diff --git a/src/plugins/built_in/core_actions/no_reply.py b/src/plugins/built_in/core_actions/no_reply.py new file mode 100644 index 000000000..4d65bdca5 --- /dev/null +++ b/src/plugins/built_in/core_actions/no_reply.py @@ -0,0 +1,510 @@ +import random +import time +import json +from typing import Tuple + +# 导入新插件系统 +from src.plugin_system import BaseAction, ActionActivationType, ChatMode + +# 导入依赖的系统组件 +from src.common.logger import get_logger + +# 导入API模块 - 标准Python包方式 +from src.plugin_system.apis import message_api, llm_api +from src.config.config import global_config +from datetime import datetime +from json_repair import repair_json + +logger = get_logger("core_actions") + + +class NoReplyAction(BaseAction): + """不回复动作,使用智能判断机制决定何时结束等待 + + 新的等待逻辑: + - 每0.2秒检查是否有新消息(提高响应性) + - 如果累计消息数量达到阈值(默认20条),直接结束等待 + - 有新消息时进行LLM判断,但最快1秒一次(防止过于频繁) + - 如果判断需要回复,则结束等待;否则继续等待 + - 达到最大超时时间后强制结束 + """ + + focus_activation_type = ActionActivationType.ALWAYS + # focus_activation_type = ActionActivationType.RANDOM + normal_activation_type = ActionActivationType.NEVER + mode_enable = ChatMode.FOCUS + parallel_action = False + + # 动作基本信息 + action_name = "no_reply" + action_description = "暂时不回复消息" + + # 连续no_reply计数器 + _consecutive_count = 0 + + # LLM判断的最小间隔时间 + _min_judge_interval = 1.0 # 最快1秒一次LLM判断 + + # 自动结束的消息数量阈值 + _auto_exit_message_count = 20 # 累计20条消息自动结束 + + # 最大等待超时时间 + _max_timeout = 1200 # 1200秒 + + # 跳过LLM判断的配置 + _skip_judge_when_tired = True + _skip_probability = 0.5 + + # 新增:回复频率退出专注模式的配置 + _frequency_check_window = 600 # 频率检查窗口时间(秒) + + # 动作参数定义 + action_parameters = {"reason": "不回复的原因"} + + # 动作使用场景 + action_require = ["你发送了消息,目前无人回复"] + + # 关联类型 + associated_types = [] + + async def execute(self) -> Tuple[bool, str]: + """执行不回复动作,有新消息时进行判断,但最快1秒一次""" + import asyncio + + try: + # 增加连续计数 + NoReplyAction._consecutive_count += 1 + count = NoReplyAction._consecutive_count + + reason = self.action_data.get("reason", "") + start_time = time.time() + last_judge_time = 0 # 上次进行LLM判断的时间 + min_judge_interval = self._min_judge_interval # 最小判断间隔,从配置获取 + check_interval = 0.2 # 检查新消息的间隔,设为0.2秒提高响应性 + + # 累积判断历史 + judge_history = [] # 存储每次判断的结果和理由 + + # 获取no_reply开始时的上下文消息(10条),用于后续记录 + context_messages = message_api.get_messages_by_time_in_chat( + chat_id=self.chat_id, + start_time=start_time - 600, # 获取开始前10分钟内的消息 + end_time=start_time, + limit=10, + limit_mode="latest", + ) + + # 构建上下文字符串 + context_str = "" + if context_messages: + context_str = message_api.build_readable_messages( + messages=context_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=True + ) + context_str = f"当时选择no_reply前的聊天上下文:\n{context_str}\n" + + logger.info(f"{self.log_prefix} 选择不回复(第{count}次),开始智能等待,原因: {reason}") + + while True: + current_time = time.time() + elapsed_time = current_time - start_time + + # 检查是否超时 + if elapsed_time >= self._max_timeout: + logger.info(f"{self.log_prefix} 达到最大等待时间{self._max_timeout}秒,结束等待") + exit_reason = ( + f"{global_config.bot.nickname}(你)等待了{self._max_timeout}秒,可以考虑一下是否要进行回复" + ) + await self.store_action_info( + action_build_into_prompt=True, + action_prompt_display=exit_reason, + action_done=True, + ) + return True, exit_reason + + # **新增**:检查回复频率,决定是否退出专注模式 + should_exit_focus = await self._check_frequency_and_exit_focus(current_time) + if should_exit_focus: + logger.info(f"{self.log_prefix} 检测到回复频率过高,退出专注模式") + # 标记退出专注模式 + self.action_data["_system_command"] = "stop_focus_chat" + exit_reason = f"{global_config.bot.nickname}(你)发现自己回复太频繁了,决定退出专注模式,稍作休息" + await self.store_action_info( + action_build_into_prompt=True, + action_prompt_display=exit_reason, + action_done=True, + ) + return