181 lines
6.2 KiB
Python
181 lines
6.2 KiB
Python
import json
|
|
import os
|
|
from pathlib import Path
|
|
import numpy as np
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
import networkx as nx
|
|
import matplotlib as mpl
|
|
import sqlite3
|
|
|
|
# 设置中文字体
|
|
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 使用微软雅黑
|
|
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
|
plt.rcParams['font.family'] = 'sans-serif'
|
|
|
|
# 获取脚本所在目录
|
|
SCRIPT_DIR = Path(__file__).parent
|
|
|
|
def get_group_name(stream_id):
|
|
"""从数据库中获取群组名称"""
|
|
conn = sqlite3.connect('data/maibot.db')
|
|
cursor = conn.cursor()
|
|
|
|
cursor.execute('''
|
|
SELECT group_name, user_nickname, platform
|
|
FROM chat_streams
|
|
WHERE stream_id = ?
|
|
''', (stream_id,))
|
|
|
|
result = cursor.fetchone()
|
|
conn.close()
|
|
|
|
if result:
|
|
group_name, user_nickname, platform = result
|
|
if group_name:
|
|
return group_name
|
|
if user_nickname:
|
|
return user_nickname
|
|
if platform:
|
|
return f"{platform}-{stream_id[:8]}"
|
|
return stream_id
|
|
|
|
def load_group_data(group_dir):
|
|
"""加载单个群组的数据"""
|
|
json_path = Path(group_dir) / "expressions.json"
|
|
if not json_path.exists():
|
|
return [], [], []
|
|
|
|
with open(json_path, 'r', encoding='utf-8') as f:
|
|
data = json.load(f)
|
|
|
|
situations = []
|
|
styles = []
|
|
combined = []
|
|
|
|
for item in data:
|
|
count = item['count']
|
|
situations.extend([item['situation']] * count)
|
|
styles.extend([item['style']] * count)
|
|
combined.extend([f"{item['situation']} {item['style']}"] * count)
|
|
|
|
return situations, styles, combined
|
|
|
|
def analyze_group_similarity():
|
|
# 获取所有群组目录
|
|
base_dir = Path("data/expression/learnt_style")
|
|
group_dirs = [d for d in base_dir.iterdir() if d.is_dir()]
|
|
group_ids = [d.name for d in group_dirs]
|
|
|
|
# 获取群组名称
|
|
group_names = [get_group_name(group_id) for group_id in group_ids]
|
|
|
|
# 加载所有群组的数据
|
|
group_situations = []
|
|
group_styles = []
|
|
group_combined = []
|
|
|
|
for d in group_dirs:
|
|
situations, styles, combined = load_group_data(d)
|
|
group_situations.append(' '.join(situations))
|
|
group_styles.append(' '.join(styles))
|
|
group_combined.append(' '.join(combined))
|
|
|
|
# 创建TF-IDF向量化器
|
|
vectorizer = TfidfVectorizer()
|
|
|
|
# 计算三种相似度矩阵
|
|
situation_matrix = cosine_similarity(vectorizer.fit_transform(group_situations))
|
|
style_matrix = cosine_similarity(vectorizer.fit_transform(group_styles))
|
|
combined_matrix = cosine_similarity(vectorizer.fit_transform(group_combined))
|
|
|
|
# 对相似度矩阵进行对数变换
|
|
log_situation_matrix = np.log1p(situation_matrix)
|
|
log_style_matrix = np.log1p(style_matrix)
|
|
log_combined_matrix = np.log1p(combined_matrix)
|
|
|
|
# 创建一个大图,包含三个子图
|
|
plt.figure(figsize=(45, 12))
|
|
|
|
# 场景相似度热力图
|
|
plt.subplot(1, 3, 1)
|
|
sns.heatmap(log_situation_matrix,
|
|
xticklabels=group_names,
|
|
yticklabels=group_names,
|
|
cmap='YlOrRd',
|
|
annot=True,
|
|
fmt='.2f',
|
|
vmin=0,
|
|
vmax=np.log1p(0.2))
|
|
plt.title('群组场景相似度热力图 (对数变换)')
|
|
plt.xticks(rotation=45, ha='right')
|
|
|
|
# 表达方式相似度热力图
|
|
plt.subplot(1, 3, 2)
|
|
sns.heatmap(log_style_matrix,
|
|
xticklabels=group_names,
|
|
yticklabels=group_names,
|
|
cmap='YlOrRd',
|
|
annot=True,
|
|
fmt='.2f',
|
|
vmin=0,
|
|
vmax=np.log1p(0.2))
|
|
plt.title('群组表达方式相似度热力图 (对数变换)')
|
|
plt.xticks(rotation=45, ha='right')
|
|
|
|
# 组合相似度热力图
|
|
plt.subplot(1, 3, 3)
|
|
sns.heatmap(log_combined_matrix,
|
|
xticklabels=group_names,
|
|
yticklabels=group_names,
|
|
cmap='YlOrRd',
|
|
annot=True,
|
|
fmt='.2f',
|
|
vmin=0,
|
|
vmax=np.log1p(0.2))
|
|
plt.title('群组场景+表达方式相似度热力图 (对数变换)')
|
|
plt.xticks(rotation=45, ha='right')
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(SCRIPT_DIR / 'group_similarity_heatmaps.png', dpi=300, bbox_inches='tight')
|
|
plt.close()
|
|
|
|
# 保存匹配详情到文本文件
|
|
with open(SCRIPT_DIR / 'group_similarity_details.txt', 'w', encoding='utf-8') as f:
|
|
f.write('群组相似度详情\n')
|
|
f.write('=' * 50 + '\n\n')
|
|
|
|
for i in range(len(group_ids)):
|
|
for j in range(i+1, len(group_ids)):
|
|
if log_combined_matrix[i][j] > np.log1p(0.05):
|
|
f.write(f'群组1: {group_names[i]}\n')
|
|
f.write(f'群组2: {group_names[j]}\n')
|
|
f.write(f'场景相似度: {situation_matrix[i][j]:.4f}\n')
|
|
f.write(f'表达方式相似度: {style_matrix[i][j]:.4f}\n')
|
|
f.write(f'组合相似度: {combined_matrix[i][j]:.4f}\n')
|
|
|
|
# 获取两个群组的数据
|
|
situations1, styles1, _ = load_group_data(group_dirs[i])
|
|
situations2, styles2, _ = load_group_data(group_dirs[j])
|
|
|
|
# 找出共同的场景
|
|
common_situations = set(situations1) & set(situations2)
|
|
if common_situations:
|
|
f.write('\n共同场景:\n')
|
|
for situation in common_situations:
|
|
f.write(f'- {situation}\n')
|
|
|
|
# 找出共同的表达方式
|
|
common_styles = set(styles1) & set(styles2)
|
|
if common_styles:
|
|
f.write('\n共同表达方式:\n')
|
|
for style in common_styles:
|
|
f.write(f'- {style}\n')
|
|
|
|
f.write('\n' + '-' * 50 + '\n\n')
|
|
|
|
if __name__ == "__main__":
|
|
analyze_group_similarity()
|