph() # 使用 networkx 的图结构
|
||||
@@ -126,8 +132,8 @@ class Memory_graph:
|
||||
class Hippocampus:
|
||||
def __init__(self,memory_graph:Memory_graph):
|
||||
self.memory_graph = memory_graph
|
||||
self.llm_model = LLM_request(model = global_config.llm_normal,temperature=0.5)
|
||||
self.llm_model_small = LLM_request(model = global_config.llm_normal_minor,temperature=0.5)
|
||||
self.llm_model_get_topic = LLM_request(model = global_config.llm_normal_minor,temperature=0.5)
|
||||
self.llm_model_summary = LLM_request(model = global_config.llm_normal,temperature=0.5)
|
||||
|
||||
def calculate_node_hash(self, concept, memory_items):
|
||||
"""计算节点的特征值"""
|
||||
@@ -158,54 +164,75 @@ class Hippocampus:
|
||||
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
return chat_text
|
||||
return [text for text in chat_text if text]
|
||||
|
||||
async def memory_compress(self, input_text, rate=1):
|
||||
information_content = calculate_information_content(input_text)
|
||||
print(f"文本的信息量(熵): {information_content:.4f} bits")
|
||||
topic_num = max(1, min(5, int(information_content * rate / 4)))
|
||||
topic_prompt = find_topic(input_text, topic_num)
|
||||
topic_response = await self.llm_model.generate_response(topic_prompt)
|
||||
# 检查 topic_response 是否为元组
|
||||
if isinstance(topic_response, tuple):
|
||||
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
|
||||
else:
|
||||
topics = topic_response.split(",")
|
||||
compressed_memory = set()
|
||||
async def memory_compress(self, input_text, compress_rate=0.1):
|
||||
print(input_text)
|
||||
|
||||
#获取topics
|
||||
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
||||
topics_response = await self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||
# 修改话题处理逻辑
|
||||
print(f"话题: {topics_response[0]}")
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
print(f"话题: {topics}")
|
||||
|
||||
# 创建所有话题的请求任务
|
||||
tasks = []
|
||||
for topic in topics:
|
||||
topic_what_prompt = topic_what(input_text,topic)
|
||||
topic_what_response = await self.llm_model_small.generate_response(topic_what_prompt)
|
||||
compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
|
||||
topic_what_prompt = self.topic_what(input_text, topic)
|
||||
# 创建异步任务
|
||||
task = self.llm_model_summary.generate_response_async(topic_what_prompt)
|
||||
tasks.append((topic.strip(), task))
|
||||
|
||||
# 等待所有任务完成
|
||||
compressed_memory = set()
|
||||
for topic, task in tasks:
|
||||
response = await task
|
||||
if response:
|
||||
compressed_memory.add((topic, response[0]))
|
||||
|
||||
return compressed_memory
|
||||
|
||||
async def operation_build_memory(self,chat_size=12):
|
||||
#最近消息获取频率
|
||||
time_frequency = {'near':1,'mid':2,'far':2}
|
||||
def calculate_topic_num(self,text, compress_rate):
|
||||
"""计算文本的话题数量"""
|
||||
information_content = calculate_information_content(text)
|
||||
topic_by_length = text.count('\n')*compress_rate
|
||||
topic_by_information_content = max(1, min(5, int((information_content-3) * 2)))
|
||||
topic_num = int((topic_by_length + topic_by_information_content)/2)
|
||||
print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}")
|
||||
return topic_num
|
||||
|
||||
async def operation_build_memory(self,chat_size=20):
|
||||
# 最近消息获取频率
|
||||
time_frequency = {'near':2,'mid':4,'far':2}
|
||||
memory_sample = self.get_memory_sample(chat_size,time_frequency)
|
||||
# print(f"\033[1;32m[记忆构建]\033[0m 获取记忆样本: {memory_sample}")
|
||||
|
||||
for i, input_text in enumerate(memory_sample, 1):
|
||||
#加载进度可视化
|
||||
# 加载进度可视化
|
||||
all_topics = []
|
||||
progress = (i / len(memory_sample)) * 100
|
||||
bar_length = 30
|
||||
filled_length = int(bar_length * i // len(memory_sample))
|
||||
bar = '█' * filled_length + '-' * (bar_length - filled_length)
|
||||