True, exit_reason + + # 检查是否有新消息 + new_message_count = message_api.count_new_messages( + chat_id=self.chat_id, start_time=start_time, end_time=current_time + ) + + # 如果累计消息数量达到阈值,直接结束等待 + if new_message_count >= self._auto_exit_message_count: + logger.info(f"{self.log_prefix} 累计消息数量达到{new_message_count}条,直接结束等待") + exit_reason = f"{global_config.bot.nickname}(你)看到了{new_message_count}条新消息,可以考虑一下是否要进行回复" + await self.store_action_info( + action_build_into_prompt=True, + action_prompt_display=exit_reason, + action_done=True, + ) + return True, f"累计消息数量达到{new_message_count}条,直接结束等待 (等待时间: {elapsed_time:.1f}秒)" + + # 判定条件:累计3条消息或等待超过5秒且有新消息 + time_since_last_judge = current_time - last_judge_time + should_judge = ( + new_message_count >= 3 # 累计3条消息 + or (new_message_count > 0 and time_since_last_judge >= 5.0) # 等待超过5秒且有新消息 + ) + + if should_judge and time_since_last_judge >= min_judge_interval: + # 判断触发原因 + trigger_reason = "" + if new_message_count >= 3: + trigger_reason = f"累计{new_message_count}条消息" + elif time_since_last_judge >= 5.0: + trigger_reason = f"等待{time_since_last_judge:.1f}秒且有{new_message_count}条新消息" + + logger.info(f"{self.log_prefix} 触发判定({trigger_reason}),进行智能判断...") + + # 获取最近的消息内容用于判断 + recent_messages = message_api.get_messages_by_time_in_chat( + chat_id=self.chat_id, + start_time=start_time, + end_time=current_time, + ) + + if recent_messages: + # 使用message_api构建可读的消息字符串 + messages_text = message_api.build_readable_messages( + messages=recent_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=False + ) + + # 参考simple_planner构建更完整的判断信息 + # 获取时间信息 + time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" + + # 获取身份信息 + bot_name = global_config.bot.nickname + bot_nickname = "" + if global_config.bot.alias_names: + bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" + bot_core_personality = global_config.personality.personality_core + identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}" + + # 构建判断历史字符串(最多显示3条) + history_block = "" + if judge_history: + history_block = "之前的判断历史:\n" + # 只取最近的3条历史记录 + recent_history = judge_history[-3:] if len(judge_history) > 3 else judge_history + for i, (timestamp, judge_result, reason) in enumerate(recent_history, 1): + elapsed_seconds = int(timestamp - start_time) + history_block += f"{i}. 等待{elapsed_seconds}秒时判断:{judge_result},理由:{reason}\n" + history_block += "\n" + + # 检查过去10分钟的发言频率 + frequency_block = "" + should_skip_llm_judge = False # 是否跳过LLM判断 + + try: + # 获取过去10分钟的所有消息 + past_10min_time = current_time - 600 # 10分钟前 + all_messages_10min = message_api.get_messages_by_time_in_chat( + chat_id=self.chat_id, + start_time=past_10min_time, + end_time=current_time, + ) + + # 手动过滤bot自己的消息 + bot_message_count = 0 + if all_messages_10min: + user_id = global_config.bot.qq_account + + for message in all_messages_10min: + # 检查消息发送者是否是bot + sender_id = message.get("user_id", "") + + if sender_id == user_id: + bot_message_count += 1 + + talk_frequency_threshold = global_config.chat.talk_frequency * 10 + + if bot_message_count > talk_frequency_threshold: + over_count = bot_message_count - talk_frequency_threshold + + # 根据超过的数量设置不同的提示词和跳过概率 + skip_probability = 0 + if over_count <= 3: + frequency_block = "你感觉稍微有些累,回复的有点多了。\n" + elif over_count <= 5: + frequency_block = "你今天说话比较多,感觉有点疲惫,想要稍微休息一下。\n" + else: + frequency_block = "你发现自己说话太多了,感觉很累,想要安静一会儿,除非有重要的事情否则不想回复。