feat:s4u模式现在可以操控表情

This commit is contained in:
SengokuCola
2025-07-11 01:22:49 +08:00
parent 4f3e653e1f
commit 825cfb44f5
4 changed files with 664 additions and 5 deletions

View File

@@ -0,0 +1,244 @@
import json
import math
import random
import time
from src.chat.message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
from src.common.logger import get_logger
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_by_timestamp_with_chat_inclusive
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.manager.async_task_manager import AsyncTask, async_task_manager
from json_repair import repair_json
logger = get_logger("action")
def init_prompt():
Prompt(
"""
{chat_talking_prompt}
以上是群里正在进行的聊天记录
{indentify_block}
你现在的动作状态是:
- 手部:{hand_action}
- 上半身:{upper_body_action}
- 头部:{head_action}
现在,因为你发送了消息,或者群里其他人发送了消息,引起了你的注意,你对其进行了阅读和思考,请你更新你的动作状态。
请只按照以下json格式输出描述你新的动作状态每个动作一到三个中文词确保每个字段都存在
{{
"hand_action": "...",
"upper_body_action": "...",
"head_action": "..."
}}
""",
"change_action_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是群里最近的聊天记录
{indentify_block}
你之前的动作状态是:
- 手部:{hand_action}
- 上半身:{upper_body_action}
- 头部:{head_action}
距离你上次关注群里消息已经过去了一段时间,你冷静了下来,你的动作会趋于平缓或静止,请你输出你现在新的动作状态,用中文。
请只按照以下json格式输出描述你新的动作状态每个动作一到三个词确保每个字段都存在
{{
"hand_action": "...",
"upper_body_action": "...",
"head_action": "..."
}}
""",
"regress_action_prompt",
)
class ChatAction:
def __init__(self, chat_id: str):
self.chat_id: str = chat_id
self.hand_action: str = "双手放在桌面"
self.upper_body_action: str = "坐着"
self.head_action: str = "注视摄像机"
self.regression_count: int = 0
self.action_model = LLMRequest(
model=global_config.model.emotion,
temperature=0.7,
request_type="action",
)
self.last_change_time = 0
async def update_action_by_message(self, message: MessageRecv):
self.regression_count = 0
message_time = message.message_info.time
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"change_action_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
hand_action=self.hand_action,
upper_body_action=self.upper_body_action,
head_action=self.head_action,
)
logger.info(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.action_model.generate_response_async(prompt=prompt)
logger.info(f"response: {response}")
logger.info(f"reasoning_content: {reasoning_content}")
action_data = json.loads(repair_json(response))
if action_data:
self.hand_action = action_data.get("hand_action", self.hand_action)
self.upper_body_action = action_data.get("upper_body_action", self.upper_body_action)
self.head_action = action_data.get("head_action", self.head_action)
self.last_change_time = message_time
async def regress_action(self):
message_time = time.time()
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"regress_action_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
hand_action=self.hand_action,
upper_body_action=self.upper_body_action,
head_action=self.head_action,
)
logger.info(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.action_model.generate_response_async(prompt=prompt)
logger.info(f"response: {response}")
logger.info(f"reasoning_content: {reasoning_content}")
action_data = json.loads(repair_json(response))
if action_data:
self.hand_action = action_data.get("hand_action", self.hand_action)
self.upper_body_action = action_data.get("upper_body_action", self.upper_body_action)
self.head_action = action_data.get("head_action", self.head_action)
self.regression_count += 1
class ActionRegressionTask(AsyncTask):
def __init__(self, action_manager: "ActionManager"):
super().__init__(task_name="ActionRegressionTask", run_interval=30)
self.action_manager = action_manager
async def run(self):
logger.debug("Running action regression task...")
now = time.time()
for action_state in self.action_manager.action_state_list:
if action_state.last_change_time == 0:
continue
if now - action_state.last_change_time > 180:
if action_state.regression_count >= 3:
continue
logger.info(f"chat {action_state.chat_id} 开始动作回归, 这是第 {action_state.regression_count + 1}")
await action_state.regress_action()
class ActionManager:
def __init__(self):
self.action_state_list: list[ChatAction] = []
"""当前动作状态"""
self.task_started: bool = False
async def start(self):
"""启动动作回归后台任务"""
if self.task_started:
return
logger.info("启动动作回归任务...")
task = ActionRegressionTask(self)
await async_task_manager.add_task(task)
self.task_started = True
logger.info("动作回归任务已启动")
def get_action_state_by_chat_id(self, chat_id: str) -> ChatAction:
for action_state in self.action_state_list:
if action_state.chat_id == chat_id:
return action_state
new_action_state = ChatAction(chat_id)
self.action_state_list.append(new_action_state)
return new_action_state
def reset_action_state_by_chat_id(self, chat_id: str):
for action_state in self.action_state_list:
if action_state.chat_id == chat_id:
action_state.hand_action = "双手放在桌面"
action_state.upper_body_action = "坐着"
action_state.head_action = "注视摄像机"
action_state.regression_count = 0
return
self.action_state_list.append(ChatAction(chat_id))
init_prompt()
action_manager = ActionManager()
"""全局动作管理器"""

