fix:小小拆分

This commit is contained in:
SengokuCola
2025-06-24 02:15:25 +08:00
parent e114d4d54f
commit 8a6b8118de
2 changed files with 512 additions and 495 deletions

View File

@@ -0,0 +1,510 @@
import random
import time
import json
from typing import Tuple
# 导入新插件系统
from src.plugin_system import BaseAction, ActionActivationType, ChatMode
# 导入依赖的系统组件
from src.common.logger import get_logger
# 导入API模块 - 标准Python包方式
from src.plugin_system.apis import message_api, llm_api
from src.config.config import global_config
from datetime import datetime
from json_repair import repair_json
logger = get_logger("core_actions")
class NoReplyAction(BaseAction):
"""不回复动作,使用智能判断机制决定何时结束等待
新的等待逻辑:
- 每0.2秒检查是否有新消息(提高响应性)
- 如果累计消息数量达到阈值默认20条直接结束等待
- 有新消息时进行LLM判断但最快1秒一次防止过于频繁
- 如果判断需要回复,则结束等待;否则继续等待
- 达到最大超时时间后强制结束
"""
focus_activation_type = ActionActivationType.ALWAYS
# focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.NEVER
mode_enable = ChatMode.FOCUS
parallel_action = False
# 动作基本信息
action_name = "no_reply"
action_description = "暂时不回复消息"
# 连续no_reply计数器
_consecutive_count = 0
# LLM判断的最小间隔时间
_min_judge_interval = 1.0 # 最快1秒一次LLM判断
# 自动结束的消息数量阈值
_auto_exit_message_count = 20 # 累计20条消息自动结束
# 最大等待超时时间
_max_timeout = 1200 # 1200秒
# 跳过LLM判断的配置
_skip_judge_when_tired = True
_skip_probability = 0.5
# 新增:回复频率退出专注模式的配置
_frequency_check_window = 600 # 频率检查窗口时间(秒)
# 动作参数定义
action_parameters = {"reason": "不回复的原因"}
# 动作使用场景
action_require = ["你发送了消息,目前无人回复"]
# 关联类型
associated_types = []
async def execute(self) -> Tuple[bool, str]:
"""执行不回复动作有新消息时进行判断但最快1秒一次"""
import asyncio
try:
# 增加连续计数
NoReplyAction._consecutive_count += 1
count = NoReplyAction._consecutive_count
reason = self.action_data.get("reason", "")
start_time = time.time()
last_judge_time = 0 # 上次进行LLM判断的时间
min_judge_interval = self._min_judge_interval # 最小判断间隔,从配置获取
check_interval = 0.2 # 检查新消息的间隔设为0.2秒提高响应性
# 累积判断历史
judge_history = [] # 存储每次判断的结果和理由
# 获取no_reply开始时的上下文消息10条用于后续记录
context_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=start_time - 600, # 获取开始前10分钟内的消息
end_time=start_time,
limit=10,
limit_mode="latest",
)
# 构建上下文字符串
context_str = ""
if context_messages:
context_str = message_api.build_readable_messages(
messages=context_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=True
)
context_str = f"当时选择no_reply前的聊天上下文\n{context_str}\n"
logger.info(f"{self.log_prefix} 选择不回复(第{count}次),开始智能等待,原因: {reason}")
while True:
current_time = time.time()
elapsed_time = current_time - start_time
# 检查是否超时
if elapsed_time >= self._max_timeout:
logger.info(f"{self.log_prefix} 达到最大等待时间{self._max_timeout}秒,结束等待")
exit_reason = (
f"{global_config.bot.nickname}(你)等待了{self._max_timeout}秒,可以考虑一下是否要进行回复"
)
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=exit_reason,
action_done=True,
)
return True, exit_reason
# **新增**:检查回复频率,决定是否退出专注模式
should_exit_focus = await self._check_frequency_and_exit_focus(current_time)
if should_exit_focus:
logger.info(f"{self.log_prefix} 检测到回复频率过高,退出专注模式")
# 标记退出专注模式
self.action_data["_system_command"] = "stop_focus_chat"
exit_reason = f"{global_config.bot.nickname}(你)发现自己回复太频繁了,决定退出专注模式,稍作休息"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=exit_reason,