\n" + skip_probability = self._skip_probability + + # 根据配置和概率决定是否跳过LLM判断 + if self._skip_judge_when_tired and random.random() < skip_probability: + should_skip_llm_judge = True + logger.info( + f"{self.log_prefix} 发言过多(超过{over_count}条),随机决定跳过此次LLM判断(概率{skip_probability * 100:.0f}%)" + ) + + logger.info( + f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,超过阈值{talk_frequency_threshold},添加疲惫提示" + ) + else: + # 回复次数少时的正向提示 + under_count = talk_frequency_threshold - bot_message_count + + if under_count >= talk_frequency_threshold * 0.8: # 回复很少(少于20%) + frequency_block = "你感觉精力充沛,状态很好。\n" + elif under_count >= talk_frequency_threshold * 0.5: # 回复较少(少于50%) + frequency_block = "你感觉状态不错。\n" + else: # 刚好达到阈值 + frequency_block = "" + + logger.info( + f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,未超过阈值{talk_frequency_threshold},添加正向提示" + ) + + except Exception as e: + logger.warning(f"{self.log_prefix} 检查发言频率时出错: {e}") + frequency_block = "" + + # 如果决定跳过LLM判断,直接更新时间并继续等待 + if should_skip_llm_judge: + last_judge_time = time.time() # 更新判断时间,避免立即重新判断 + start_time = current_time # 更新开始时间,避免重复计算同样的消息 + continue # 跳过本次LLM判断,继续循环等待 + + # 构建判断上下文 + judge_prompt = f""" +{time_block} +{identity_block} + +你现在正在QQ群参与聊天,以下是聊天内容: +{context_str} +在以上的聊天中,你选择了暂时不回复,现在,你看到了新的聊天消息如下: +{messages_text} + +{history_block} +请注意:{frequency_block} +请你判断,是否要结束不回复的状态,重新加入聊天讨论。 + +判断标准: +1. 如果有人直接@你、提到你的名字或明确向你询问,应该回复 +2. 如果话题发生重要变化,需要你参与讨论,应该回复 +3. 如果只是普通闲聊、重复内容或与你无关的讨论,不需要回复 +4. 如果消息内容过于简单(如单纯的表情、"哈哈"等),不需要回复 +5. 参考之前的判断历史,如果情况有明显变化或持续等待时间过长,考虑调整判断 + +请用JSON格式回复你的判断,严格按照以下格式: +{{ + "should_reply": true/false, + "reason": "详细说明你的判断理由" +}} +""" + + try: + # 获取可用的模型配置 + available_models = llm_api.get_available_models() + + # 使用 utils_small 模型 + small_model = getattr(available_models, "utils_small", None) + + print(judge_prompt) + + if small_model: + # 使用小模型进行判断 + success, response, reasoning, model_name = await llm_api.generate_with_model( + prompt=judge_prompt, + model_config=small_model, + request_type="plugin.no_reply_judge", + temperature=0.7, # 进一步降低温度,提高JSON输出的一致性和准确性 + ) + + # 更新上次判断时间 + last_judge_time = time.time() + + if success and response: + response = response.strip() + logger.info(f"{self.log_prefix} 模型({model_name})原始JSON响应: {response}") + + # 解析LLM的JSON响应,提取判断结果和理由 + judge_result, reason = self._parse_llm_judge_response(response) + + logger.info( + f"{self.log_prefix} JSON解析结果 - 判断: {judge_result}, 理由: {reason}" + ) + + # 将判断结果保存到历史中 + judge_history.append((current_time, judge_result, reason)) + + if judge_result == "需要回复": + logger.info(f"{self.log_prefix} 模型判断需要回复,结束等待") + + full_prompt = f"{global_config.bot.nickname}(你)的想法是:{reason}" + await self.store_action_info( + action_build_into_prompt=True, + action_prompt_display=full_prompt, + action_done=True, + ) + return True, f"检测到需要回复的消息,结束等待 (等待时间: {elapsed_time:.1f}秒)" + else: + logger.info(f"{self.log_prefix} 模型判断不需要回复,理由: {reason},继续等待") + # 更新开始时间,避免重复判断同样的消息 + start_time = current_time + else: + logger.warning(f"{self.log_prefix} 模型判断失败,继续等待") + else: + logger.warning(f"{self.log_prefix} 未找到可用的模型配置,继续等待") + last_judge_time = time.time() # 即使失败也更新时间,避免频繁重试 + + except Exception as e: + logger.error(f"{self.log_prefix} 模型判断异常: {e},继续等待") + last_judge_time = time.time() # 异常时也更新时间,避免频繁重试 + + # 每10秒输出一次等待状态 + if int(elapsed_time) % 10 == 0 and int(elapsed_time) > 0: + logger.info(f"{self.log_prefix} 已等待{elapsed_time:.0f}秒,等待新消息...") + await asyncio.sleep(1) + + # 短暂等待后继续检查 + await asyncio.sleep(check_interval) + + except Exception as e: + logger.error(f"{self.log_prefix} 不回复动作执行失败: {e}") + # 即使执行失败也要记录 + exit_reason = f"执行异常: {str(e)}" + full_prompt = f"{context_str}{exit_reason},你思考是否要进行回复" + await self.store_action_info( + action_build_into_prompt=True, + action_prompt_display=full_prompt, + action_done=True, + ) + return False, f"不回复动作执行失败: {e}" + + async def _check_frequency_and_exit_focus(self, current_time: float) -> bool: + """检查回复频率,决定是否退出专注模式 + + Args: + current_time: 当前时间戳 + + Returns: + bool: 是否应该退出专注模式 + """ + try: + # 只在auto模式下进行频率检查 + if global_config.chat.chat_mode != "auto": + return False + + # 获取检查窗口内的所有消息 + window_start_time = current_time - self._frequency_check_window + all_messages = message_api.get_messages_by_time_in_chat( + chat_id=self.chat_id, + start_time=window_start_time, + end_time=current_time, + ) + + if not all_messages: + return False + + # 统计bot自己的回复数量 + bot_message_count = 0 + user_id = global_config.bot.qq_account + + for message in all_messages: + sender_id = message.get("user_id", "") + if sender_id == user_id: + bot_message_count += 1 + + # 计算当前回复频率(每分钟回复数) + window_minutes = self._frequency_check_window / 60 + current_frequency = bot_message_count / window_minutes + + # 计算阈值频率:使用 exit_focus_threshold * 1.5 + threshold_multiplier = global_config.chat.exit_focus_threshold * 1.5 + threshold_frequency = global_config.chat.talk_frequency * threshold_multiplier + + # 判断是否超过阈值 + if current_frequency > threshold_frequency: + logger.info( + f"{self.log_prefix} 回复频率检查:当前频率 {current_frequency:.2f}/分钟,超过阈值 {threshold_frequency:.2f}/分钟 (exit_threshold={global_config.chat.exit_focus_threshold} * 1.5),准备退出专注模式" + ) + return True + else: + logger.debug( + f"{self.log_prefix} 回复频率检查:当前频率 {current_frequency:.2f}/分钟,未超过阈值 {threshold_frequency:.2f}/分钟 (exit_threshold={global_config.chat.exit_focus_threshold} * 1.5)" + ) + return False + + except Exception as e: + logger.error(f"{self.log_prefix} 检查回复频率时出错: {e}") + return False + + def _parse_llm_judge_response(self, response: str) -> tuple[str, str]: + """解析LLM判断响应,使用JSON格式提取判断结果和理由 + + Args: + response: LLM的原始JSON响应 + + Returns: + tuple: (判断结果, 理由) + """ + try: + # 使用repair_json修复可能有问题的JSON格式 + fixed_json_string = repair_json(response) + logger.debug(f"{self.log_prefix} repair_json修复后的响应: {fixed_json_string}") + + # 如果repair_json返回的是字符串,需要解析为Python对象 + if isinstance(fixed_json_string, str): + result_json = json.loads(fixed_json_string) + else: + # 如果repair_json直接返回了字典对象,直接使用 + result_json = fixed_json_string + + # 从JSON中提取判断结果和理由 + should_reply = result_json.get("should_reply", False) + reason = result_json.get("reason", "无法获取判断理由") + + # 转换布尔值为中文字符串 + judge_result = "需要回复" if should_reply else "不需要回复" + + logger.debug(f"{self.log_prefix} JSON解析成功 - 判断: {judge_result}, 理由: {reason}") + return judge_result, reason + + except (json.JSONDecodeError, KeyError, TypeError) as e: + logger.warning(f"{self.log_prefix} JSON解析失败,尝试文本解析: {e}") + + # 如果JSON解析失败,回退到简单的关键词匹配 + try: + response_lower = response.lower() + + if "true" in response_lower or "需要回复" in response: + judge_result = "需要回复" + reason = "从响应文本中检测到需要回复的指示" + elif "false" in response_lower or "不需要回复" in response: + judge_result = "不需要回复" + reason = "从响应文本中检测到不需要回复的指示" + else: + judge_result = "不需要回复" # 默认值 + reason = f"无法解析响应格式,使用默认判断。原始响应: {response[:100]}..." + + logger.debug(f"{self.log_prefix} 文本解析结果 - 判断: {judge_result}, 理由: {reason}") + return judge_result, reason + + except Exception as fallback_e: + logger.error(f"{self.log_prefix} 文本解析也失败: {fallback_e}") + return "不需要回复", f"解析异常: {str(e)}, 回退解析也失败: {str(fallback_e)}" + + except Exception as e: + logger.error(f"{self.log_prefix} 解析LLM响应时出错: {e}") + return "不需要回复", f"解析异常: {str(e)}" + + @classmethod + def reset_consecutive_count(cls): + """重置连续计数器""" + cls._consecutive_count = 0 + logger.debug("NoReplyAction连续计数器已重置") \ No newline at end of file diff --git a/src/plugins/built_in/core_actions/plugin.py b/src/plugins/built_in/core_actions/plugin.py index 11499185d..a189fe467 