View File

@@ -0,0 +1,365 @@
import asyncio
import json
import math
import random
import time
from src.chat.message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
from src.common.logger import get_logger
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_by_timestamp_with_chat_inclusive
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.manager.async_task_manager import AsyncTask, async_task_manager
from src.plugin_system.apis import send_api
logger = get_logger("mood")
async def send_joy_action(chat_id: str):
action_content = {"action": "Joy_eye", "data": 1.0}
await send_api.custom_to_stream(message_type="face_emotion", content=action_content, stream_id=chat_id)
logger.info(f"[{chat_id}] 已发送 Joy 动作: {action_content}")
await asyncio.sleep(5.0)
end_action_content = {"action": "Joy_eye", "data": 0.0}
await send_api.custom_to_stream(message_type="face_emotion", content=end_action_content, stream_id=chat_id)
logger.info(f"[{chat_id}] 已发送 Joy 结束动作: {end_action_content}")
def init_prompt():
Prompt(
"""
{chat_talking_prompt}
以上是直播间里正在进行的对话
{indentify_block}
你刚刚的情绪状态是:{mood_state}
现在,发送了消息,引起了你的注意,你对其进行了阅读和思考,请你输出一句话描述你新的情绪状态,不要输出任何其他内容
请只输出情绪状态,不要输出其他内容:
""",
"change_mood_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是直播间里最近的对话
{indentify_block}
你之前的情绪状态是:{mood_state}
距离你上次关注直播间消息已经过去了一段时间,你冷静了下来,请你输出一句话描述你现在的情绪状态
请只输出情绪状态,不要输出其他内容:
""",
"regress_mood_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是直播间里正在进行的对话
{indentify_block}
你刚刚的情绪状态是:{mood_state}
具体来说从1-10分你的情绪状态是
喜(Joy): {joy}
怒(Anger): {anger}
哀(Sorrow): {sorrow}
乐(Pleasure): {pleasure}
惧(Fear): {fear}
现在,发送了消息,引起了你的注意,你对其进行了阅读和思考。请基于对话内容,评估你新的情绪状态。
请以JSON格式输出你新的情绪状态包含“喜怒哀乐惧”五个维度每个维度的取值范围为1-10。
键值请使用英文: "joy", "anger", "sorrow", "pleasure", "fear".
例如: {{"joy": 5, "anger": 1, "sorrow": 1, "pleasure": 5, "fear": 1}}
不要输出任何其他内容只输出JSON。
""",
"change_mood_numerical_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是直播间里最近的对话
{indentify_block}
你之前的情绪状态是:{mood_state}
具体来说从1-10分你的情绪状态是
喜(Joy): {joy}
怒(Anger): {anger}
哀(Sorrow): {sorrow}
乐(Pleasure): {pleasure}
惧(Fear): {fear}
距离你上次关注直播间消息已经过去了一段时间,你冷静了下来。请基于此,评估你现在的情绪状态。
请以JSON格式输出你新的情绪状态包含“喜怒哀乐惧”五个维度每个维度的取值范围为1-10。
键值请使用英文: "joy", "anger", "sorrow", "pleasure", "fear".
例如: {{"joy": 5, "anger": 1, "sorrow": 1, "pleasure": 5, "fear": 1}}
不要输出任何其他内容只输出JSON。
""",
"regress_mood_numerical_prompt",
)
class ChatMood:
def __init__(self, chat_id: str):
self.chat_id: str = chat_id
self.mood_state: str = "感觉很平静"
self.mood_values: dict[str, int] = {"joy": 5, "anger": 1, "sorrow": 1, "pleasure": 5, "fear": 1}
self.regression_count: int = 0
self.mood_model = LLMRequest(
model=global_config.model.emotion,
temperature=0.7,
request_type="mood_text",
)
self.mood_model_numerical = LLMRequest(
model=global_config.model.emotion,
temperature=0.4,
request_type="mood_numerical",
)
self.last_change_time = 0
def _parse_numerical_mood(self, response: str) -> dict[str, int] | None:
try:
# The LLM might output markdown with json inside
if "```json" in response:
response = response.split("```json")[1].split("```")[0]
elif "```" in response:
response = response.split("```")[1].split("```")[0]
data = json.loads(response)
# Validate
required_keys = {"joy", "anger", "sorrow", "pleasure", "fear"}
if not required_keys.issubset(data.keys()):
logger.warning(f"Numerical mood response missing keys: {response}")
return None
for key in required_keys:
value = data[key]
if not isinstance(value, int) or not (1 <= value <= 10):
logger.warning(f"Numerical mood response invalid value for {key}: {value} in {response}")
return None
return {key: data[key] for key in required_keys}
except json.JSONDecodeError:
logger.warning(f"Failed to parse numerical mood JSON: {response}")
return None
except Exception as e:
logger.error(f"Error parsing numerical mood: {e}, response: {response}")
return None
async def update_mood_by_message(self, message: MessageRecv):
self.regression_count = 0
message_time = message.message_info.time
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
async def _update_text_mood():
prompt = await global_prompt_manager.format_prompt(
