This commit is contained in:
tcmofashi
2025-06-03 16:07:41 +08:00
17 changed files with 1060 additions and 325 deletions

View File

@@ -0,0 +1,180 @@
import json
import os
from pathlib import Path
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
import matplotlib as mpl
import sqlite3
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 使用微软雅黑
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['font.family'] = 'sans-serif'
# 获取脚本所在目录
SCRIPT_DIR = Path(__file__).parent
def get_group_name(stream_id):
"""从数据库中获取群组名称"""
conn = sqlite3.connect('data/maibot.db')
cursor = conn.cursor()
cursor.execute('''
SELECT group_name, user_nickname, platform
FROM chat_streams
WHERE stream_id = ?
''', (stream_id,))
result = cursor.fetchone()
conn.close()
if result:
group_name, user_nickname, platform = result
if group_name:
return group_name
if user_nickname:
return user_nickname
if platform:
return f"{platform}-{stream_id[:8]}"
return stream_id
def load_group_data(group_dir):
"""加载单个群组的数据"""
json_path = Path(group_dir) / "expressions.json"
if not json_path.exists():
return [], [], []
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
situations = []
styles = []
combined = []
for item in data:
count = item['count']
situations.extend([item['situation']] * count)
styles.extend([item['style']] * count)
combined.extend([f"{item['situation']} {item['style']}"] * count)
return situations, styles, combined
def analyze_group_similarity():
# 获取所有群组目录
base_dir = Path("data/expression/learnt_style")
group_dirs = [d for d in base_dir.iterdir() if d.is_dir()]
group_ids = [d.name for d in group_dirs]
# 获取群组名称
group_names = [get_group_name(group_id) for group_id in group_ids]
# 加载所有群组的数据
group_situations = []
group_styles = []
group_combined = []
for d in group_dirs:
situations, styles, combined = load_group_data(d)
group_situations.append(' '.join(situations))
group_styles.append(' '.join(styles))
group_combined.append(' '.join(combined))
# 创建TF-IDF向量化器
vectorizer = TfidfVectorizer()
# 计算三种相似度矩阵
situation_matrix = cosine_similarity(vectorizer.fit_transform(group_situations))
style_matrix = cosine_similarity(vectorizer.fit_transform(group_styles))
combined_matrix = cosine_similarity(vectorizer.fit_transform(group_combined))
# 对相似度矩阵进行对数变换
log_situation_matrix = np.log1p(situation_matrix)
log_style_matrix = np.log1p(style_matrix)
log_combined_matrix = np.log1p(combined_matrix)
# 创建一个大图,包含三个子图
plt.figure(figsize=(45, 12))
# 场景相似度热力图
plt.subplot(1, 3, 1)
sns.heatmap(log_situation_matrix,
xticklabels=group_names,
yticklabels=group_names,
cmap='YlOrRd',
annot=True,
fmt='.2f',
vmin=0,
vmax=np.log1p(0.2))
plt.title('群组场景相似度热力图 (对数变换)')
plt.xticks(rotation=45, ha='right')
# 表达方式相似度热力图
plt.subplot(1, 3, 2)
sns.heatmap(log_style_matrix,
xticklabels=group_names,
yticklabels=group_names,
cmap='YlOrRd',
annot=True,
fmt='.2f',
vmin=0,
vmax=np.log1p(0.2))
plt.title('群组表达方式相似度热力图 (对数变换)')
plt.xticks(rotation=45, ha='right')
# 组合相似度热力图
plt.subplot(1, 3, 3)
sns.heatmap(log_combined_matrix,
xticklabels=group_names,
yticklabels=group_names,
cmap='YlOrRd',
annot=True,
fmt='.2f',
vmin=0,
vmax=np.log1p(0.2))
plt.title('群组场景+表达方式相似度热力图 (对数变换)')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.savefig(SCRIPT_DIR / 'group_similarity_heatmaps.png', dpi=300, bbox_inches='tight')
plt.close()
# 保存匹配详情到文本文件
with open(SCRIPT_DIR / 'group_similarity_details.txt', 'w', encoding='utf-8') as f:
f.write('群组相似度详情\n')
f.write('=' * 50 + '\n\n')
for i in range(len(group_ids)):
for j in range(i+1, len(group_ids)):
if log_combined_matrix[i][j] > np.log1p(0.05):
f.write(f'群组1: {group_names[i]}\n')
f.write(f'群组2: {group_names[j]}\n')
f.write(f'场景相似度: {situation_matrix[i][j]:.4f}\n')
f.write(f'表达方式相似度: {style_matrix[i][j]:.4f}\n')
f.write(f'组合相似度: {combined_matrix[i][j]:.4f}\n')
# 获取两个群组的数据
situations1, styles1, _ = load_group_data(group_dirs[i])
situations2, styles2, _ = load_group_data(group_dirs[j])
# 找出共同的场景
common_situations = set(situations1) & set(situations2)
if common_situations:
f.write('\n共同场景:\n')
for situation in common_situations:
f.write(f'- {situation}\n')
# 找出共同的表达方式
common_styles = set(styles1) & set(styles2)
if common_styles:
f.write('\n共同表达方式:\n')
for style in common_styles:
f.write(f'- {style}\n')
f.write('\n' + '-' * 50 + '\n\n')
if __name__ == "__main__":
analyze_group_similarity()

Binary file not shown.

After

Width:  |  Height:  |  Size: 657 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 884 KiB

View File

@@ -182,25 +182,6 @@ class MongoToSQLiteMigrator:
enable_validation=False, # 禁用数据验证
unique_fields=["stream_id"],
),
# LLM使用记录迁移配置
MigrationConfig(
mongo_collection="llm_usage",
target_model=LLMUsage,
field_mapping={
"model_name": "model_name",
"user_id": "user_id",
"request_type": "request_type",
"endpoint": "endpoint",
"prompt_tokens": "prompt_tokens",
"completion_tokens": "completion_tokens",
"total_tokens": "total_tokens",
"cost": "cost",
"status": "status",
"timestamp": "timestamp",
},
enable_validation=True, # 禁用数据验证"
unique_fields=["user_id", "prompt_tokens", "completion_tokens", "total_tokens", "cost"], # 组合唯一性
),
# 消息迁移配置
MigrationConfig(
mongo_collection="messages",