100644 --- a/src/plugins/built_in/core_actions/plugin.py +++ b/src/plugins/built_in/core_actions/plugin.py @@ -7,7 +7,6 @@ import random import time -import json from typing import List, Tuple, Type # 导入新插件系统 @@ -18,10 +17,8 @@ from src.plugin_system.base.config_types import ConfigField from src.common.logger import get_logger # 导入API模块 - 标准Python包方式 -from src.plugin_system.apis import emoji_api, generator_api, message_api, llm_api -from src.config.config import global_config -from datetime import datetime -from json_repair import repair_json +from src.plugin_system.apis import emoji_api, generator_api, message_api +from src.plugins.built_in.core_actions.no_reply import NoReplyAction logger = get_logger("core_actions") @@ -112,496 +109,6 @@ class ReplyAction(BaseAction): return False, f"回复失败: {str(e)}" -class NoReplyAction(BaseAction): - """不回复动作,使用智能判断机制决定何时结束等待 - - 新的等待逻辑: - - 每0.2秒检查是否有新消息(提高响应性) - - 如果累计消息数量达到阈值(默认20条),直接结束等待 - - 有新消息时进行LLM判断,但最快1秒一次(防止过于频繁) - - 如果判断需要回复,则结束等待;否则继续等待 - - 达到最大超时时间后强制结束 - """ - - focus_activation_type = ActionActivationType.ALWAYS - # focus_activation_type = ActionActivationType.RANDOM - normal_activation_type = ActionActivationType.NEVER - mode_enable = ChatMode.FOCUS - parallel_action = False - - # 动作基本信息 - action_name = "no_reply" - action_description = "暂时不回复消息" - - # 连续no_reply计数器 - _consecutive_count = 0 - - # LLM判断的最小间隔时间 - _min_judge_interval = 1.0 # 最快1秒一次LLM判断 - - # 自动结束的消息数量阈值 - _auto_exit_message_count = 20 # 累计20条消息自动结束 - - # 最大等待超时时间 - _max_timeout = 1200 # 1200秒 - - # 跳过LLM判断的配置 - _skip_judge_when_tired = True - _skip_probability = 0.5 - - # 新增:回复频率退出专注模式的配置 - _frequency_check_window = 600 # 频率检查窗口时间(秒) - - # 动作参数定义 - action_parameters = {"reason": "不回复的原因"} - - # 动作使用场景 - action_require = ["你发送了消息,目前无人回复"] - - # 关联类型 - associated_types = [] - - async def execute(self) -> Tuple[bool, str]: - """执行不回复动作,有新消息时进行判断,但最快1秒一次""" - import asyncio - - try: - # 增加连续计数 - NoReplyAction._consecutive_count += 1 - count = NoReplyAction._consecutive_count - - reason = self.action_data.get("reason", "") - start_time = time.time() - last_judge_time = 0 # 上次进行LLM判断的时间 - min_judge_interval = self._min_judge_interval # 最小判断间隔,从配置获取 - check_interval = 0.2 # 检查新消息的间隔,设为0.2秒提高响应性 - - # 累积判断历史 - judge_history = [] # 存储每次判断的结果和理由 - - # 获取no_reply开始时的上下文消息(10条),用于后续记录 - context_messages = message_api.get_messages_by_time_in_chat( - chat_id=self.chat_id, - start_time=start_time - 600, # 获取开始前10分钟内的消息 - end_time=start_time, - limit=10, - limit_mode="latest", - ) - - # 构建上下文字符串 - context_str = "" - if context_messages: - context_str = message_api.build_readable_messages( - messages=context_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=True - ) - context_str = f"当时选择no_reply前的聊天上下文:\n{context_str}\n" - - logger.info(f"{self.log_prefix} 选择不回复(第{count}次),开始智能等待,原因: {reason}") - - while True: - current_time = time.time() - elapsed_time = current_time - start_time - - # 检查是否超时 - if elapsed_time >= self._max_timeout: - logger.info(f"{self.log_prefix} 达到最大等待时间{self._max_timeout}秒,结束等待") - exit_reason = ( - f"{global_config.bot.nickname}(你)等待了{self._max_timeout}秒,可以考虑一下是否要进行回复" - ) - await self.store_action_info( - action_build_into_prompt=True, - action_prompt_display=exit_reason, - action_done=True, - ) - return True, exit_reason - - # **新增**:检查回复频率,决定是否退出专注模式 - should_exit_focus = await self._check_frequency_and_exit_focus(current_time) - if should_exit_focus: - logger.info(f"{self.log_prefix} 检测到回复频率过高,退出专注模式") - # 标记退出专注模式 - self.action_data["_system_command"] = "stop_focus_chat" - exit_reason = f"{global_config.bot.nickname}(你)发现自己回复太频繁了,决定退出专注模式,稍作休息" - await