action_done=True,
)
return True, exit_reason
# 检查是否有新消息
new_message_count = message_api.count_new_messages(
chat_id=self.chat_id, start_time=start_time, end_time=current_time
)
# 如果累计消息数量达到阈值,直接结束等待
if new_message_count >= self._auto_exit_message_count:
logger.info(f"{self.log_prefix} 累计消息数量达到{new_message_count}条,直接结束等待")
exit_reason = f"{global_config.bot.nickname}(你)看到了{new_message_count}条新消息,可以考虑一下是否要进行回复"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=exit_reason,
action_done=True,
)
return True, f"累计消息数量达到{new_message_count}条,直接结束等待 (等待时间: {elapsed_time:.1f}秒)"
# 判定条件累计3条消息或等待超过5秒且有新消息
time_since_last_judge = current_time - last_judge_time
should_judge = (
new_message_count >= 3 # 累计3条消息
or (new_message_count > 0 and time_since_last_judge >= 5.0) # 等待超过5秒且有新消息
)
if should_judge and time_since_last_judge >= min_judge_interval:
# 判断触发原因
trigger_reason = ""
if new_message_count >= 3:
trigger_reason = f"累计{new_message_count}条消息"
elif time_since_last_judge >= 5.0:
trigger_reason = f"等待{time_since_last_judge:.1f}秒且有{new_message_count}条新消息"
logger.info(f"{self.log_prefix} 触发判定({trigger_reason}),进行智能判断...")
# 获取最近的消息内容用于判断
recent_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=start_time,
end_time=current_time,
)
if recent_messages:
# 使用message_api构建可读的消息字符串
messages_text = message_api.build_readable_messages(
messages=recent_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=False
)
# 参考simple_planner构建更完整的判断信息
# 获取时间信息
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
# 获取身份信息
bot_name = global_config.bot.nickname
bot_nickname = ""
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
bot_core_personality = global_config.personality.personality_core
identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}"
# 构建判断历史字符串最多显示3条
history_block = ""
if judge_history:
history_block = "之前的判断历史:\n"
# 只取最近的3条历史记录
recent_history = judge_history[-3:] if len(judge_history) > 3 else judge_history
for i, (timestamp, judge_result, reason) in enumerate(recent_history, 1):
elapsed_seconds = int(timestamp - start_time)
history_block += f"{i}. 等待{elapsed_seconds}秒时判断:{judge_result},理由:{reason}\n"
history_block += "\n"
# 检查过去10分钟的发言频率
frequency_block = ""
should_skip_llm_judge = False # 是否跳过LLM判断
try:
# 获取过去10分钟的所有消息
past_10min_time = current_time - 600 # 10分钟前
all_messages_10min = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=past_10min_time,
end_time=current_time,
)
# 手动过滤bot自己的消息
bot_message_count = 0
if all_messages_10min:
user_id = global_config.bot.qq_account
for message in all_messages_10min:
# 检查消息发送者是否是bot
sender_id = message.get("user_id", "")
if sender_id == user_id:
bot_message_count += 1
talk_frequency_threshold = global_config.chat.talk_frequency * 10
if bot_message_count > talk_frequency_threshold:
over_count = bot_message_count - talk_frequency_threshold
# 根据超过的数量设置不同的提示词和跳过概率
skip_probability = 0
if over_count <= 3:
frequency_block = "你感觉稍微有些累,回复的有点多了。\n"
elif over_count <= 5:
frequency_block = "你今天说话比较多,感觉有点疲惫,想要稍微休息一下。\n"
else:
frequency_block = "你发现自己说话太多了,感觉很累,想要安静一会儿,除非有重要的事情否则不想回复。\n"