View File

@@ -0,0 +1,265 @@
import tkinter as tk
from tkinter import ttk
import json
import os
from pathlib import Path
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from collections import defaultdict
class ExpressionViewer:
def __init__(self, root):
self.root = root
self.root.title("表达方式预览器")
self.root.geometry("1200x800")
# 创建主框架
self.main_frame = ttk.Frame(root)
self.main_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)
# 创建左侧控制面板
self.control_frame = ttk.Frame(self.main_frame)
self.control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=(0, 10))
# 创建搜索框
self.search_frame = ttk.Frame(self.control_frame)
self.search_frame.pack(fill=tk.X, pady=(0, 10))
self.search_var = tk.StringVar()
self.search_var.trace('w', self.filter_expressions)
self.search_entry = ttk.Entry(self.search_frame, textvariable=self.search_var)
self.search_entry.pack(side=tk.LEFT, fill=tk.X, expand=True)
ttk.Label(self.search_frame, text="搜索:").pack(side=tk.LEFT, padx=(0, 5))
# 创建文件选择下拉框
self.file_var = tk.StringVar()
self.file_combo = ttk.Combobox(self.search_frame, textvariable=self.file_var)
self.file_combo.pack(side=tk.LEFT, padx=5)
self.file_combo.bind('<<ComboboxSelected>>', self.load_file)
# 创建排序选项
self.sort_frame = ttk.LabelFrame(self.control_frame, text="排序选项")
self.sort_frame.pack(fill=tk.X, pady=5)
self.sort_var = tk.StringVar(value="count")
ttk.Radiobutton(self.sort_frame, text="按计数排序", variable=self.sort_var,
value="count", command=self.apply_sort).pack(anchor=tk.W)
ttk.Radiobutton(self.sort_frame, text="按情境排序", variable=self.sort_var,
value="situation", command=self.apply_sort).pack(anchor=tk.W)
ttk.Radiobutton(self.sort_frame, text="按风格排序", variable=self.sort_var,
value="style", command=self.apply_sort).pack(anchor=tk.W)
# 创建分群选项
self.group_frame = ttk.LabelFrame(self.control_frame, text="分群选项")
self.group_frame.pack(fill=tk.X, pady=5)
self.group_var = tk.StringVar(value="none")
ttk.Radiobutton(self.group_frame, text="不分群", variable=self.group_var,
value="none", command=self.apply_grouping).pack(anchor=tk.W)
ttk.Radiobutton(self.group_frame, text="按情境分群", variable=self.group_var,
value="situation", command=self.apply_grouping).pack(anchor=tk.W)
ttk.Radiobutton(self.group_frame, text="按风格分群", variable=self.group_var,
value="style", command=self.apply_grouping).pack(anchor=tk.W)
# 创建相似度阈值滑块
self.similarity_frame = ttk.LabelFrame(self.control_frame, text="相似度设置")
self.similarity_frame.pack(fill=tk.X, pady=5)
self.similarity_var = tk.DoubleVar(value=0.5)
self.similarity_scale = ttk.Scale(self.similarity_frame, from_=0.0, to=1.0,
variable=self.similarity_var, orient=tk.HORIZONTAL,
command=self.update_similarity)
self.similarity_scale.pack(fill=tk.X, padx=5, pady=5)
ttk.Label(self.similarity_frame, text="相似度阈值: 0.5").pack()
# 创建显示选项
self.view_frame = ttk.LabelFrame(self.control_frame, text="显示选项")
self.view_frame.pack(fill=tk.X, pady=5)
self.show_graph_var = tk.BooleanVar(value=True)
ttk.Checkbutton(self.view_frame, text="显示关系图", variable=self.show_graph_var,
command=self.toggle_graph).pack(anchor=tk.W)
# 创建右侧内容区域
self.content_frame = ttk.Frame(self.main_frame)
self.content_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
# 创建文本显示区域
self.text_area = tk.Text(self.content_frame, wrap=tk.WORD)
self.text_area.pack(side=tk.TOP, fill=tk.BOTH, expand=True)
# 添加滚动条
scrollbar = ttk.Scrollbar(self.text_area, command=self.text_area.yview)
scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
self.text_area.config(yscrollcommand=scrollbar.set)
# 创建图形显示区域
self.graph_frame = ttk.Frame(self.content_frame)
self.graph_frame.pack(side=tk.TOP, fill=tk.BOTH, expand=True)
# 初始化数据
self.current_data = []
self.graph = nx.Graph()
self.canvas = None
# 加载文件列表
self.load_file_list()
def load_file_list(self):
expression_dir = Path("data/expression")
files = []
for root, _, filenames in os.walk(expression_dir):
for filename in filenames:
if filename.endswith('.json'):
rel_path = os.path.relpath(os.path.join(root, filename), expression_dir)
files.append(rel_path)
self.file_combo['values'] = files
if files:
self.file_combo.set(files[0])
self.load_file(None)
def load_file(self, event):
selected_file = self.file_var.get()
if not selected_file:
return
file_path = os.path.join("data/expression", selected_file)
try:
with open(file_path, 'r', encoding='utf-8') as f:
self.current_data = json.load(f)
self.apply_sort()
self.update_similarity()
except Exception as e:
self.text_area.delete(1.0, tk.END)
self.text_area.insert(tk.END, f"加载文件时出错: {str(e)}")
def apply_sort(self):
if not self.current_data:
return
sort_key = self.sort_var.get()
reverse = sort_key == "count"
self.current_data.sort(key=lambda x: x.get(sort_key, ""), reverse=reverse)
self.apply_grouping()
def apply_grouping(self):
if not self.current_data:
return
group_key = self.group_var.get()
if group_key == "none":
self.display_data(self.current_data)
return
grouped_data = defaultdict(list)
for item in self.current_data:
key = item.get(group_key, "未分类")
grouped_data[key].append(item)
self.text_area.delete(1.0, tk.END)
for group, items in grouped_data.items():
self.text_area.insert(tk.END, f"\n=== {group} ===\n\n")
for item in items:
self.text_area.insert(tk.END, f"情境: {item.get('situation', 'N/A')}\n")
self.text_area.insert(tk.END, f"风格: {item.get('style', 'N/A')}\n")
self.text_area.insert(tk.END, f"计数: {item.get('count', 'N/A')}\n")
self.text_area.insert(tk.END, "-" * 50 + "\n")
def display_data(self, data):
self.text_area.delete(1.0, tk.END)
for item in data:
self.text_area.insert(tk.END, f"情境: {item.get('situation', 'N/A')}\n")
self.text_area.insert(tk.END, f"风格: {item.get('style', 'N/A')}\n")
self.text_area.insert(tk.END, f"计数: {item.get('count', 'N/A')}\n")
self.text_area.insert(tk.END, "-" * 50 + "\n")
def update_similarity(self, *args):
if not self.current_data:
return
threshold = self.similarity_var.get()
self.similarity_frame.winfo_children()[-1].config(text=f"相似度阈值: {threshold:.2f}")
# 计算相似度
texts = [f"{item['situation']} {item['style']}" for item in self.current_data]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts)
similarity_matrix = cosine_similarity(tfidf_matrix)
# 创建图
self.graph.clear()
for i, item in enumerate(self.current_data):
self.graph.add_node(i, label=f"{item['situation']}\n{item['style']}")
# 添加边
for i in range(len(self.current_data)):
for j in range(i + 1, len(self.current_data)):
if similarity_matrix[i, j] > threshold:
self.graph.add_edge(i, j, weight=similarity_matrix[i, j])
if self.show_graph_var.get():
self.draw_graph()
def draw_graph(self):
if self.canvas:
self.canvas.get_tk_widget().destroy()
fig = plt.figure(figsize=(8, 6))
pos = nx.spring_layout(self.graph)
# 绘制节点
nx.draw_networkx_nodes(self.graph, pos, node_color='lightblue',
node_size=1000, alpha=0.6)
# 绘制边
nx.draw_networkx_edges(self.graph, pos, alpha=0.4)
# 添加标签
labels = nx.get_node_attributes(self.graph, 'label')
nx.draw_networkx_labels(self.graph, pos, labels, font_size=8)
plt.title("表达方式关系图")
plt.axis('off')
self.canvas = FigureCanvasTkAgg(fig, master=self.graph_frame)
self.canvas.draw()
self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
def toggle_graph(self):
if self.show_graph_var.get():
self.draw_graph()
else:
if self.canvas:
self.canvas.get_tk_widget().destroy()
self.canvas = None
def filter_expressions(self, *args):
search_text = self.search_var.get().lower()
if not search_text:
self.apply_sort()
return
filtered_data = []
for item in self.current_data:
situation = item.get('situation', '').lower()
style = item.get('style', '').lower()
if search_text in situation or search_text in style:
filtered_data.append(item)
self.display_data(filtered_data)
def main():
root = tk.Tk()
app = ExpressionViewer(root)
root.mainloop()
if __name__ == "__main__":
main()

View File

@@ -162,7 +162,7 @@ class WorkingMemoryProcessor(BaseProcessor):
memory_brief = memory_summary.get("brief")
memory_points = memory_summary.get("points", [])
for point in memory_points:
memory_str += f"记忆要点:{point}\n"
memory_str += f"{point}\n"
working_memory_info = WorkingMemoryInfo()
if memory_str:

View File

@@ -135,11 +135,11 @@ class ActionManager:
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
expressor: DefaultExpressor,
replyer: DefaultReplyer,
chat_stream: ChatStream,
log_prefix: str,
shutting_down: bool = False,
expressor: DefaultExpressor = None,
replyer: DefaultReplyer = None,
) -> Optional[BaseAction]:
"""
创建动作处理器实例

View File

@@ -182,26 +182,33 @@ class PluginAction(BaseAction):
Returns:
bool: 是否发送成功
"""
try:
expressor = self._services.get("expressor")
chat_stream = self._services.get("chat_stream")
expressor = self._services.get("expressor")
chat_stream = self._services.get("chat_stream")
if not expressor or not chat_stream:
logger.error(f"{self.log_prefix} 无法发送消息:缺少必要的内部服务")
return False
if not expressor or not chat_stream:
logger.error(f"{self.log_prefix} 无法发送消息:缺少必要的内部服务")
return False
# 构造简化的动作数据
reply_data = {"text": text, "target": target or "", "emojis": []}
# 构造简化的动作数据
reply_data = {"text": text, "target": target or "", "emojis": []}
# 获取锚定消息(如果有)
observations = self._services.get("observations", [])
# 获取锚定消息(如果有)
observations = self._services.get("observations", [])
chatting_observation: ChattingObservation = next(
obs for obs in observations if isinstance(obs, ChattingObservation)
# 查找 ChattingObservation 实例
chatting_observation = None
for obs in observations:
if isinstance(obs, ChattingObservation):
chatting_observation = obs
break
if not chatting_observation:
logger.warning(f"{self.log_prefix} 未找到 ChattingObservation 实例,创建占位符")
anchor_message = await create_empty_anchor_message(
chat_stream.platform, chat_stream.group_info, chat_stream
)
else:
anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
# 如果没有找到锚点消息,创建一个占位符
if not anchor_message:
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
anchor_message = await create_empty_anchor_message(
@@ -210,19 +217,16 @@ class PluginAction(BaseAction):
else:
anchor_message.update_chat_stream(chat_stream)
# 调用内部方法发送消息
success, _ = await expressor.deal_reply(
cycle_timers=self.cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
reasoning=self.reasoning,
thinking_id=self.thinking_id,
)
# 调用内部方法发送消息
success, _ = await expressor.deal_reply(
cycle_timers=self.cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
reasoning=self.reasoning,
thinking_id=self.thinking_id,
)
return success
except Exception as e:
logger.error(f"{self.log_prefix} 发送消息时出错: {e}")
return False
return success
def get_chat_type(self) -> str:
"""获取当前聊天类型

View File

@@ -286,110 +286,110 @@ class MemoryManager:
logger.error(f"生成总结时出错: {str(e)}")
return default_summary
async def refine_memory(self, memory_id: str, requirements: str = "") -> Dict[str, Any]:
"""
对记忆进行精简操作,根据要求修改要点、总结和概括
# async def refine_memory(self, memory_id: str, requirements: str = "") -> Dict[str, Any]:
# """
# 对记忆进行精简操作,根据要求修改要点、总结和概括
Args:
memory_id: 记忆ID
requirements: 精简要求,描述如何修改记忆,包括可能需要移除的要点
# Args:
# memory_id: 记忆ID
# requirements: 精简要求,描述如何修改记忆,包括可能需要移除的要点
Returns:
修改后的记忆总结字典
"""
# 获取指定ID的记忆项
logger.info(f"精简记忆: {memory_id}")
memory_item = self.get_by_id(memory_id)
if not memory_item:
raise ValueError(f"未找到ID为{memory_id}的记忆项")
# Returns:
# 修改后的记忆总结字典
# """
# # 获取指定ID的记忆项
# logger.info(f"精简记忆: {memory_id}")
# memory_item = self.get_by_id(memory_id)
# if not memory_item:
# raise ValueError(f"未找到ID为{memory_id}的记忆项")
# 增加精简次数
memory_item.increase_compress_count()
# # 增加精简次数
# memory_item.increase_compress_count()
summary = memory_item.summary
# summary = memory_item.summary
# 使用LLM根据要求对总结、概括和要点进行精简修改
prompt = f"""
请根据以下要求,对记忆内容的主题和关键要点进行精简,模拟记忆的遗忘过程:
要求:{requirements}
你可以随机对关键要点进行压缩,模糊或者丢弃,修改后,同样修改主题
# # 使用LLM根据要求对总结、概括和要点进行精简修改
# prompt = f"""
# 请根据以下要求,对记忆内容的主题和关键要点进行精简,模拟记忆的遗忘过程:
# 要求:{requirements}
# 你可以随机对关键要点进行压缩,模糊或者丢弃,修改后,同样修改主题
目前主题:{summary["brief"]}
# 目前主题:{summary["brief"]}
目前关键要点:
{chr(10).join([f"- {point}" for point in summary.get("points", [])])}
# 目前关键要点:
# {chr(10).join([f"- {point}" for point in summary.get("points", [])])}
请生成修改后的主题和关键要点,遵循以下格式:
```json
{{
"brief": "修改后的主题20字以内",
"points": [
"修改后的要点",
"修改后的要点"
]
}}
```
请确保输出是有效的JSON格式不要添加任何额外的说明或解释。
"""
# 定义默认的精简结果
default_refined = {
"brief": summary["brief"],
"points": summary.get("points", ["未知的要点"])[:1], # 默认只保留第一个要点
}
# 请生成修改后的主题和关键要点,遵循以下格式:
# ```json
# {{
# "brief": "修改后的主题20字以内",
# "points": [
# "修改后的要点",
# "修改后的要点"
# ]
# }}
# ```
# 请确保输出是有效的JSON格式不要添加任何额外的说明或解释。
# """
# # 定义默认的精简结果
# default_refined = {
# "brief": summary["brief"],
# "points": summary.get("points", ["未知的要点"])[:1], # 默认只保留第一个要点
# }
try:
# 调用LLM修改总结、概括和要点
response, _ = await self.llm_summarizer.generate_response_async(prompt)
logger.debug(f"精简记忆响应: {response}")
# 使用repair_json处理响应
try:
# 修复JSON格式
fixed_json_string = repair_json(response)
# try:
# # 调用LLM修改总结、概括和要点
# response, _ = await self.llm_summarizer.generate_response_async(prompt)
# logger.debug(f"精简记忆响应: {response}")
# # 使用repair_json处理响应
# try:
# # 修复JSON格式
# fixed_json_string = repair_json(response)
# 将修复后的字符串解析为Python对象
if isinstance(fixed_json_string, str):
try:
refined_data = json.loads(fixed_json_string)
except json.JSONDecodeError as decode_error:
logger.error(f"JSON解析错误: {str(decode_error)}")
refined_data = default_refined
else:
# 如果repair_json直接返回了字典对象直接使用
refined_data = fixed_json_string
# # 将修复后的字符串解析为Python对象
# if isinstance(fixed_json_string, str):
# try:
# refined_data = json.loads(fixed_json_string)
# except json.JSONDecodeError as decode_error:
# logger.error(f"JSON解析错误: {str(decode_error)}")
# refined_data = default_refined
# else:
# # 如果repair_json直接返回了字典对象直接使用
# refined_data = fixed_json_string
# 确保是字典类型
if not isinstance(refined_data, dict):
logger.error(f"修复后的JSON不是字典类型: {type(refined_data)}")
refined_data = default_refined
# # 确保是字典类型
# if not isinstance(refined_data, dict):
# logger.error(f"修复后的JSON不是字典类型: {type(refined_data)}")
# refined_data = default_refined
# 更新总结
summary["brief"] = refined_data.get("brief", "主题未知的记忆")
# # 更新总结
# summary["brief"] = refined_data.get("brief", "主题未知的记忆")
# 更新关键要点
points = refined_data.get("points", [])
if isinstance(points, list) and points:
# 确保所有要点都是字符串
summary["points"] = [str(point) for point in points if point is not None]
else:
# 如果points不是列表或为空使用默认值
summary["points"] = ["主要要点已遗忘"]
# # 更新关键要点
# points = refined_data.get("points", [])
# if isinstance(points, list) and points:
# # 确保所有要点都是字符串
# summary["points"] = [str(point) for point in points if point is not None]
# else:
# # 如果points不是列表或为空使用默认值
# summary["points"] = ["主要要点已遗忘"]
except Exception as e:
logger.error(f"精简记忆出错: {str(e)}")
traceback.print_exc()
# except Exception as e:
# logger.error(f"精简记忆出错: {str(e)}")
# traceback.print_exc()
# 出错时使用简化的默认精简
summary["brief"] = summary["brief"] + " (已简化)"
summary["points"] = summary.get("points", ["未知的要点"])[:1]
# # 出错时使用简化的默认精简
# summary["brief"] = summary["brief"] + " (已简化)"
# summary["points"] = summary.get("points", ["未知的要点"])[:1]
except Exception as e:
logger.error(f"精简记忆调用LLM出错: {str(e)}")
traceback.print_exc()
# except Exception as e:
# logger.error(f"精简记忆调用LLM出错: {str(e)}")
# traceback.print_exc()
# 更新原记忆项的总结
memory_item.set_summary(summary)
# # 更新原记忆项的总结
# memory_item.set_summary(summary)
return memory_item
# return memory_item
def decay_memory(self, memory_id: str, decay_factor: float = 0.8) -> bool:
"""