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
|
||||
if input_text:
|
||||
# 生成压缩后记忆
|
||||
first_memory = set()
|
||||
first_memory = await self.memory_compress(input_text, 2.5)
|
||||
#将记忆加入到图谱中
|
||||
for topic, memory in first_memory:
|
||||
topics = segment_text(topic)
|
||||
print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
|
||||
for split_topic in topics:
|
||||
self.memory_graph.add_dot(split_topic,memory)
|
||||
for split_topic in topics:
|
||||
for other_split_topic in topics:
|
||||
if split_topic != other_split_topic:
|
||||
self.memory_graph.connect_dot(split_topic, other_split_topic)
|
||||
else:
|
||||
print(f"空消息 跳过")
|
||||
|
||||
# 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
|
||||
compressed_memory = set()
|
||||
compress_rate = 0.1
|
||||
compressed_memory = await self.memory_compress(input_text, compress_rate)
|
||||
print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
|
||||
|
||||
# 将记忆加入到图谱中
|
||||
for topic, memory in compressed_memory:
|
||||
print(f"\033[1;32m添加节点\033[0m: {topic}")
|
||||
self.memory_graph.add_dot(topic, memory)
|
||||
all_topics.append(topic) # 收集所有话题
|
||||
for i in range(len(all_topics)):
|
||||
for j in range(i + 1, len(all_topics)):
|
||||
print(f"\033[1;32m连接节点\033[0m: {all_topics[i]} 和 {all_topics[j]}")
|
||||
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
|
||||
|
||||
self.sync_memory_to_db()
|
||||
|
||||
def sync_memory_to_db(self):
|
||||
@@ -448,19 +475,19 @@ class Hippocampus:
|
||||
else:
|
||||
print("\n本次检查没有需要合并的节点")
|
||||
|
||||
def find_topic_llm(self,text, topic_num):
|
||||
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
|
||||
return prompt
|
||||
|
||||
def topic_what(self,text, topic):
|
||||
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
return prompt
|
||||
|
||||
|
||||
def segment_text(text):
|
||||
seg_text = list(jieba.cut(text))
|
||||
return seg_text
|
||||
|
||||
def find_topic(text, topic_num):
|
||||
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
|
||||
return prompt
|
||||
|
||||
def topic_what(text, topic):
|
||||
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
|
||||
return prompt
|
||||
|
||||
|
||||
from nonebot import get_driver
|
||||
driver = get_driver()
|
||||
|
||||
@@ -73,8 +73,6 @@ class Database:
|
||||
logger.error(f"初始化MongoDB失败: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
|
||||
def calculate_information_content(text):
|
||||
"""计算文本的信息量(熵)"""
|
||||
char_count = Counter(text)
|
||||
@@ -88,19 +86,36 @@ def calculate_information_content(text):
|
||||
return entropy
|
||||
|
||||
def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录"""
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
|
||||
chat_text = ''
|
||||
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
|
||||
|
||||
if closest_record:
|
||||
if closest_record and closest_record.get('memorized', 0) < 4:
|
||||
closest_time = closest_record['time']
|
||||
group_id = closest_record['group_id'] # 获取groupid
|
||||
# 获取该时间戳之后的length条消息,且groupid相同
|
||||
chat_record = list(db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
|
||||
for record in chat_record:
|
||||
chat_records = list(db.db.messages.find(
|
||||
{"time": {"$gt": closest_time}, "group_id": group_id}
|
||||
).sort('time', 1).limit(length))
|
||||
|
||||
# 更新每条消息的memorized属性
|
||||
for record in chat_records:
|
||||
# 检查当前记录的memorized值
|
||||
current_memorized = record.get('memorized', 0)
|
||||
if current_memorized > 3:
|
||||
print(f"消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
# 更新memorized值
|
||||
db.db.messages.update_one(
|
||||
{"_id": record["_id"]},
|
||||
{"$set": {"memorized": current_memorized + 1}}
|
||||
)
|
||||
|
||||
chat_text += record["detailed_plain_text"]
|
||||
|
||||
return chat_text
|
||||