skip_probability = self._skip_probability
# 根据配置和概率决定是否跳过LLM判断
if self._skip_judge_when_tired and random.random() < skip_probability:
should_skip_llm_judge = True
logger.info(
f"{self.log_prefix} 发言过多(超过{over_count}条)随机决定跳过此次LLM判断(概率{skip_probability * 100:.0f}%)"
)
logger.info(
f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,超过阈值{talk_frequency_threshold},添加疲惫提示"
)
else:
# 回复次数少时的正向提示
under_count = talk_frequency_threshold - bot_message_count
if under_count >= talk_frequency_threshold * 0.8: # 回复很少少于20%
frequency_block = "你感觉精力充沛,状态很好。\n"
elif under_count >= talk_frequency_threshold * 0.5: # 回复较少少于50%
frequency_block = "你感觉状态不错。\n"
else: # 刚好达到阈值
frequency_block = ""
logger.info(
f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,未超过阈值{talk_frequency_threshold},添加正向提示"
)
except Exception as e:
logger.warning(f"{self.log_prefix} 检查发言频率时出错: {e}")
frequency_block = ""
# 如果决定跳过LLM判断直接更新时间并继续等待
if should_skip_llm_judge:
last_judge_time = time.time() # 更新判断时间,避免立即重新判断
start_time = current_time # 更新开始时间,避免重复计算同样的消息
continue # 跳过本次LLM判断继续循环等待
# 构建判断上下文
judge_prompt = f"""
{time_block}
{identity_block}
你现在正在QQ群参与聊天以下是聊天内容
{context_str}
在以上的聊天中,你选择了暂时不回复,现在,你看到了新的聊天消息如下:
{messages_text}
{history_block}
请注意:{frequency_block}
请你判断,是否要结束不回复的状态,重新加入聊天讨论。
判断标准:
1. 如果有人直接@你、提到你的名字或明确向你询问,应该回复
2. 如果话题发生重要变化,需要你参与讨论,应该回复
3. 如果只是普通闲聊、重复内容或与你无关的讨论,不需要回复
4. 如果消息内容过于简单(如单纯的表情、"哈哈"等),不需要回复
5. 参考之前的判断历史,如果情况有明显变化或持续等待时间过长,考虑调整判断
请用JSON格式回复你的判断严格按照以下格式
{{
"should_reply": true/false,
"reason": "详细说明你的判断理由"
}}
"""
try:
# 获取可用的模型配置
available_models = llm_api.get_available_models()
# 使用 utils_small 模型
small_model = getattr(available_models, "utils_small", None)
print(judge_prompt)
if small_model:
# 使用小模型进行判断
success, response, reasoning, model_name = await llm_api.generate_with_model(
prompt=judge_prompt,
model_config=small_model,
request_type="plugin.no_reply_judge",
temperature=0.7, # 进一步降低温度提高JSON输出的一致性和准确性
)
# 更新上次判断时间
last_judge_time = time.time()
if success and response:
response = response.strip()
logger.info(f"{self.log_prefix} 模型({model_name})原始JSON响应: {response}")
# 解析LLM的JSON响应提取判断结果和理由
judge_result, reason = self._parse_llm_judge_response(response)
logger.info(
f"{self.log_prefix} JSON解析结果 - 判断: {judge_result}, 理由: {reason}"
)
# 将判断结果保存到历史中
judge_history.append((current_time, judge_result, reason))
if judge_result == "需要回复":
logger.info(f"{self.log_prefix} 模型判断需要回复,结束等待")
full_prompt = f"{global_config.bot.nickname}(你)的想法是:{reason}"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=full_prompt,
action_done=True,
)
return True, f"检测到需要回复的消息,结束等待 (等待时间: {elapsed_time:.1f}秒)"
else:
logger.info(f"{self.log_prefix} 模型判断不需要回复,理由: {reason},继续等待")
# 更新开始时间,避免重复判断同样的消息
start_time = current_time
else:
logger.warning(f"{self.log_prefix} 模型判断失败,继续等待")
else:
logger.warning(f"{self.log_prefix} 未找到可用的模型配置,继续等待")
last_judge_time = time.time() # 即使失败也更新时间,避免频繁重试
except Exception as e:
logger.error(f"{self.log_prefix} 模型判断异常: {e},继续等待")
last_judge_time = time.time() # 异常时也更新时间,避免频繁重试
# 每10秒输出一次等待状态
if int(elapsed_time) % 10 == 0 and int(elapsed_time) > 0:
logger.info(f"{self.log_prefix} 已等待{elapsed_time:.0f}秒,等待新消息...")