self.store_action_info( - action_build_into_prompt=True, - action_prompt_display=exit_reason, - action_done=True, - ) - return True, exit_reason - - # 检查是否有新消息 - new_message_count = message_api.count_new_messages( - chat_id=self.chat_id, start_time=start_time, end_time=current_time - ) - - # 如果累计消息数量达到阈值,直接结束等待 - if new_message_count >= self._auto_exit_message_count: - logger.info(f"{self.log_prefix} 累计消息数量达到{new_message_count}条,直接结束等待") - exit_reason = f"{global_config.bot.nickname}(你)看到了{new_message_count}条新消息,可以考虑一下是否要进行回复" - await self.store_action_info( - action_build_into_prompt=True, - action_prompt_display=exit_reason, - action_done=True, - ) - return True, f"累计消息数量达到{new_message_count}条,直接结束等待 (等待时间: {elapsed_time:.1f}秒)" - - # 判定条件:累计3条消息或等待超过5秒且有新消息 - time_since_last_judge = current_time - last_judge_time - should_judge = ( - new_message_count >= 3 # 累计3条消息 - or (new_message_count > 0 and time_since_last_judge >= 5.0) # 等待超过5秒且有新消息 - ) - - if should_judge and time_since_last_judge >= min_judge_interval: - # 判断触发原因 - trigger_reason = "" - if new_message_count >= 3: - trigger_reason = f"累计{new_message_count}条消息" - elif time_since_last_judge >= 5.0: - trigger_reason = f"等待{time_since_last_judge:.1f}秒且有{new_message_count}条新消息" - - logger.info(f"{self.log_prefix} 触发判定({trigger_reason}),进行智能判断...") - - # 获取最近的消息内容用于判断 - recent_messages = message_api.get_messages_by_time_in_chat( - chat_id=self.chat_id, - start_time=start_time, - end_time=current_time, - ) - - if recent_messages: - # 使用message_api构建可读的消息字符串 - messages_text = message_api.build_readable_messages( - messages=recent_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=False - ) - - # 参考simple_planner构建更完整的判断信息 - # 获取时间信息 - time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" - - # 获取身份信息 - bot_name = global_config.bot.nickname - bot_nickname = "" - if global_config.bot.alias_names: - bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" - bot_core_personality = global_config.personality.personality_core - identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}" - - # 构建判断历史字符串(最多显示3条) - history_block = "" - if judge_history: - history_block = "之前的判断历史:\n" - # 只取最近的3条历史记录 - recent_history = judge_history[-3:] if len(judge_history) > 3 else judge_history - for i, (timestamp, judge_result, reason) in enumerate(recent_history, 1): - elapsed_seconds = int(timestamp - start_time) - history_block += f"{i}. 等待{elapsed_seconds}秒时判断:{judge_result},理由:{reason}\n" - history_block += "\n" - - # 检查过去10分钟的发言频率 - frequency_block = "" - should_skip_llm_judge = False # 是否跳过LLM判断 - - try: - # 获取过去10分钟的所有消息 - past_10min_time = current_time - 600 # 10分钟前 - all_messages_10min = message_api.get_messages_by_time_in_chat( - chat_id=self.chat_id, - start_time=past_10min_time, - end_time=current_time, - ) - - # 手动过滤bot自己的消息 - bot_message_count = 0 - if all_messages_10min: - user_id = global_config.bot.qq_account - - for message in all_messages_10min: - # 检查消息发送者是否是bot - sender_id = message.get("user_id", "") - - if sender_id == user_id: - bot_message_count += 1 - - talk_frequency_threshold = global_config.chat.talk_frequency * 10 - - if bot_message_count > talk_frequency_threshold: - over_count = bot_message_count - talk_frequency_threshold - - # 根据超过的数量设置不同的提示词和跳过概率 - skip_probability = 0 - if over_count <= 3: - frequency_block = "你感觉稍微有些累,回复的有点多了。\n" - elif over_count <= 5: - frequency_block = "你今天说话比较多,感觉有点疲惫,想要稍微休息一下。\n" - else: - frequency_block = "你发现自己说话太多了,感觉很累,想要安静一会儿,除非有重要的事情否则不想回复。