|
||||
print(f"消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
class Memory_graph:
|
||||
@@ -186,24 +201,26 @@ class Hippocampus:
|
||||
self.memory_graph = memory_graph
|
||||
self.llm_model = LLMModel()
|
||||
self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
|
||||
self.llm_model_get_topic = LLMModel(model_name="Pro/Qwen/Qwen2.5-7B-Instruct")
|
||||
self.llm_model_summary = LLMModel(model_name="Qwen/Qwen2.5-32B-Instruct")
|
||||
|
||||
def get_memory_sample(self, chat_size=20, time_frequency:dict={'near':2,'mid':4,'far':3}):
|
||||
current_timestamp = datetime.datetime.now().timestamp()
|
||||
chat_text = []
|
||||
#短期:1h 中期:4h 长期:24h
|
||||
for _ in range(time_frequency.get('near')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(1, 3600) # 随机时间
|
||||
random_time = current_timestamp - random.randint(1, 3600*4) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
for _ in range(time_frequency.get('mid')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
|
||||
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
for _ in range(time_frequency.get('far')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
|
||||
random_time = current_timestamp - random.randint(3600*24, 3600*24*7) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
return chat_text
|
||||
return [chat for chat in chat_text if chat]
|
||||
|
||||
def calculate_topic_num(self,text, compress_rate):
|
||||
"""计算文本的话题数量"""
|
||||
@@ -219,8 +236,9 @@ class Hippocampus:
|
||||
|
||||
#获取topics
|
||||
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
||||
topics_response = await self.llm_model_small.generate_response_async(self.find_topic_llm(input_text, topic_num))
|
||||
topics = topics_response[0].split(",")
|
||||
topics_response = await self.llm_model_get_topic.generate_response_async(self.find_topic_llm(input_text, topic_num))
|
||||
# 修改话题处理逻辑
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
print(f"话题: {topics}")
|
||||
|
||||
# 创建所有话题的请求任务
|
||||
@@ -241,57 +259,41 @@ class Hippocampus:
|
||||
return compressed_memory
|
||||
|
||||
async def operation_build_memory(self, chat_size=12):
|
||||
#最近消息获取频率
|
||||
time_frequency = {'near':1,'mid':2,'far':2}
|
||||
memory_sample = self.get_memory_sample(chat_size,time_frequency)
|
||||
# 最近消息获取频率
|
||||
time_frequency = {'near': 3, 'mid': 8, 'far': 5}
|
||||
memory_sample = self.get_memory_sample(chat_size, time_frequency)
|
||||
|
||||
all_topics = [] # 用于存储所有话题
|
||||
|
||||
for i, input_text in enumerate(memory_sample, 1):
|
||||
#加载进度可视化
|
||||
# 加载进度可视化
|
||||
all_topics = []
|
||||
progress = (i / len(memory_sample)) * 100
|
||||
bar_length = 30
|
||||
filled_length = int(bar_length * i // len(memory_sample))
|
||||
bar = '█' * filled_length + '-' * (bar_length - filled_length)
|
||||
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
|
||||
|
||||
# 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
|
||||
compressed_memory = set()
|
||||
compress_rate = 0.1
|
||||
compressed_memory = await self.memory_compress(input_text, compress_rate)
|
||||
print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
|
||||
|
||||
if input_text:
|
||||
# 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
|
||||
compressed_memory = set()
|
||||
compress_rate = 0.15
|
||||
compressed_memory = await self.memory_compress(input_text,compress_rate)
|
||||
print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
|
||||
# 将记忆加入到图谱中
|
||||
for topic, memory in compressed_memory:
|
||||
print(f"\033[1;32m添加节点\033[0m: {topic}")
|
||||
self.memory_graph.add_dot(topic, memory)
|
||||
all_topics.append(topic) # 收集所有话题
|
||||
for i in range(len(all_topics)):
|
||||
for j in range(i + 1, len(all_topics)):
|
||||
print(f"\033[1;32m连接节点\033[0m: {all_topics[i]} 和 {all_topics[j]}")
|
||||