await asyncio.sleep(1)
# 短暂等待后继续检查
await asyncio.sleep(check_interval)
except Exception as e:
logger.error(f"{self.log_prefix} 不回复动作执行失败: {e}")
# 即使执行失败也要记录
exit_reason = f"执行异常: {str(e)}"
full_prompt = f"{context_str}{exit_reason},你思考是否要进行回复"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=full_prompt,
action_done=True,
)
return False, f"不回复动作执行失败: {e}"
async def _check_frequency_and_exit_focus(self, current_time: float) -> bool:
"""检查回复频率,决定是否退出专注模式
Args:
current_time: 当前时间戳
Returns:
bool: 是否应该退出专注模式
"""
try:
# 只在auto模式下进行频率检查
if global_config.chat.chat_mode != "auto":
return False
# 获取检查窗口内的所有消息
window_start_time = current_time - self._frequency_check_window
all_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=window_start_time,
end_time=current_time,
)
if not all_messages:
return False
# 统计bot自己的回复数量
bot_message_count = 0
user_id = global_config.bot.qq_account
for message in all_messages:
sender_id = message.get("user_id", "")
if sender_id == user_id:
bot_message_count += 1
# 计算当前回复频率(每分钟回复数)
window_minutes = self._frequency_check_window / 60
current_frequency = bot_message_count / window_minutes
# 计算阈值频率:使用 exit_focus_threshold * 1.5
threshold_multiplier = global_config.chat.exit_focus_threshold * 1.5
threshold_frequency = global_config.chat.talk_frequency * threshold_multiplier
# 判断是否超过阈值
if current_frequency > threshold_frequency:
logger.info(
f"{self.log_prefix} 回复频率检查:当前频率 {current_frequency:.2f}/分钟,超过阈值 {threshold_frequency:.2f}/分钟 (exit_threshold={global_config.chat.exit_focus_threshold} * 1.5),准备退出专注模式"
)
return True
else:
logger.debug(
f"{self.log_prefix} 回复频率检查:当前频率 {current_frequency:.2f}/分钟,未超过阈值 {threshold_frequency:.2f}/分钟 (exit_threshold={global_config.chat.exit_focus_threshold} * 1.5)"
)
return False
except Exception as e:
logger.error(f"{self.log_prefix} 检查回复频率时出错: {e}")
return False
def _parse_llm_judge_response(self, response: str) -> tuple[str, str]:
"""解析LLM判断响应使用JSON格式提取判断结果和理由
Args:
response: LLM的原始JSON响应
Returns:
tuple: (判断结果, 理由)
"""
try:
# 使用repair_json修复可能有问题的JSON格式
fixed_json_string = repair_json(response)
logger.debug(f"{self.log_prefix} repair_json修复后的响应: {fixed_json_string}")
# 如果repair_json返回的是字符串需要解析为Python对象
if isinstance(fixed_json_string, str):
result_json = json.loads(fixed_json_string)
else:
# 如果repair_json直接返回了字典对象直接使用
result_json = fixed_json_string
# 从JSON中提取判断结果和理由
should_reply = result_json.get("should_reply", False)
reason = result_json.get("reason", "无法获取判断理由")
# 转换布尔值为中文字符串
judge_result = "需要回复" if should_reply else "不需要回复"
logger.debug(f"{self.log_prefix} JSON解析成功 - 判断: {judge_result}, 理由: {reason}")
return judge_result, reason
except (json.JSONDecodeError, KeyError, TypeError) as e:
logger.warning(f"{self.log_prefix} JSON解析失败尝试文本解析: {e}")
# 如果JSON解析失败回退到简单的关键词匹配
try:
response_lower = response.lower()
if "true" in response_lower or "需要回复" in response:
judge_result = "需要回复"
reason = "从响应文本中检测到需要回复的指示"
elif "false" in response_lower or "不需要回复" in response:
judge_result = "不需要回复"
reason = "从响应文本中检测到不需要回复的指示"
else:
judge_result = "不需要回复" # 默认值
reason = f"无法解析响应格式,使用默认判断。原始响应: {response[:100]}..."