"change_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
)
logger.debug(f"text mood prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
logger.info(f"text mood response: {response}")
logger.debug(f"text mood reasoning_content: {reasoning_content}")
return response
async def _update_numerical_mood():
prompt = await global_prompt_manager.format_prompt(
"change_mood_numerical_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
joy=self.mood_values["joy"],
anger=self.mood_values["anger"],
sorrow=self.mood_values["sorrow"],
pleasure=self.mood_values["pleasure"],
fear=self.mood_values["fear"],
)
logger.info(f"numerical mood prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model_numerical.generate_response_async(
prompt=prompt
)
logger.info(f"numerical mood response: {response}")
logger.debug(f"numerical mood reasoning_content: {reasoning_content}")
return self._parse_numerical_mood(response)
results = await asyncio.gather(_update_text_mood(), _update_numerical_mood())
text_mood_response, numerical_mood_response = results
if text_mood_response:
self.mood_state = text_mood_response
if numerical_mood_response:
self.mood_values = numerical_mood_response
if self.mood_values.get("joy", 0) > 5:
asyncio.create_task(send_joy_action(self.chat_id))
self.last_change_time = message_time
async def regress_mood(self):
message_time = time.time()
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
async def _regress_text_mood():
prompt = await global_prompt_manager.format_prompt(
"regress_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
)
logger.debug(f"text regress prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
logger.info(f"text regress response: {response}")
logger.debug(f"text regress reasoning_content: {reasoning_content}")
return response
async def _regress_numerical_mood():
prompt = await global_prompt_manager.format_prompt(
"regress_mood_numerical_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
joy=self.mood_values["joy"],
anger=self.mood_values["anger"],
sorrow=self.mood_values["sorrow"],
pleasure=self.mood_values["pleasure"],
fear=self.mood_values["fear"],
)
logger.debug(f"numerical regress prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model_numerical.generate_response_async(
prompt=prompt
)
logger.info(f"numerical regress response: {response}")
logger.debug(f"numerical regress reasoning_content: {reasoning_content}")
return self._parse_numerical_mood(response)
results = await asyncio.gather(_regress_text_mood(), _regress_numerical_mood())
text_mood_response, numerical_mood_response = results
if text_mood_response:
self.mood_state = text_mood_response
if numerical_mood_response:
self.mood_values = numerical_mood_response
if self.mood_values.get("joy", 0) > 5:
asyncio.create_task(send_joy_action(self.chat_id))
self.regression_count += 1
class MoodRegressionTask(AsyncTask):
def __init__(self, mood_manager: "MoodManager"):
super().__init__(task_name="MoodRegressionTask", run_interval=30)
self.mood_manager = mood_manager
async def run(self):
logger.debug("Running mood regression task...")
now = time.time()
for mood in self.mood_manager.mood_list:
if mood.last_change_time == 0:
continue
if now - mood.last_change_time > 180:
if mood.regression_count >= 3:
continue
logger.info(f"chat {mood.chat_id} 开始情绪回归, 这是第 {mood.regression_count + 1}")
await mood.regress_mood()
class MoodManager:
def __init__(self):
self.mood_list: list[ChatMood] = []
"""当前情绪状态"""
self.task_started: bool = False
async def start(self):
"""启动情绪回归后台任务"""
if self.task_started:
return
logger.info("启动情绪回归任务...")
task = MoodRegressionTask(self)
await async_task_manager.add_task(task)
self.task_started = True
logger.info("情绪回归任务已启动")
def get_mood_by_chat_id(self, chat_id: str) -> ChatMood:
for mood in self.mood_list:
if mood.chat_id == chat_id:
return mood
new_mood = ChatMood(chat_id)
self.mood_list.append(new_mood)
return new_mood
def reset_mood_by_chat_id(self, chat_id: str):
for mood in self.mood_list:
if mood.chat_id == chat_id:
mood.mood_state = "感觉很平静"
mood.regression_count = 0
return
self.mood_list.append(ChatMood(chat_id))
init_prompt()
mood_manager = MoodManager()
"""全局情绪管理器"""