View File

@@ -112,10 +112,10 @@ class WorkingMemory:
self.memory_manager.delete(memory_id)
continue
# 计算衰减量
if memory_item.memory_strength < 5:
await self.memory_manager.refine_memory(
memory_id, f"由于时间过去了{self.auto_decay_interval}秒,记忆变的模糊,所以需要压缩"
)
# if memory_item.memory_strength < 5:
# await self.memory_manager.refine_memory(
# memory_id, f"由于时间过去了{self.auto_decay_interval}秒,记忆变的模糊,所以需要压缩"
# )
async def merge_memory(self, memory_id1: str, memory_id2: str) -> MemoryItem:
"""合并记忆
@@ -127,51 +127,6 @@ class WorkingMemory:
memory_id1=memory_id1, memory_id2=memory_id2, reason="两端记忆有重复的内容"
)
# 暂时没用,先留着
async def simulate_memory_blur(self, chat_id: str, blur_rate: float = 0.2):
"""
模拟记忆模糊过程,随机选择一部分记忆进行精简
Args:
chat_id: 聊天ID
blur_rate: 模糊比率(0-1之间),表示有多少比例的记忆会被精简
"""
memory = self.get_memory(chat_id)
# 获取所有字符串类型且有总结的记忆
all_summarized_memories = []
for type_items in memory._memory.values():
for item in type_items:
if isinstance(item.data, str) and hasattr(item, "summary") and item.summary:
all_summarized_memories.append(item)
if not all_summarized_memories:
return
# 计算要模糊的记忆数量
blur_count = max(1, int(len(all_summarized_memories) * blur_rate))
# 随机选择要模糊的记忆
memories_to_blur = random.sample(all_summarized_memories, min(blur_count, len(all_summarized_memories)))
# 对选中的记忆进行精简
for memory_item in memories_to_blur:
try:
# 根据记忆强度决定模糊程度
if memory_item.memory_strength > 7:
requirement = "保留所有重要信息,仅略微精简"
elif memory_item.memory_strength > 4:
requirement = "保留核心要点,适度精简细节"
else:
requirement = "只保留最关键的1-2个要点大幅精简内容"
# 进行精简
await memory.refine_memory(memory_item.id, requirement)
print(f"已模糊记忆 {memory_item.id},强度: {memory_item.memory_strength}, 要求: {requirement}")
except Exception as e:
print(f"模糊记忆 {memory_item.id} 时出错: {str(e)}")
async def shutdown(self) -> None:
"""关闭管理器,停止所有任务"""
if self.decay_task and not self.decay_task.done():