logger.debug(f"{self.log_prefix} 文本解析结果 - 判断: {judge_result}, 理由: {reason}")
return judge_result, reason
except Exception as fallback_e:
logger.error(f"{self.log_prefix} 文本解析也失败: {fallback_e}")
return "不需要回复", f"解析异常: {str(e)}, 回退解析也失败: {str(fallback_e)}"
except Exception as e:
logger.error(f"{self.log_prefix} 解析LLM响应时出错: {e}")
return "不需要回复", f"解析异常: {str(e)}"
@classmethod
def reset_consecutive_count(cls):
"""重置连续计数器"""
cls._consecutive_count = 0
logger.debug("NoReplyAction连续计数器已重置")

View File

@@ -7,7 +7,6 @@
import random import random
import time import time
import json
from typing import List, Tuple, Type from typing import List, Tuple, Type
# 导入新插件系统 # 导入新插件系统
@@ -18,10 +17,8 @@ from src.plugin_system.base.config_types import ConfigField
from src.common.logger import get_logger from src.common.logger import get_logger
# 导入API模块 - 标准Python包方式 # 导入API模块 - 标准Python包方式
from src.plugin_system.apis import emoji_api, generator_api, message_api, llm_api from src.plugin_system.apis import emoji_api, generator_api, message_api
from src.config.config import global_config from src.plugins.built_in.core_actions.no_reply import NoReplyAction
from datetime import datetime
from json_repair import repair_json
logger = get_logger("core_actions") logger = get_logger("core_actions")
@@ -112,496 +109,6 @@ class ReplyAction(BaseAction):
return False, f"回复失败: {str(e)}" return False, f"回复失败: {str(e)}"
class NoReplyAction(BaseAction):
"""不回复动作,使用智能判断机制决定何时结束等待
新的等待逻辑:
- 每0.2秒检查是否有新消息(提高响应性)
- 如果累计消息数量达到阈值默认20条直接结束等待
- 有新消息时进行LLM判断但最快1秒一次防止过于频繁
- 如果判断需要回复,则结束等待;否则继续等待
- 达到最大超时时间后强制结束
"""
focus_activation_type = ActionActivationType.ALWAYS
# focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.NEVER
mode_enable = ChatMode.FOCUS
parallel_action = False
# 动作基本信息
action_name = "no_reply"
action_description = "暂时不回复消息"
# 连续no_reply计数器
_consecutive_count = 0
# LLM判断的最小间隔时间
_min_judge_interval = 1.0 # 最快1秒一次LLM判断
# 自动结束的消息数量阈值
_auto_exit_message_count = 20 # 累计20条消息自动结束
# 最大等待超时时间
_max_timeout = 1200 # 1200秒
# 跳过LLM判断的配置
_skip_judge_when_tired = True
_skip_probability = 0.5
# 新增:回复频率退出专注模式的配置
_frequency_check_window = 600 # 频率检查窗口时间(秒)
# 动作参数定义
action_parameters = {"reason": "不回复的原因"}
# 动作使用场景
action_require = ["你发送了消息,目前无人回复"]
# 关联类型
associated_types = []
async def execute(self) -> Tuple[bool, str]:
"""执行不回复动作有新消息时进行判断但最快1秒一次"""
import asyncio
try:
# 增加连续计数
NoReplyAction._consecutive_count += 1
count = NoReplyAction._consecutive_count
reason = self.action_data.get("reason", "")
start_time = time.time()
last_judge_time = 0 # 上次进行LLM判断的时间
min_judge_interval = self._min_judge_interval # 最小判断间隔,从配置获取
check_interval = 0.2 # 检查新消息的间隔设为0.2秒提高响应性
# 累积判断历史
judge_history = [] # 存储每次判断的结果和理由
# 获取no_reply开始时的上下文消息10条用于后续记录
context_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=start_time - 600, # 获取开始前10分钟内的消息
end_time=start_time,
limit=10,
limit_mode="latest",
)
# 构建上下文字符串
context_str = ""
if context_messages:
context_str = message_api.build_readable_messages(
messages=context_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=True
)
context_str = f"当时选择no_reply前的聊天上下文\n{context_str}\n"
logger.info(f"{self.log_prefix} 选择不回复(第{count}次),开始智能等待,原因: {reason}")
while True:
current_time = time.time()
elapsed_time = current_time - start_time
# 检查是否超时
if elapsed_time >= self._max_timeout:
logger.info(f"{self.log_prefix} 达到最大等待时间{self._max_timeout}秒,结束等待")
exit_reason = (