\n" - skip_probability = self._skip_probability - - # 根据配置和概率决定是否跳过LLM判断 - if self._skip_judge_when_tired and random.random() < skip_probability: - should_skip_llm_judge = True - logger.info( - f"{self.log_prefix} 发言过多(超过{over_count}条),随机决定跳过此次LLM判断(概率{skip_probability * 100:.0f}%)" - ) - - logger.info( - f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,超过阈值{talk_frequency_threshold},添加疲惫提示" - ) - else: - # 回复次数少时的正向提示 - under_count = talk_frequency_threshold - bot_message_count - - if under_count >= talk_frequency_threshold * 0.8: # 回复很少(少于20%) - frequency_block = "你感觉精力充沛,状态很好。\n" - elif under_count >= talk_frequency_threshold * 0.5: # 回复较少(少于50%) - frequency_block = "你感觉状态不错。\n" - else: # 刚好达到阈值 - frequency_block = "" - - logger.info( - f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,未超过阈值{talk_frequency_threshold},添加正向提示" - ) - - except Exception as e: - logger.warning(f"{self.log_prefix} 检查发言频率时出错: {e}") - frequency_block = "" - - # 如果决定跳过LLM判断,直接更新时间并继续等待 - if should_skip_llm_judge: - last_judge_time = time.time() # 更新判断时间,避免立即重新判断 - start_time = current_time # 更新开始时间,避免重复计算同样的消息 - continue # 跳过本次LLM判断,继续循环等待 - - # 构建判断上下文 - judge_prompt = f""" -{time_block} -{identity_block} - -你现在正在QQ群参与聊天,以下是聊天内容: -{context_str} -在以上的聊天中,你选择了暂时不回复,现在,你看到了新的聊天消息如下: -{messages_text} - -{history_block} -请注意:{frequency_block} -请你判断,是否要结束不回复的状态,重新加入聊天讨论。 - -判断标准: -1. 如果有人直接@你、提到你的名字或明确向你询问,应该回复 -2. 如果话题发生重要变化,需要你参与讨论,应该回复 -3. 如果只是普通闲聊、重复内容或与你无关的讨论,不需要回复 -4. 如果消息内容过于简单(如单纯的表情、"哈哈"等),不需要回复 -5. 参考之前的判断历史,如果情况有明显变化或持续等待时间过长,考虑调整判断 - -请用JSON格式回复你的判断,严格按照以下格式: -{{ - "should_reply": true/false, - "reason": "详细说明你的判断理由" -}} -""" - - try: - # 获取可用的模型配置 - available_models = llm_api.get_available_models() - - # 使用 utils_small 模型 - small_model = getattr(available_models, "utils_small", None) - - print(judge_prompt) - - if small_model: - # 使用小模型进行判断 - success, response, reasoning, model_name = await llm_api.generate_with_model( - prompt=judge_prompt, - model_config=small_model, - request_type="plugin.no_reply_judge", - temperature=0.7, # 进一步降低温度,提高JSON输出的一致性和准确性 - ) - - # 更新上次判断时间 - last_judge_time = time.time() - - if success and response: - response = response.strip() - logger.info(f"{self.log_prefix} 模型({model_name})原始JSON响应: {response}") - - # 解析LLM的JSON响应,提取判断结果和理由 - judge_result, reason = self._parse_llm_judge_response(response) - - logger.info( - f"{self.log_prefix} JSON解析结果 - 判断: {judge_result}, 理由: {reason}" - ) - - # 将判断结果保存到历史中 - judge_history.append((current_time, judge_result, reason)) - - if judge_result == "需要回复": - logger.info(f"{self.log_prefix} 模型判断需要回复,结束等待") - - full_prompt = f"{global_config.bot.nickname}(你)的想法是:{reason}" - await self.store_action_info( - action_build_into_prompt=True, - action_prompt_display=full_prompt, - action_done=True, - ) - return True, f"检测到需要回复的消息,结束等待 (等待时间: {elapsed_time:.1f}秒)" - else: - logger.info(f"{self.log_prefix} 模型判断不需要回复,理由: {reason},继续等待") - # 更新开始时间,避免重复判断同样的消息 - start_time = current_time - else: - logger.warning(f"{self.log_prefix} 模型判断失败,继续等待") - else: - logger.warning(f"{self.log_prefix} 未找到可用的模型配置,继续等待") - last_judge_time = time.time() # 即使失败也更新时间,避免频繁重试 - - except Exception as e: - logger.error(f"{self.log_prefix} 模型判断异常: {e},继续等待") - last_judge_time = time.time() # 异常时也更新时间,避免频繁重试 - - # 每10秒输出一次等待状态 - if int(elapsed_time) % 10 == 0 and int(elapsed_time) > 0: - logger.info(f"{self.log_prefix} 已等待{elapsed_time:.0f}秒,等待新消息...") - await asyncio.sleep(1) - - # 短暂等待后继续检查 - await asyncio.sleep(check_interval) - - except Exception as e: - logger.error(f"{self.log_prefix} 不回复动作执行失败: {e}") - # 即使执行失败也要记录 - exit_reason = f"执行异常: {str(e)}" - full_prompt = f"{context_str}{exit_reason},你思考是否要进行回复" - await