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
|
||||
|
||||
|
||||
#将记忆加入到图谱中
|
||||
for topic, memory in compressed_memory:
|
||||
# 将jieba分词结果转换为列表以便多次使用
|
||||
topics = list(jieba.cut(topic))
|
||||
print(f"\033[1;34m话题\033[0m: {topic}")
|
||||
print(f"\033[1;34m分词结果\033[0m: {topics}")
|
||||
print(f"\033[1;34m记忆\033[0m: {memory}")
|
||||
|
||||
# 如果分词结果少于2个词,跳过连接
|
||||
if len(topics) < 2:
|
||||
print(f"\033[1;31m分词结果少于2个词,跳过连接\033[0m")
|
||||
# 仍然添加单个节点
|
||||
for split_topic in topics:
|
||||
self.memory_graph.add_dot(split_topic, memory)
|
||||
continue
|
||||
|
||||
# 先添加所有节点
|
||||
for split_topic in topics:
|
||||
print(f"\033[1;32m添加节点\033[0m: {split_topic}")
|
||||
self.memory_graph.add_dot(split_topic, memory)
|
||||
|
||||
# 再添加节点之间的连接
|
||||
for i, split_topic in enumerate(topics):
|
||||
for j, other_split_topic in enumerate(topics):
|
||||
if i < j: # 只连接一次,避免重复连接
|
||||
print(f"\033[1;32m连接节点\033[0m: {split_topic} 和 {other_split_topic}")
|
||||
self.memory_graph.connect_dot(split_topic, other_split_topic)
|
||||
else:
|
||||
print(f"空消息 跳过")
|
||||
|
||||
# 每处理完一条消息就同步一次到数据库
|
||||
self.sync_memory_to_db_2()
|
||||
|
||||
self.sync_memory_to_db()
|
||||
|
||||
def sync_memory_from_db(self):
|
||||
"""
|
||||
@@ -344,7 +346,7 @@ class Hippocampus:
|
||||
nodes = sorted([source, target])
|
||||
return hash(f"{nodes[0]}:{nodes[1]}")
|
||||
|
||||
def sync_memory_to_db_2(self):
|
||||
def sync_memory_to_db(self):
|
||||
"""
|
||||
检查并同步内存中的图结构与数据库
|
||||
使用特征值(哈希值)快速判断是否需要更新
|
||||
@@ -448,11 +450,13 @@ class Hippocampus:
|
||||
logger.success("完成记忆图谱与数据库的差异同步")
|
||||
|
||||
def find_topic_llm(self,text, topic_num):
|
||||
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
|
||||
# prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
|
||||
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
|
||||
return prompt
|
||||
|
||||
def topic_what(self,text, topic):
|
||||
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
# prompt = f'这是一段文字:{text}。我想知道这段文字里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
return prompt
|
||||
|
||||
def remove_node_from_db(self, topic):
|
||||
@@ -557,7 +561,7 @@ class Hippocampus:
|
||||
|
||||
# 同步到数据库
|
||||
if forgotten_nodes:
|
||||
self.sync_memory_to_db_2()
|
||||
self.sync_memory_to_db()
|
||||
logger.info(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆")
|
||||
else:
|
||||
logger.info("本次检查没有节点满足遗忘条件")
|
||||
@@ -632,7 +636,7 @@ class Hippocampus:
|
||||
|
||||
# 同步到数据库
|
||||
if merged_nodes:
|
||||
self.sync_memory_to_db_2()
|
||||
self.sync_memory_to_db()
|
||||
print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点")
|
||||
else:
|
||||
print("\n本次检查没有需要合并的节点")
|
||||
@@ -667,7 +671,7 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
|
||||
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
|
||||
# 使用指数函数使变化更明显
|
||||
ratio = memory_count / max_memories
|
||||
size = 500 + 5000 * (ratio ** 2) # 使用平方函数使差异更明显
|
||||
size = 400 + 2000 * (ratio ** 2) # 增大节点大小
|
||||
node_sizes.append(size)
|
||||
|
||||
# 计算节点颜色(基于连接数)
|
||||
@@ -682,45 +686,22 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
|
||||
blue = max(0.0, 1.0 - color_ratio)
|
||||
node_colors.append((red, 0, blue))
|
||||
|
||||
# 获取边的权重和透明度
|
||||
edge_colors = []
|
||||
max_strength = 1
|
||||
|
||||
# 找出最大强度值
|
||||
for (u, v) in H.edges():
|
||||
strength = H[u][v].get('strength', 1)
|
||||
max_strength = max(max_strength, strength)
|
||||
|
||||
# 创建边权重字典用于布局
|
||||
edge_weights = {}
|
||||
|
||||
# 计算每条边的透明度和权重
|
||||
for (u, v) in H.edges():
|
||||
strength = H[u][v].get('strength', 1)
|
||||
# 将强度映射到透明度范围 [0.05, 0.8]
|
||||
alpha = 0.02 + 0.55 * (strength / max_strength)
|
||||
# 使用统一的蓝色,但透明度不同
|
||||
edge_colors.append((0, 0, 1, alpha))
|
||||