f"{global_config.bot.nickname}(你)等待了{self._max_timeout}秒,可以考虑一下是否要进行回复"
)
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=exit_reason,
action_done=True,
)
return True, exit_reason
# **新增**:检查回复频率,决定是否退出专注模式
should_exit_focus = await self._check_frequency_and_exit_focus(current_time)
if should_exit_focus:
logger.info(f"{self.log_prefix} 检测到回复频率过高,退出专注模式")
# 标记退出专注模式
self.action_data["_system_command"] = "stop_focus_chat"
exit_reason = f"{global_config.bot.nickname}(你)发现自己回复太频繁了,决定退出专注模式,稍作休息"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=exit_reason,
action_done=True,
)
return True, exit_reason
# 检查是否有新消息
new_message_count = message_api.count_new_messages(
chat_id=self.chat_id, start_time=start_time, end_time=current_time
)
# 如果累计消息数量达到阈值,直接结束等待
if new_message_count >= self._auto_exit_message_count:
logger.info(f"{self.log_prefix} 累计消息数量达到{new_message_count}条,直接结束等待")
exit_reason = f"{global_config.bot.nickname}(你)看到了{new_message_count}条新消息,可以考虑一下是否要进行回复"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=exit_reason,
action_done=True,
)
return True, f"累计消息数量达到{new_message_count}条,直接结束等待 (等待时间: {elapsed_time:.1f}秒)"
# 判定条件累计3条消息或等待超过5秒且有新消息
time_since_last_judge = current_time - last_judge_time
should_judge = (
new_message_count >= 3 # 累计3条消息
or (new_message_count > 0 and time_since_last_judge >= 5.0) # 等待超过5秒且有新消息
)
if should_judge and time_since_last_judge >= min_judge_interval:
# 判断触发原因
trigger_reason = ""
if new_message_count >= 3:
trigger_reason = f"累计{new_message_count}条消息"
elif time_since_last_judge >= 5.0:
trigger_reason = f"等待{time_since_last_judge:.1f}秒且有{new_message_count}条新消息"
logger.info(f"{self.log_prefix} 触发判定({trigger_reason}),进行智能判断...")
# 获取最近的消息内容用于判断
recent_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=start_time,
end_time=current_time,
)
if recent_messages:
# 使用message_api构建可读的消息字符串
messages_text = message_api.build_readable_messages(
messages=recent_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=False
)
# 参考simple_planner构建更完整的判断信息
# 获取时间信息
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
# 获取身份信息
bot_name = global_config.bot.nickname
bot_nickname = ""
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
bot_core_personality = global_config.personality.personality_core
identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}"
# 构建判断历史字符串最多显示3条
history_block = ""
if judge_history:
history_block = "之前的判断历史:\n"
# 只取最近的3条历史记录
recent_history = judge_history[-3:] if len(judge_history) > 3 else judge_history
for i, (timestamp, judge_result, reason) in enumerate(recent_history, 1):
elapsed_seconds = int(timestamp - start_time)
history_block += f"{i}. 等待{elapsed_seconds}秒时判断:{judge_result},理由:{reason}\n"
history_block += "\n"
# 检查过去10分钟的发言频率
frequency_block = ""
should_skip_llm_judge = False # 是否跳过LLM判断
try:
# 获取过去10分钟的所有消息
past_10min_time = current_time - 600 # 10分钟前
all_messages_10min = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=past_10min_time,
end_time=current_time,
)
# 手动过滤bot自己的消息
bot_message_count = 0
if all_messages_10min:
user_id = global_config.bot.qq_account
for message in all_messages_10min:
# 检查消息发送者是否是bot
sender_id = message.get("user_id", "")
if sender_id == user_id:
bot_message_count += 1
talk_frequency_threshold = global_config.chat.talk_frequency * 10
if bot_message_count > talk_frequency_threshold:
over_count = bot_message_count - talk_frequency_threshold