View File

@@ -17,12 +17,14 @@ from src.chat.memory_system.sample_distribution import MemoryBuildScheduler #
from ..utils.chat_message_builder import (
get_raw_msg_by_timestamp,
build_readable_messages,
get_raw_msg_by_timestamp_with_chat,
) # 导入 build_readable_messages
from ..utils.utils import translate_timestamp_to_human_readable
from rich.traceback import install
from ...config.config import global_config
from src.common.database.database_model import Messages, GraphNodes, GraphEdges # Peewee Models导入
from peewee import Case
install(extra_lines=3)
@@ -215,15 +217,18 @@ class Hippocampus:
"""计算节点的特征值"""
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
sorted_items = sorted(memory_items)
content = f"{concept}:{'|'.join(sorted_items)}"
# 使用集合来去重,避免排序
unique_items = set(str(item) for item in memory_items)
# 使用frozenset来保证顺序一致性
content = f"{concept}:{frozenset(unique_items)}"
return hash(content)
@staticmethod
def calculate_edge_hash(source, target) -> int:
"""计算边的特征值"""
nodes = sorted([source, target])
return hash(f"{nodes[0]}:{nodes[1]}")
# 直接使用元组,保证顺序一致性
return hash((source, target))
@staticmethod
def find_topic_llm(text, topic_num):
@@ -811,7 +816,8 @@ class EntorhinalCortex:
timestamps = sample_scheduler.get_timestamp_array()
# 使用 translate_timestamp_to_human_readable 并指定 mode="normal"
readable_timestamps = [translate_timestamp_to_human_readable(ts, mode="normal") for ts in timestamps]
logger.info(f"回忆往事: {readable_timestamps}")
for timestamp, readable_timestamp in zip(timestamps, readable_timestamps):
logger.debug(f"回忆往事: {readable_timestamp}")
chat_samples = []
for timestamp in timestamps:
# 调用修改后的 random_get_msg_snippet
@@ -820,10 +826,10 @@ class EntorhinalCortex:
)
if messages:
time_diff = (datetime.datetime.now().timestamp() - timestamp) / 3600
logger.debug(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}")
logger.success(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}")
chat_samples.append(messages)
else:
logger.debug(f"时间戳 {timestamp} 的消息样本抽取失败")
logger.debug(f"时间戳 {timestamp} 的消息无需记忆")
return chat_samples
@@ -838,31 +844,36 @@ class EntorhinalCortex:
timestamp_start = target_timestamp
timestamp_end = target_timestamp + time_window_seconds
# 使用 chat_message_builder 的函数获取消息
# limit_mode='earliest' 获取这个时间窗口内最早的 chat_size 条消息
messages = get_raw_msg_by_timestamp(
timestamp_start=timestamp_start, timestamp_end=timestamp_end, limit=chat_size, limit_mode="earliest"
chosen_message = get_raw_msg_by_timestamp(
timestamp_start=timestamp_start, timestamp_end=timestamp_end, limit=1, limit_mode="earliest"
)
if messages:
# 检查获取到的所有消息是否都未达到最大记忆次数
all_valid = True
for message in messages:
if message.get("memorized_times", 0) >= max_memorized_time_per_msg:
all_valid = False
break
if chosen_message:
chat_id = chosen_message[0].get("chat_id")
# 如果所有消息都有效
if all_valid:
# 更新数据库中的记忆次数
messages = get_raw_msg_by_timestamp_with_chat(
timestamp_start=timestamp_start, timestamp_end=timestamp_end, limit=chat_size, limit_mode="earliest", chat_id=chat_id
)
if messages:
# 检查获取到的所有消息是否都未达到最大记忆次数
all_valid = True
for message in messages:
# 确保在更新前获取最新的 memorized_times
current_memorized_times = message.get("memorized_times", 0)
# 使用 Peewee 更新记录
Messages.update(memorized_times=current_memorized_times + 1).where(
Messages.message_id == message["message_id"]
).execute()
return messages # 直接返回原始的消息列表
if message.get("memorized_times", 0) >= max_memorized_time_per_msg:
all_valid = False
break
# 如果所有消息都有效
if all_valid:
# 更新数据库中的记忆次数
for message in messages:
# 确保在更新前获取最新的 memorized_times
current_memorized_times = message.get("memorized_times", 0)
# 使用 Peewee 更新记录
Messages.update(memorized_times=current_memorized_times + 1).where(
Messages.message_id == message["message_id"]
).execute()
return messages # 直接返回原始的消息列表
# 如果获取失败或消息无效,增加尝试次数
try_count += 1
@@ -873,85 +884,361 @@ class EntorhinalCortex:
async def sync_memory_to_db(self):
"""将记忆图同步到数据库"""
start_time = time.time()
# 获取数据库中所有节点和内存中所有节点
db_load_start = time.time()
db_nodes = {node.concept: node for node in GraphNodes.select()}
memory_nodes = list(self.memory_graph.G.nodes(data=True))
db_load_end = time.time()
logger.info(f"[同步] 加载数据库耗时: {db_load_end - db_load_start:.2f}")
# 批量准备节点数据
nodes_to_create = []
nodes_to_update = []
current_time = datetime.datetime.now().timestamp()
# 检查并更新节点
node_process_start = time.time()
for concept, data in memory_nodes:
# 检查概念是否有效
if not concept or not isinstance(concept, str):
logger.warning(f"[同步] 发现无效概念,将移除节点: {concept}")
# 从图中移除节点(这会自动移除相关的边)
self.memory_graph.G.remove_node(concept)
continue
memory_items = data.get("memory_items", [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
# 检查记忆项是否为空
if not memory_items:
logger.warning(f"[同步] 发现空记忆节点,将移除节点: {concept}")
# 从图中移除节点(这会自动移除相关的边)
self.memory_graph.G.remove_node(concept)
continue
# 计算内存中节点的特征值
memory_hash = self.hippocampus.calculate_node_hash(concept, memory_items)
# 获取时间信息
created_time = data.get("created_time", datetime.datetime.now().timestamp())
last_modified = data.get("last_modified", datetime.datetime.now().timestamp())
created_time = data.get("created_time", current_time)
last_modified = data.get("last_modified", current_time)
# 将memory_items转换为JSON字符串
memory_items_json = json.dumps(memory_items, ensure_ascii=False)
try:
# 确保memory_items中的每个项都是字符串
memory_items = [str(item) for item in memory_items]
memory_items_json = json.dumps(memory_items, ensure_ascii=False)
if not memory_items_json: # 确保JSON字符串不为空
raise ValueError("序列化后的JSON字符串为空")
# 验证JSON字符串是否有效
json.loads(memory_items_json)
except Exception as e:
logger.error(f"[同步] 序列化记忆项失败,将移除节点: {concept}, 错误: {e}")
# 从图中移除节点(这会自动移除相关的边)
self.memory_graph.G.remove_node(concept)
continue
if concept not in db_nodes:
# 数据库中缺少的节点,添加
GraphNodes.create(
concept=concept,
memory_items=memory_items_json,
hash=memory_hash,
created_time=created_time,
last_modified=last_modified,
)
# 数据库中缺少的节点,添加到创建列表
nodes_to_create.append({
'concept': concept,
'memory_items': memory_items_json,
'hash': memory_hash,
'created_time': created_time,
'last_modified': last_modified
})
logger.debug(f"[同步] 准备创建节点: {concept}, memory_items长度: {len(memory_items)}")
else:
# 获取数据库中节点的特征值
db_node = db_nodes[concept]
db_hash = db_node.hash
# 如果特征值不同,则更新节点
# 如果特征值不同,则添加到更新列表
if db_hash != memory_hash:
db_node.memory_items = memory_items_json
db_node.hash = memory_hash
db_node.last_modified = last_modified
db_node.save()
nodes_to_update.append({
'concept': concept,
'memory_items': memory_items_json,
'hash': memory_hash,
'last_modified': last_modified
})
# 检查需要删除的节点
memory_concepts = {concept for concept, _ in memory_nodes}
db_concepts = set(db_nodes.keys())
nodes_to_delete = db_concepts - memory_concepts
node_process_end = time.time()
logger.info(f"[同步] 处理节点数据耗时: {node_process_end - node_process_start:.2f}")
logger.info(f"[同步] 准备创建 {len(nodes_to_create)} 个节点,更新 {len(nodes_to_update)} 个节点,删除 {len(nodes_to_delete)} 个节点")
# 异步批量创建新节点
node_create_start = time.time()
if nodes_to_create:
try:
# 验证所有要创建的节点数据
valid_nodes_to_create = []
for node_data in nodes_to_create:
if not node_data.get('memory_items'):
logger.warning(f"[同步] 跳过创建节点 {node_data['concept']}: memory_items 为空")
continue
try:
# 验证 JSON 字符串
json.loads(node_data['memory_items'])
valid_nodes_to_create.append(node_data)
except json.JSONDecodeError:
logger.warning(f"[同步] 跳过创建节点 {node_data['concept']}: memory_items 不是有效的 JSON 字符串")
continue
if valid_nodes_to_create:
# 使用异步批量插入
batch_size = 100
for i in range(0, len(valid_nodes_to_create), batch_size):
batch = valid_nodes_to_create[i:i + batch_size]
await self._async_batch_create_nodes(batch)
logger.info(f"[同步] 成功创建 {len(valid_nodes_to_create)} 个节点")
else:
logger.warning("[同步] 没有有效的节点可以创建")
except Exception as e:
logger.error(f"[同步] 创建节点失败: {e}")
# 尝试逐个创建以找出问题节点
for node_data in nodes_to_create:
try:
if not node_data.get('memory_items'):
logger.warning(f"[同步] 跳过创建节点 {node_data['concept']}: memory_items 为空")
continue
try:
json.loads(node_data['memory_items'])
except json.JSONDecodeError:
logger.warning(f"[同步] 跳过创建节点 {node_data['concept']}: memory_items 不是有效的 JSON 字符串")
continue
await self._async_create_node(node_data)
except Exception as e:
logger.error(f"[同步] 创建节点失败: {node_data['concept']}, 错误: {e}")
# 从图中移除问题节点
self.memory_graph.G.remove_node(node_data['concept'])
node_create_end = time.time()
logger.info(f"[同步] 创建新节点耗时: {node_create_end - node_create_start:.2f}秒 (创建了 {len(nodes_to_create)} 个节点)")
# 异步批量更新节点
node_update_start = time.time()
if nodes_to_update:
# 按批次更新节点每批100个
batch_size = 100
for i in range(0, len(nodes_to_update), batch_size):
batch = nodes_to_update[i:i + batch_size]
try:
# 验证批次中的每个节点数据
valid_batch = []
for node_data in batch:
# 确保 memory_items 不为空且是有效的 JSON 字符串
if not node_data.get('memory_items'):
logger.warning(f"[同步] 跳过更新节点 {node_data['concept']}: memory_items 为空")
continue
try:
# 验证 JSON 字符串是否有效
json.loads(node_data['memory_items'])
valid_batch.append(node_data)
except json.JSONDecodeError:
logger.warning(f"[同步] 跳过更新节点 {node_data['concept']}: memory_items 不是有效的 JSON 字符串")
continue
if not valid_batch:
logger.warning(f"[同步] 批次 {i//batch_size + 1} 没有有效的节点可以更新")
continue
# 异步批量更新节点
await self._async_batch_update_nodes(valid_batch)
logger.debug(f"[同步] 成功更新批次 {i//batch_size + 1} 中的 {len(valid_batch)} 个节点")
except Exception as e:
logger.error(f"[同步] 批量更新节点失败: {e}")
# 如果批量更新失败,尝试逐个更新
for node_data in valid_batch:
try:
await self._async_update_node(node_data)
except Exception as e:
logger.error(f"[同步] 更新节点失败: {node_data['concept']}, 错误: {e}")
# 从图中移除问题节点
self.memory_graph.G.remove_node(node_data['concept'])
node_update_end = time.time()
logger.info(f"[同步] 更新节点耗时: {node_update_end - node_update_start:.2f}秒 (更新了 {len(nodes_to_update)} 个节点)")
# 异步删除不存在的节点
node_delete_start = time.time()
if nodes_to_delete:
await self._async_delete_nodes(nodes_to_delete)
node_delete_end = time.time()
logger.info(f"[同步] 删除节点耗时: {node_delete_end - node_delete_start:.2f}秒 (删除了 {len(nodes_to_delete)} 个节点)")
# 处理边的信息
edge_load_start = time.time()
db_edges = list(GraphEdges.select())
memory_edges = list(self.memory_graph.G.edges(data=True))
edge_load_end = time.time()
logger.info(f"[同步] 加载边数据耗时: {edge_load_end - edge_load_start:.2f}")
# 创建边的哈希值字典
edge_dict_start = time.time()
db_edge_dict = {}
for edge in db_edges:
edge_hash = self.hippocampus.calculate_edge_hash(edge.source, edge.target)
db_edge_dict[(edge.source, edge.target)] = {"hash": edge_hash, "strength": edge.strength}
edge_dict_end = time.time()
logger.info(f"[同步] 创建边字典耗时: {edge_dict_end - edge_dict_start:.2f}")
# 批量准备边数据
edges_to_create = []
edges_to_update = []
# 检查并更新边
edge_process_start = time.time()
for source, target, data in memory_edges:
edge_hash = self.hippocampus.calculate_edge_hash(source, target)
edge_key = (source, target)
strength = data.get("strength", 1)
# 获取边的时间信息
created_time = data.get("created_time", datetime.datetime.now().timestamp())
last_modified = data.get("last_modified", datetime.datetime.now().timestamp())
created_time = data.get("created_time", current_time)
last_modified = data.get("last_modified", current_time)
if edge_key not in db_edge_dict:
# 添加新边
GraphEdges.create(
source=source,
target=target,
strength=strength,
hash=edge_hash,
created_time=created_time,
last_modified=last_modified,
)
# 添加新边到创建列表
edges_to_create.append({
'source': source,
'target': target,
'strength': strength,
'hash': edge_hash,
'created_time': created_time,
'last_modified': last_modified
})
else:
# 检查边的特征值是否变化
if db_edge_dict[edge_key]["hash"] != edge_hash:
edge = GraphEdges.get(GraphEdges.source == source, GraphEdges.target == target)
edge.hash = edge_hash
edge.strength = strength
edge.last_modified = last_modified
edge.save()
edges_to_update.append({
'source': source,
'target': target,
'strength': strength,
'hash': edge_hash,
'last_modified': last_modified
})
edge_process_end = time.time()
logger.info(f"[同步] 处理边数据耗时: {edge_process_end - edge_process_start:.2f}")
# 异步批量创建新边
edge_create_start = time.time()
if edges_to_create:
batch_size = 100
for i in range(0, len(edges_to_create), batch_size):
batch = edges_to_create[i:i + batch_size]
await self._async_batch_create_edges(batch)
edge_create_end = time.time()
logger.info(f"[同步] 创建新边耗时: {edge_create_end - edge_create_start:.2f}秒 (创建了 {len(edges_to_create)} 条边)")
# 异步批量更新边
edge_update_start = time.time()
if edges_to_update:
batch_size = 100
for i in range(0, len(edges_to_update), batch_size):
batch = edges_to_update[i:i + batch_size]
await self._async_batch_update_edges(batch)
edge_update_end = time.time()
logger.info(f"[同步] 更新边耗时: {edge_update_end - edge_update_start:.2f}秒 (更新了 {len(edges_to_update)} 条边)")
# 检查需要删除的边
memory_edge_keys = {(source, target) for source, target, _ in memory_edges}
db_edge_keys = {(edge.source, edge.target) for edge in db_edges}
edges_to_delete = db_edge_keys - memory_edge_keys
# 异步删除不存在的边
edge_delete_start = time.time()
if edges_to_delete:
await self._async_delete_edges(edges_to_delete)
edge_delete_end = time.time()
logger.info(f"[同步] 删除边耗时: {edge_delete_end - edge_delete_start:.2f}秒 (删除了 {len(edges_to_delete)} 条边)")
end_time = time.time()
logger.success(f"[同步] 总耗时: {end_time - start_time:.2f}")
logger.success(f"[同步] 同步了 {len(memory_nodes)} 个节点和 {len(memory_edges)} 条边")
async def _async_batch_create_nodes(self, nodes_data):
"""异步批量创建节点"""
try:
GraphNodes.insert_many(nodes_data).execute()
except Exception as e:
logger.error(f"[同步] 批量创建节点失败: {e}")
raise
async def _async_create_node(self, node_data):
"""异步创建单个节点"""
try:
GraphNodes.create(**node_data)
except Exception as e:
logger.error(f"[同步] 创建节点失败: {e}")
raise
async def _async_batch_update_nodes(self, nodes_data):
"""异步批量更新节点"""
try:
for node_data in nodes_data:
GraphNodes.update(**{k: v for k, v in node_data.items() if k != 'concept'}).where(
GraphNodes.concept == node_data['concept']
).execute()
except Exception as e:
logger.error(f"[同步] 批量更新节点失败: {e}")
raise
async def _async_update_node(self, node_data):
"""异步更新单个节点"""
try:
GraphNodes.update(**{k: v for k, v in node_data.items() if k != 'concept'}).where(
GraphNodes.concept == node_data['concept']
).execute()
except Exception as e:
logger.error(f"[同步] 更新节点失败: {e}")
raise
async def _async_delete_nodes(self, concepts):
"""异步删除节点"""
try:
GraphNodes.delete().where(GraphNodes.concept.in_(concepts)).execute()
except Exception as e:
logger.error(f"[同步] 删除节点失败: {e}")
raise
async def _async_batch_create_edges(self, edges_data):
"""异步批量创建边"""
try:
GraphEdges.insert_many(edges_data).execute()
except Exception as e:
logger.error(f"[同步] 批量创建边失败: {e}")
raise
async def _async_batch_update_edges(self, edges_data):
"""异步批量更新边"""
try:
for edge_data in edges_data:
GraphEdges.update(**{k: v for k, v in edge_data.items() if k not in ['source', 'target']}).where(
(GraphEdges.source == edge_data['source']) &
(GraphEdges.target == edge_data['target'])
).execute()
except Exception as e:
logger.error(f"[同步] 批量更新边失败: {e}")
raise
async def _async_delete_edges(self, edge_keys):
"""异步删除边"""
try:
for source, target in edge_keys:
GraphEdges.delete().where(
(GraphEdges.source == source) &
(GraphEdges.target == target)
).execute()
except Exception as e:
logger.error(f"[同步] 删除边失败: {e}")
raise
def sync_memory_from_db(self):
"""从数据库同步数据到内存中的图结构"""
@@ -1111,7 +1398,7 @@ class ParahippocampalGyrus:
input_text = await build_readable_messages(
messages,
merge_messages=True, # 合并连续消息
timestamp_mode="normal", # 使用 'YYYY-MM-DD HH:MM:SS' 格式
timestamp_mode="normal_no_YMD", # 使用 'YYYY-MM-DD HH:MM:SS' 格式
replace_bot_name=False, # 保留原始用户名
)
@@ -1120,7 +1407,11 @@ class ParahippocampalGyrus:
logger.warning("无法从提供的消息生成可读文本,跳过记忆压缩。")
return set(), {}
logger.debug(f"用于压缩的格式化文本:\n{input_text}")
current_YMD_time = datetime.datetime.now().strftime("%Y-%m-%d")
current_YMD_time_str = f"当前日期: {current_YMD_time}"
input_text = f"{current_YMD_time_str}\n{input_text}"
logger.debug(f"记忆来源:\n{input_text}")
# 2. 使用LLM提取关键主题
topic_num = self.hippocampus.calculate_topic_num(input_text, compress_rate)
@@ -1191,7 +1482,7 @@ class ParahippocampalGyrus:
return compressed_memory, similar_topics_dict
async def operation_build_memory(self):
logger.debug("------------------------------------开始构建记忆--------------------------------------")
logger.info("------------------------------------开始构建记忆--------------------------------------")
start_time = time.time()
memory_samples = self.hippocampus.entorhinal_cortex.get_memory_sample()
all_added_nodes = []
@@ -1199,19 +1490,16 @@ class ParahippocampalGyrus:
all_added_edges = []
for i, messages in enumerate(memory_samples, 1):
all_topics = []
progress = (i / len(memory_samples)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(memory_samples))
bar = "" * filled_length + "-" * (bar_length - filled_length)
logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})")
compress_rate = global_config.memory.memory_compress_rate
try:
compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate)
except Exception as e:
logger.error(f"压缩记忆时发生错误: {e}")
continue
logger.debug(f"压缩后记忆数量: {compressed_memory},似曾相识的话题: {similar_topics_dict}")
for topic, memory in compressed_memory:
logger.info(f"取得记忆: {topic} - {memory}")
for topic, similar_topics in similar_topics_dict.items():
logger.debug(f"相似话题: {topic} - {similar_topics}")
current_time = datetime.datetime.now().timestamp()
logger.debug(f"添加节点: {', '.join(topic for topic, _ in compressed_memory)}")
@@ -1246,9 +1534,19 @@ class ParahippocampalGyrus:
all_added_edges.append(f"{topic1}-{topic2}")
self.memory_graph.connect_dot(topic1, topic2)
logger.success(f"更新记忆: {', '.join(all_added_nodes)}")
logger.debug(f"强化连接: {', '.join(all_added_edges)}")
logger.info(f"强化连接节点: {', '.join(all_connected_nodes)}")
progress = (i / len(memory_samples)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(memory_samples))
bar = "" * filled_length + "-" * (bar_length - filled_length)
logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})")
if all_added_nodes:
logger.success(f"更新记忆: {', '.join(all_added_nodes)}")
if all_added_edges:
logger.debug(f"强化连接: {', '.join(all_added_edges)}")
if all_connected_nodes:
logger.info(f"强化连接节点: {', '.join(all_connected_nodes)}")
await self.hippocampus.entorhinal_cortex.sync_memory_to_db()