# 设置边的权重(强度越大,权重越大,节点间距离越小)
|
||||
edge_weights[(u, v)] = strength
|
||||
|
||||
# 绘制图形
|
||||
plt.figure(figsize=(20, 16)) # 增加图形尺寸
|
||||
# 调整弹簧布局参数,使用边权重影响布局
|
||||
plt.figure(figsize=(16, 12)) # 减小图形尺寸
|
||||
pos = nx.spring_layout(H,
|
||||
k=2.0, # 增加节点间斥力
|
||||
k=1, # 调整节点间斥力
|
||||
iterations=100, # 增加迭代次数
|
||||
scale=2.0, # 增加布局尺寸
|
||||
scale=1.5, # 减小布局尺寸
|
||||
weight='strength') # 使用边的strength属性作为权重
|
||||
|
||||
nx.draw(H, pos,
|
||||
with_labels=True,
|
||||
node_color=node_colors,
|
||||
node_size=node_sizes,
|
||||
font_size=8, # 稍微减小字体大小
|
||||
font_size=12, # 保持增大的字体大小
|
||||
font_family='SimHei',
|
||||
font_weight='bold',
|
||||
edge_color=edge_colors,
|
||||
edge_color='gray',
|
||||
width=1.5) # 统一的边宽度
|
||||
|
||||
title = '记忆图谱可视化 - 节点大小表示记忆数量\n节点颜色:蓝(弱连接)到红(强连接)渐变,边的透明度表示连接强度\n连接强度越大的节点距离越近'
|
||||
@@ -733,7 +714,7 @@ async def main():
|
||||
db = Database.get_instance()
|
||||
start_time = time.time()
|
||||
|
||||
test_pare = {'do_build_memory':False,'do_forget_topic':True,'do_visualize_graph':True,'do_query':False,'do_merge_memory':True}
|
||||
test_pare = {'do_build_memory':True,'do_forget_topic':False,'do_visualize_graph':True,'do_query':False,'do_merge_memory':False}
|
||||
|
||||
# 创建记忆图
|
||||
memory_graph = Memory_graph()
|
||||
@@ -750,11 +731,11 @@ async def main():
|
||||
# 构建记忆
|
||||
if test_pare['do_build_memory']:
|
||||
logger.info("开始构建记忆...")
|
||||
chat_size = 25
|
||||
chat_size = 20
|
||||
await hippocampus.operation_build_memory(chat_size=chat_size)
|
||||
|
||||
end_time = time.time()
|
||||
logger.info(f"\033[32m[构建记忆耗时: {end_time - start_time:.2f} 秒,chat_size={chat_size},chat_count = {chat_size}]\033[0m")
|
||||
logger.info(f"\033[32m[构建记忆耗时: {end_time - start_time:.2f} 秒,chat_size={chat_size},chat_count = 16]\033[0m")
|
||||
|
||||
if test_pare['do_forget_topic']:
|
||||
logger.info("开始遗忘记忆...")
|
||||
|
||||
@@ -55,6 +55,10 @@ class LLM_request:
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
|
||||
if response.status in [500, 503]:
|
||||
logger.error(f"服务器错误: {response.status}")
|
||||
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
|
||||
@@ -171,6 +175,61 @@ class LLM_request:
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
||||
|
||||
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
|
||||
"""异步方式根据输入的提示生成模型的响应"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# 构建请求体
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": 0.5,
|
||||
**self.params
|
||||
}
|
||||
|
||||
# 发送请求到完整的 chat/completions 端点
|
||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||||
logger.info(f"Request URL: {api_url}") # 记录请求的 URL
|
||||
|
||||
max_retries = 3
|
||||
base_wait_time = 15
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
async with session.post(api_url, headers=headers, json=data) as response:
|
||||
if response.status == 429:
|
||||
wait_time = base_wait_time * (2 ** retry) # 指数退避
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
|
||||
result = await response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
content = result["choices"][0]["message"]["content"]
|
||||
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
|
||||
return content, reasoning_content
|
||||
return "没有返回结果", ""
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1: # 如果还有重试机会
|
||||
wait_time = base_wait_time * (2 ** retry)
|
||||
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.error(f"请求失败: {str(e)}")
|
||||
return f"请求失败: {str(e)}", ""
|
||||
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
return "达到最大重试次数,请求仍然失败", ""
|
||||
|
||||
|
||||
|
||||
def generate_response_for_image_sync(self, prompt: str, image_base64: str) -> Tuple[str, str]:
|
||||
"""同步方法:根据输入的提示和图片生成模型的响应"""
|
||||
headers = {
|
||||
|
||||
Reference in New Issue
Block a user