# 根据超过的数量设置不同的提示词和跳过概率
skip_probability = 0
if over_count <= 3:
frequency_block = "你感觉稍微有些累,回复的有点多了。\n"
elif over_count <= 5:
frequency_block = "你今天说话比较多,感觉有点疲惫,想要稍微休息一下。\n"
else:
frequency_block = "你发现自己说话太多了,感觉很累,想要安静一会儿,除非有重要的事情否则不想回复。\n"
skip_probability = self._skip_probability
# 根据配置和概率决定是否跳过LLM判断
if self._skip_judge_when_tired and random.random() < skip_probability:
should_skip_llm_judge = True
logger.info(
f"{self.log_prefix} 发言过多(超过{over_count}条)随机决定跳过此次LLM判断(概率{skip_probability * 100:.0f}%)"
)
logger.info(
f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,超过阈值{talk_frequency_threshold},添加疲惫提示"
)
else:
# 回复次数少时的正向提示
under_count = talk_frequency_threshold - bot_message_count
if under_count >= talk_frequency_threshold * 0.8: # 回复很少少于20%
frequency_block = "你感觉精力充沛,状态很好。\n"
elif under_count >= talk_frequency_threshold * 0.5: # 回复较少少于50%
frequency_block = "你感觉状态不错。\n"
else: # 刚好达到阈值
frequency_block = ""
logger.info(
f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,未超过阈值{talk_frequency_threshold},添加正向提示"
)
except Exception as e:
logger.warning(f"{self.log_prefix} 检查发言频率时出错: {e}")
frequency_block = ""
# 如果决定跳过LLM判断直接更新时间并继续等待
if should_skip_llm_judge:
last_judge_time = time.time() # 更新判断时间,避免立即重新判断
start_time = current_time # 更新开始时间,避免重复计算同样的消息
continue # 跳过本次LLM判断继续循环等待
# 构建判断上下文
judge_prompt = f"""
{time_block}
{identity_block}
你现在正在QQ群参与聊天以下是聊天内容
{context_str}
在以上的聊天中,你选择了暂时不回复,现在,你看到了新的聊天消息如下:
{messages_text}
{history_block}
请注意:{frequency_block}
请你判断,是否要结束不回复的状态,重新加入聊天讨论。
判断标准:
1. 如果有人直接@你、提到你的名字或明确向你询问,应该回复
2. 如果话题发生重要变化,需要你参与讨论,应该回复
3. 如果只是普通闲聊、重复内容或与你无关的讨论,不需要回复
4. 如果消息内容过于简单(如单纯的表情、"哈哈"等),不需要回复
5. 参考之前的判断历史,如果情况有明显变化或持续等待时间过长,考虑调整判断
请用JSON格式回复你的判断严格按照以下格式
{{
"should_reply": true/false,
"reason": "详细说明你的判断理由"
}}
"""
try:
# 获取可用的模型配置
available_models = llm_api.get_available_models()
# 使用 utils_small 模型
small_model = getattr(available_models, "utils_small", None)
print(judge_prompt)
if small_model:
# 使用小模型进行判断
success, response, reasoning, model_name = await llm_api.generate_with_model(
prompt=judge_prompt,
model_config=small_model,
request_type="plugin.no_reply_judge",
temperature=0.7, # 进一步降低温度提高JSON输出的一致性和准确性
)
# 更新上次判断时间
last_judge_time = time.time()
if success and response:
response = response.strip()
logger.info(f"{self.log_prefix} 模型({model_name})原始JSON响应: {response}")
# 解析LLM的JSON响应提取判断结果和理由
judge_result, reason = self._parse_llm_judge_response(response)
logger.info(
f"{self.log_prefix} JSON解析结果 - 判断: {judge_result}, 理由: {reason}"
)
# 将判断结果保存到历史中
judge_history.append((current_time, judge_result, reason))
if judge_result == "需要回复":
logger.info(f"{self.log_prefix} 模型判断需要回复,结束等待")
full_prompt = f"{global_config.bot.nickname}(你)的想法是:{reason}"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=full_prompt,
action_done=True,
)
return True, f"检测到需要回复的消息,结束等待 (等待时间: {elapsed_time:.1f}秒)"
else:
logger.info(f"{self.log_prefix} 模型判断不需要回复,理由: {reason},继续等待")
# 更新开始时间,避免重复判断同样的消息
start_time = current_time
else:
logger.warning(f"{self.log_prefix} 模型判断失败,继续等待")
else:
logger.warning(f"{self.log_prefix} 未找到可用的模型配置,继续等待")
last_judge_time = time.time() # 即使失败也更新时间,避免频繁重试
except Exception as e:
logger.error(f"{self.log_prefix} 模型判断异常: {e},继续等待")
last_judge_time = time.time() # 异常时也更新时间,避免频繁重试
# 每10秒输出一次等待状态
if int(elapsed_time) % 10 == 0 and int(elapsed_time) > 0:
logger.info(f"{self.log_prefix} 已等待{elapsed_time:.0f}秒,等待新消息...")