View File

@@ -24,6 +24,7 @@ from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.normal_chat.normal_chat_planner import NormalChatPlanner
from src.chat.normal_chat.normal_chat_action_modifier import NormalChatActionModifier
from src.chat.normal_chat.normal_chat_expressor import NormalChatExpressor
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
logger = get_logger("normal_chat")
@@ -77,6 +78,9 @@ class NormalChat:
# 初始化Normal Chat专用表达器
self.expressor = NormalChatExpressor(self.chat_stream, self.stream_name)
self.replyer = DefaultReplyer(chat_id=self.stream_id)
self.replyer.chat_stream = self.chat_stream
self._initialized = True
logger.debug(f"[{self.stream_name}] NormalChat 初始化完成 (异步部分)。")
@@ -93,7 +97,7 @@ class NormalChat:
)
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
thinking_id = "tid" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=self.chat_stream,
@@ -232,7 +236,6 @@ class NormalChat:
message=message,
is_mentioned=is_mentioned,
interested_rate=interest_value * self.willing_amplifier,
rewind_response=False,
)
except Exception as e:
logger.error(f"[{self.stream_name}] 处理兴趣消息{msg_id}时出错: {e}\n{traceback.format_exc()}")
@@ -241,7 +244,7 @@ class NormalChat:
# 改为实例方法, 移除 chat 参数
async def normal_response(
self, message: MessageRecv, is_mentioned: bool, interested_rate: float, rewind_response: bool = False
self, message: MessageRecv, is_mentioned: bool, interested_rate: float
) -> None:
# 新增:如果已停用,直接返回
if self._disabled:
@@ -284,11 +287,8 @@ class NormalChat:
# 回复前处理
await willing_manager.before_generate_reply_handle(message.message_info.message_id)
with Timer("创建思考消息", timing_results):
if rewind_response:
thinking_id = await self._create_thinking_message(message, message.message_info.time)
else:
thinking_id = await self._create_thinking_message(message)
thinking_id = await self._create_thinking_message(message)
logger.debug(f"[{self.stream_name}] 创建捕捉器thinking_id:{thinking_id}")
@@ -666,6 +666,7 @@ class NormalChat:
thinking_id=thinking_id,
observations=[], # normal_chat不使用observations
expressor=self.expressor, # 使用normal_chat专用的expressor
replyer=self.replyer,
chat_stream=self.chat_stream,
log_prefix=self.stream_name,
shutting_down=self._disabled,

View File

@@ -342,7 +342,7 @@ async def _build_readable_messages_internal(
# 使用指定的 timestamp_mode 格式化时间
readable_time = translate_timestamp_to_human_readable(merged["start_time"], mode=timestamp_mode)
header = f"{readable_time}{merged['name']} :"
header = f"{readable_time}, {merged['name']} :"
output_lines.append(header)
# 将内容合并,并添加缩进
for line in merged["content"]:

View File

@@ -128,38 +128,38 @@ class ImageManager:
return f"[表情包,含义看起来是:{cached_description}]"
# 根据配置决定是否保存图片
if global_config.emoji.save_emoji:
# 生成文件名和路径
logger.debug(f"保存表情包: {image_hash}")
current_timestamp = time.time()
filename = f"{int(current_timestamp)}_{image_hash[:8]}.{image_format}"
emoji_dir = os.path.join(self.IMAGE_DIR, "emoji")
os.makedirs(emoji_dir, exist_ok=True)
file_path = os.path.join(emoji_dir, filename)
# if global_config.emoji.save_emoji:
# 生成文件名和路径
logger.debug(f"保存表情包: {image_hash}")
current_timestamp = time.time()
filename = f"{int(current_timestamp)}_{image_hash[:8]}.{image_format}"
emoji_dir = os.path.join(self.IMAGE_DIR, "emoji")
os.makedirs(emoji_dir, exist_ok=True)
file_path = os.path.join(emoji_dir, filename)
try:
# 保存文件
with open(file_path, "wb") as f:
f.write(image_bytes)
# 保存到数据库 (Images表)
try:
# 保存文件
with open(file_path, "wb") as f:
f.write(image_bytes)
# 保存到数据库 (Images表)
try:
img_obj = Images.get((Images.emoji_hash == image_hash) & (Images.type == "emoji"))
img_obj.path = file_path
img_obj.description = description
img_obj.timestamp = current_timestamp
img_obj.save()
except Images.DoesNotExist:
Images.create(
emoji_hash=image_hash,
path=file_path,
type="emoji",
description=description,
timestamp=current_timestamp,
)
# logger.debug(f"保存表情包元数据: {file_path}")
except Exception as e:
logger.error(f"保存表情包文件或元数据失败: {str(e)}")
img_obj = Images.get((Images.emoji_hash == image_hash) & (Images.type == "emoji"))
img_obj.path = file_path
img_obj.description = description
img_obj.timestamp = current_timestamp
img_obj.save()
except Images.DoesNotExist:
Images.create(
emoji_hash=image_hash,
path=file_path,
type="emoji",
description=description,
timestamp=current_timestamp,
)
# logger.debug(f"保存表情包元数据: {file_path}")
except Exception as e:
logger.error(f"保存表情包文件或元数据失败: {str(e)}")
# 保存描述到数据库 (ImageDescriptions表)
self._save_description_to_db(image_hash, description, "emoji")