self.store_action_info( - action_build_into_prompt=True, - action_prompt_display=full_prompt, - action_done=True, - ) - return False, f"不回复动作执行失败: {e}" - - async def _check_frequency_and_exit_focus(self, current_time: float) -> bool: - """检查回复频率,决定是否退出专注模式 - - Args: - current_time: 当前时间戳 - - Returns: - bool: 是否应该退出专注模式 - """ - try: - # 只在auto模式下进行频率检查 - if global_config.chat.chat_mode != "auto": - return False - - # 获取检查窗口内的所有消息 - window_start_time = current_time - self._frequency_check_window - all_messages = message_api.get_messages_by_time_in_chat( - chat_id=self.chat_id, - start_time=window_start_time, - end_time=current_time, - ) - - if not all_messages: - return False - - # 统计bot自己的回复数量 - bot_message_count = 0 - user_id = global_config.bot.qq_account - - for message in all_messages: - sender_id = message.get("user_id", "") - if sender_id == user_id: - bot_message_count += 1 - - # 计算当前回复频率(每分钟回复数) - window_minutes = self._frequency_check_window / 60 - current_frequency = bot_message_count / window_minutes - - # 计算阈值频率:使用 exit_focus_threshold * 1.5 - threshold_multiplier = global_config.chat.exit_focus_threshold * 1.5 - threshold_frequency = global_config.chat.talk_frequency * threshold_multiplier - - # 判断是否超过阈值 - if current_frequency > threshold_frequency: - logger.info( - f"{self.log_prefix} 回复频率检查:当前频率 {current_frequency:.2f}/分钟,超过阈值 {threshold_frequency:.2f}/分钟 (exit_threshold={global_config.chat.exit_focus_threshold} * 1.5),准备退出专注模式" - ) - return True - else: - logger.debug( - f"{self.log_prefix} 回复频率检查:当前频率 {current_frequency:.2f}/分钟,未超过阈值 {threshold_frequency:.2f}/分钟 (exit_threshold={global_config.chat.exit_focus_threshold} * 1.5)" - ) - return False - - except Exception as e: - logger.error(f"{self.log_prefix} 检查回复频率时出错: {e}") - return False - - def _parse_llm_judge_response(self, response: str) -> tuple[str, str]: - """解析LLM判断响应,使用JSON格式提取判断结果和理由 - - Args: - response: LLM的原始JSON响应 - - Returns: - tuple: (判断结果, 理由) - """ - try: - # 使用repair_json修复可能有问题的JSON格式 - fixed_json_string = repair_json(response) - logger.debug(f"{self.log_prefix} repair_json修复后的响应: {fixed_json_string}") - - # 如果repair_json返回的是字符串,需要解析为Python对象 - if isinstance(fixed_json_string, str): - result_json = json.loads(fixed_json_string) - else: - # 如果repair_json直接返回了字典对象,直接使用 - result_json = fixed_json_string - - # 从JSON中提取判断结果和理由 - should_reply = result_json.get("should_reply", False) - reason = result_json.get("reason", "无法获取判断理由") - - # 转换布尔值为中文字符串 - judge_result = "需要回复" if should_reply else "不需要回复" - - logger.debug(f"{self.log_prefix} JSON解析成功 - 判断: {judge_result}, 理由: {reason}") - return judge_result, reason - - except (json.JSONDecodeError, KeyError, TypeError) as e: - logger.warning(f"{self.log_prefix} JSON解析失败,尝试文本解析: {e}") - - # 如果JSON解析失败,回退到简单的关键词匹配 - try: - response_lower = response.lower() - - if "true" in response_lower or "需要回复" in response: - judge_result = "需要回复" - reason = "从响应文本中检测到需要回复的指示" - elif "false" in response_lower or "不需要回复" in response: - judge_result = "不需要回复" - reason = "从响应文本中检测到不需要回复的指示" - else: - judge_result = "不需要回复" # 默认值 - reason = f"无法解析响应格式,使用默认判断。原始响应: {response[:100]}..." - - logger.debug(f"{self.log_prefix} 文本解析结果 - 判断: {judge_result}, 理由: {reason}") - return judge_result, reason - - except Exception as fallback_e: - logger.error(f"{self.log_prefix} 文本解析也失败: {fallback_e}") - return "不需要回复", f"解析异常: {str(e)}, 回退解析也失败: {str(fallback_e)}" - - except Exception as e: - logger.error(f"{self.log_prefix} 解析LLM响应时出错: {e}") - return "不需要回复", f"解析异常: {str(e)}" - - @classmethod - def reset_consecutive_count(cls): - """重置连续计数器""" - cls._consecutive_count = 0 - logger.debug("NoReplyAction连续计数器已重置") class EmojiAction(BaseAction):