await asyncio.sleep(1)
# 短暂等待后继续检查
await asyncio.sleep(check_interval)
except Exception as e:
logger.error(f"{self.log_prefix} 不回复动作执行失败: {e}")
# 即使执行失败也要记录
exit_reason = f"执行异常: {str(e)}"
full_prompt = f"{context_str}{exit_reason},你思考是否要进行回复"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=full_prompt,
action_done=True,
)
return False, f"不回复动作执行失败: {e}"
async def _check_frequency_and_exit_focus(self, current_time: float) -> bool:
"""检查回复频率,决定是否退出专注模式
Args:
current_time: 当前时间戳
Returns:
bool: 是否应该退出专注模式
"""
try:
# 只在auto模式下进行频率检查
if global_config.chat.chat_mode != "auto":
return False
# 获取检查窗口内的所有消息
window_start_time = current_time - self._frequency_check_window
all_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=window_start_time,
end_time=current_time,
)
if not all_messages:
return False
# 统计bot自己的回复数量
bot_message_count = 0
user_id = global_config.bot.qq_account
for message in all_messages:
sender_id = message.get("user_id", "")
if sender_id == user_id:
bot_message_count += 1
# 计算当前回复频率(每分钟回复数)
window_minutes = self._frequency_check_window / 60
current_frequency = bot_message_count / window_minutes
# 计算阈值频率:使用 exit_focus_threshold * 1.5
threshold_multiplier = global_config.chat.exit_focus_threshold * 1.5
threshold_frequency = global_config.chat.talk_frequency * threshold_multiplier
# 判断是否超过阈值
if current_frequency > threshold_frequency:
logger.info(
f"{self.log_prefix} 回复频率检查:当前频率 {current_frequency:.2f}/分钟,超过阈值 {threshold_frequency:.2f}/分钟 (exit_threshold={global_config.chat.exit_focus_threshold} * 1.5),准备退出专注模式"
)
return True
else:
logger.debug(
f"{self.log_prefix} 回复频率检查:当前频率 {current_frequency:.2f}/分钟,未超过阈值 {threshold_frequency:.2f}/分钟 (exit_threshold={global_config.chat.exit_focus_threshold} * 1.5)"
)
return False
except Exception as e:
logger.error(f"{self.log_prefix} 检查回复频率时出错: {e}")
return False
def _parse_llm_judge_response(self, response: str) -> tuple[str, str]:
"""解析LLM判断响应使用JSON格式提取判断结果和理由
Args:
response: LLM的原始JSON响应
Returns:
tuple: (判断结果, 理由)
"""
try:
# 使用repair_json修复可能有问题的JSON格式
fixed_json_string = repair_json(response)
logger.debug(f"{self.log_prefix} repair_json修复后的响应: {fixed_json_string}")
# 如果repair_json返回的是字符串需要解析为Python对象
if isinstance(fixed_json_string, str):
result_json = json.loads(fixed_json_string)
else:
# 如果repair_json直接返回了字典对象直接使用
result_json = fixed_json_string
# 从JSON中提取判断结果和理由
should_reply = result_json.get("should_reply", False)
reason = result_json.get("reason", "无法获取判断理由")
# 转换布尔值为中文字符串
judge_result = "需要回复" if should_reply else "不需要回复"
logger.debug(f"{self.log_prefix} JSON解析成功 - 判断: {judge_result}, 理由: {reason}")
return judge_result, reason
except (json.JSONDecodeError, KeyError, TypeError) as e:
logger.warning(f"{self.log_prefix} JSON解析失败尝试文本解析: {e}")
# 如果JSON解析失败回退到简单的关键词匹配
try:
response_lower = response.lower()
if "true" in response_lower or "需要回复" in response:
judge_result = "需要回复"
reason = "从响应文本中检测到需要回复的指示"
elif "false" in response_lower or "不需要回复" in response:
judge_result = "不需要回复"
reason = "从响应文本中检测到不需要回复的指示"
else:
judge_result = "不需要回复" # 默认值
reason = f"无法解析响应格式,使用默认判断。原始响应: {response[:100]}..."
logger.debug(f"{self.log_prefix} 文本解析结果 - 判断: {judge_result}, 理由: {reason}")
return judge_result, reason
except Exception as fallback_e:
logger.error(f"{self.log_prefix} 文本解析也失败: {fallback_e}")
return "不需要回复", f"解析异常: {str(e)}, 回退解析也失败: {str(fallback_e)}"
except Exception as e:
logger.error(f"{self.log_prefix} 解析LLM响应时出错: {e}")
return "不需要回复", f"解析异常: {str(e)}"
@classmethod
def reset_consecutive_count(cls):
"""重置连续计数器"""
cls._consecutive_count = 0
logger.debug("NoReplyAction连续计数器已重置")
class EmojiAction(BaseAction): class EmojiAction(BaseAction):