View File

@@ -1,7 +1,18 @@
import asyncio
import math
from typing import Tuple
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.storage import MessageStorage
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.utils.timer_calculator import Timer
from src.chat.utils.utils import is_mentioned_bot_in_message
from src.common.logger import get_logger
from src.config.config import global_config
from src.mais4u.mais4u_chat.body_emotion_action_manager import action_manager
from src.mais4u.mais4u_chat.s4u_mood_manager import mood_manager
from .s4u_chat import get_s4u_chat_manager
@@ -10,6 +21,42 @@ from .s4u_chat import get_s4u_chat_manager
logger = get_logger("chat")
async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
"""计算消息的兴趣度
Args:
message: 待处理的消息对象
Returns:
Tuple[float, bool]: (兴趣度, 是否被提及)
"""
is_mentioned, _ = is_mentioned_bot_in_message(message)
interested_rate = 0.0
if global_config.memory.enable_memory:
with Timer("记忆激活"):
interested_rate = await hippocampus_manager.get_activate_from_text(
message.processed_plain_text,
fast_retrieval=True,
)
logger.debug(f"记忆激活率: {interested_rate:.2f}")
text_len = len(message.processed_plain_text)
# 根据文本长度调整兴趣度长度越大兴趣度越高但增长率递减最低0.01最高0.05
# 采用对数函数实现递减增长
base_interest = 0.01 + (0.05 - 0.01) * (math.log10(text_len + 1) / math.log10(1000 + 1))
base_interest = min(max(base_interest, 0.01), 0.05)
interested_rate += base_interest
if is_mentioned:
interest_increase_on_mention = 1
interested_rate += interest_increase_on_mention
return interested_rate, is_mentioned
class S4UMessageProcessor:
"""心流处理器,负责处理接收到的消息并计算兴趣度"""
@@ -53,5 +100,13 @@ class S4UMessageProcessor:
else:
await s4u_chat.add_message(message)
interested_rate, _ = await _calculate_interest(message)
chat_mood = mood_manager.get_mood_by_chat_id(chat.stream_id)
asyncio.create_task(chat_mood.update_mood_by_message(message))
chat_action = action_manager.get_action_state_by_chat_id(chat.stream_id)
asyncio.create_task(chat_action.update_action_by_message(message))
# asyncio.create_task(chat_action.update_facial_expression_by_message(message, interested_rate))
# 7. 日志记录
logger.info(f"[S4U]{userinfo.user_nickname}:{message.processed_plain_text}")

View File

@@ -17,11 +17,6 @@ logger = get_logger("prompt")
def init_prompt():
Prompt("你正在qq群里聊天下面是群里在聊的内容", "chat_target_group1")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("在群里聊天", "chat_target_group2")
Prompt("{sender_name}私聊", "chat_target_private2")
Prompt("\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
Prompt("\n关于你们的关系,你需要知道:\n{relation_info}\n", "relation_prompt")
Prompt("你回想起了一些事情:\n{memory_info}\n", "memory_prompt")