View File

@@ -124,9 +124,7 @@ class TelemetryHeartBeatTask(AsyncTask):
timeout=5, # 设置超时时间为5秒
)
except Exception as e:
# 你知道为什么设置成debug吗
# 因为我不想看到
logger.debug(f"心跳发送失败: {e}")
logger.warning(f"(此错误不会影响正常使用)状态未发生: {e}")
logger.debug(response)
@@ -136,21 +134,21 @@ class TelemetryHeartBeatTask(AsyncTask):
logger.debug(f"心跳发送成功,状态码: {response.status_code}")
elif response.status_code == 403:
# 403 Forbidden
logger.error(
"心跳发送失败403 Forbidden: 可能是UUID无效或未注册。"
logger.warning(
"(此错误不会影响正常使用)心跳发送失败403 Forbidden: 可能是UUID无效或未注册。"
"处理措施重置UUID下次发送心跳时将尝试重新注册。"
)
self.client_uuid = None
del local_storage["mmc_uuid"] # 删除本地存储的UUID
else:
# 其他错误
logger.error(f"心跳发送失败,状态码: {response.status_code}, 响应内容: {response.text}")
logger.warning(f"(此错误不会影响正常使用)状态未发送,状态码: {response.status_code}, 响应内容: {response.text}")
async def run(self):
# 发送心跳
if global_config.telemetry.enable:
if self.client_uuid is None and not await self._req_uuid():
logger.error("获取UUID失败跳过此次心跳")
logger.warning("获取UUID失败跳过此次心跳")
return
await self._send_heartbeat()

View File

@@ -6,6 +6,7 @@ from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from typing import List, Tuple
import os
import json
from datetime import datetime
logger = get_logger("expressor")
@@ -45,11 +46,30 @@ class PersonalityExpression:
if os.path.exists(self.meta_file_path):
try:
with open(self.meta_file_path, "r", encoding="utf-8") as f:
return json.load(f)
meta_data = json.load(f)
# 检查是否有last_update_time字段
if "last_update_time" not in meta_data:
logger.warning(f"{self.meta_file_path} 中缺少last_update_time字段将重新开始。")
# 清空并重写元数据文件
self._write_meta_data({"last_style_text": None, "count": 0, "last_update_time": None})
# 清空并重写表达文件
if os.path.exists(self.expressions_file_path):
with open(self.expressions_file_path, "w", encoding="utf-8") as f:
json.dump([], f, ensure_ascii=False, indent=2)
logger.debug(f"已清空表达文件: {self.expressions_file_path}")
return {"last_style_text": None, "count": 0, "last_update_time": None}
return meta_data
except json.JSONDecodeError:
logger.warning(f"无法解析 {self.meta_file_path} 中的JSON数据将重新开始。")
return {"last_style_text": None, "count": 0}
return {"last_style_text": None, "count": 0}
# 清空并重写元数据文件
self._write_meta_data({"last_style_text": None, "count": 0, "last_update_time": None})
# 清空并重写表达文件
if os.path.exists(self.expressions_file_path):
with open(self.expressions_file_path, "w", encoding="utf-8") as f:
json.dump([], f, ensure_ascii=False, indent=2)
logger.debug(f"已清空表达文件: {self.expressions_file_path}")
return {"last_style_text": None, "count": 0, "last_update_time": None}
return {"last_style_text": None, "count": 0, "last_update_time": None}
def _write_meta_data(self, data):
os.makedirs(os.path.dirname(self.meta_file_path), exist_ok=True)
@@ -84,7 +104,7 @@ class PersonalityExpression:
if count >= self.max_calculations:
logger.debug(f"对于风格 '{current_style_text}' 已达到最大计算次数 ({self.max_calculations})。跳过提取。")
# 即使跳过,也更新元数据以反映当前风格已被识别且计数已满
self._write_meta_data({"last_style_text": current_style_text, "count": count})
self._write_meta_data({"last_style_text": current_style_text, "count": count, "last_update_time": meta_data.get("last_update_time")})
return
# 构建prompt
@@ -99,30 +119,63 @@ class PersonalityExpression:
except Exception as e:
logger.error(f"个性表达方式提取失败: {e}")
# 如果提取失败,保存当前的风格和未增加的计数
self._write_meta_data({"last_style_text": current_style_text, "count": count})
self._write_meta_data({"last_style_text": current_style_text, "count": count, "last_update_time": meta_data.get("last_update_time")})
return
logger.info(f"个性表达方式提取response: {response}")
# chat_id用personality
expressions = self.parse_expression_response(response, "personality")
# 转为dict并count=100
result = []
for _, situation, style in expressions:
result.append({"situation": situation, "style": style, "count": 100})
# 超过50条时随机删除多余的只保留50条
if len(result) > 50:
remove_count = len(result) - 50
remove_indices = set(random.sample(range(len(result)), remove_count))
result = [item for idx, item in enumerate(result) if idx not in remove_indices]
if response != "":
expressions = self.parse_expression_response(response, "personality")
# 读取已有的表达方式
existing_expressions = []
if os.path.exists(self.expressions_file_path):
try:
with open(self.expressions_file_path, "r", encoding="utf-8") as f:
existing_expressions = json.load(f)
except (json.JSONDecodeError, FileNotFoundError):
logger.warning(f"无法读取或解析 {self.expressions_file_path},将创建新的表达文件。")
with open(self.expressions_file_path, "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=2)
logger.info(f"已写入{len(result)}条表达到{self.expressions_file_path}")
# 创建新的表达方式
new_expressions = []
for _, situation, style in expressions:
new_expressions.append({"situation": situation, "style": style, "count": 1})
# 成功提取后更新元数据
count += 1
self._write_meta_data({"last_style_text": current_style_text, "count": count})
logger.info(f"成功处理。风格 '{current_style_text}' 的计数现在是 {count}")
# 合并表达方式如果situation和style相同则累加count
merged_expressions = existing_expressions.copy()
for new_expr in new_expressions:
found = False
for existing_expr in merged_expressions:
if (existing_expr["situation"] == new_expr["situation"] and
existing_expr["style"] == new_expr["style"]):
existing_expr["count"] += new_expr["count"]
found = True
break
if not found:
merged_expressions.append(new_expr)
# 超过50条时随机删除多余的只保留50条
if len(merged_expressions) > 50:
remove_count = len(merged_expressions) - 50
remove_indices = set(random.sample(range(len(merged_expressions)), remove_count))
merged_expressions = [item for idx, item in enumerate(merged_expressions) if idx not in remove_indices]
with open(self.expressions_file_path, "w", encoding="utf-8") as f:
json.dump(merged_expressions, f, ensure_ascii=False, indent=2)
logger.info(f"已写入{len(merged_expressions)}条表达到{self.expressions_file_path}")
# 成功提取后更新元数据
count += 1
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self._write_meta_data({
"last_style_text": current_style_text,
"count": count,
"last_update_time": current_time
})
logger.info(f"成功处理。风格 '{current_style_text}' 的计数现在是 {count},最后更新时间:{current_time}")
else:
logger.warning(f"个性表达方式提取失败,模型返回空内容: {response}")
def parse_expression_response(self, response: str, chat_id: str) -> List[Tuple[str, str, str]]:
"""

View File

@@ -1,5 +1,5 @@
[inner]
version = "2.10.0"
version = "2.11.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更