Merge branch 'dev' of https://github.com/MaiM-with-u/MaiBot into dev
This commit is contained in:
@@ -1,5 +1,15 @@
|
||||
# Changelog
|
||||
|
||||
## [0.7.1] -2025-6-2
|
||||
- 修复关键词功能,并且在focus中可用
|
||||
- 更新planner架构,大大加快速度和表现效果,建议使用simple规划器
|
||||
|
||||
- 修复log出错问题
|
||||
- 修复focus吞第一条消息问题
|
||||
- 可关闭聊天规划处理器(建议关闭)
|
||||
|
||||
|
||||
|
||||
## [0.7.0] -2025-6-1
|
||||
- 你可以选择normal,focus和auto多种不同的聊天方式。normal提供更少的消耗,更快的回复速度。focus提供更好的聊天理解,更多工具使用和插件能力
|
||||
- 现在,你可以自定义麦麦的表达方式,并且麦麦也可以学习群友的聊天风格(需要在配置文件中打开)
|
||||
|
||||
@@ -395,7 +395,7 @@ class DefaultExpressor:
|
||||
thinking_start_time = time.time()
|
||||
|
||||
if thinking_start_time is None:
|
||||
logger.error(f"[{stream_name}]思考过程未找到或已结束,无法发送回复。")
|
||||
logger.error(f"[{stream_name}]expressor思考过程未找到或已结束,无法发送回复。")
|
||||
return None
|
||||
|
||||
mark_head = False
|
||||
|
||||
@@ -24,10 +24,11 @@ from src.chat.heart_flow.observation.structure_observation import StructureObser
|
||||
from src.chat.heart_flow.observation.actions_observation import ActionObservation
|
||||
from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor
|
||||
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
|
||||
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
|
||||
from src.chat.focus_chat.memory_activator import MemoryActivator
|
||||
from src.chat.focus_chat.info_processors.base_processor import BaseProcessor
|
||||
from src.chat.focus_chat.info_processors.self_processor import SelfProcessor
|
||||
from src.chat.focus_chat.planners.planner import ActionPlanner
|
||||
from src.chat.focus_chat.planners.planner_factory import PlannerFactory
|
||||
from src.chat.focus_chat.planners.modify_actions import ActionModifier
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
|
||||
@@ -119,8 +120,11 @@ class HeartFChatting:
|
||||
self._register_default_processors()
|
||||
|
||||
self.expressor = DefaultExpressor(chat_id=self.stream_id)
|
||||
self.replyer = DefaultReplyer(chat_id=self.stream_id)
|
||||
self.action_manager = ActionManager()
|
||||
self.action_planner = ActionPlanner(log_prefix=self.log_prefix, action_manager=self.action_manager)
|
||||
self.action_planner = PlannerFactory.create_planner(
|
||||
log_prefix=self.log_prefix, action_manager=self.action_manager
|
||||
)
|
||||
self.action_modifier = ActionModifier(action_manager=self.action_manager)
|
||||
self.action_observation = ActionObservation(observe_id=self.stream_id)
|
||||
|
||||
@@ -167,8 +171,10 @@ class HeartFChatting:
|
||||
|
||||
try:
|
||||
await self.expressor.initialize()
|
||||
await self.replyer.initialize()
|
||||
self.chat_stream = await asyncio.to_thread(chat_manager.get_stream, self.stream_id)
|
||||
self.expressor.chat_stream = self.chat_stream
|
||||
self.replyer.chat_stream = self.chat_stream
|
||||
self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]"
|
||||
except Exception as e:
|
||||
logger.error(f"[HFC:{self.stream_id}] 初始化HFC时发生错误: {e}")
|
||||
@@ -583,6 +589,7 @@ class HeartFChatting:
|
||||
thinking_id=thinking_id,
|
||||
observations=self.all_observations,
|
||||
expressor=self.expressor,
|
||||
replyer=self.replyer,
|
||||
chat_stream=self.chat_stream,
|
||||
log_prefix=self.log_prefix,
|
||||
shutting_down=self._shutting_down,
|
||||
|
||||
@@ -108,9 +108,7 @@ class WorkingMemoryProcessor(BaseProcessor):
|
||||
memory_summary = memory.summary
|
||||
memory_id = memory.id
|
||||
memory_brief = memory_summary.get("brief")
|
||||
# memory_detailed = memory_summary.get("detailed")
|
||||
memory_keypoints = memory_summary.get("keypoints")
|
||||
memory_events = memory_summary.get("events")
|
||||
memory_keypoints = memory_summary.get("key_points", [])
|
||||
memory_single_prompt = f"记忆id:{memory_id},记忆摘要:{memory_brief}\n"
|
||||
memory_prompts.append(memory_single_prompt)
|
||||
|
||||
@@ -165,15 +163,9 @@ class WorkingMemoryProcessor(BaseProcessor):
|
||||
memory_summary = memory.summary
|
||||
memory_id = memory.id
|
||||
memory_brief = memory_summary.get("brief")
|
||||
# memory_detailed = memory_summary.get("detailed")
|
||||
memory_keypoints = memory_summary.get("keypoints")
|
||||
memory_events = memory_summary.get("events")
|
||||
memory_keypoints = memory_summary.get("key_points", [])
|
||||
for keypoint in memory_keypoints:
|
||||
memory_str += f"记忆要点:{keypoint}\n"
|
||||
for event in memory_events:
|
||||
memory_str += f"记忆事件:{event}\n"
|
||||
# memory_str += f"记忆摘要:{memory_detailed}\n"
|
||||
# memory_str += f"记忆主题:{memory_brief}\n"
|
||||
|
||||
working_memory_info = WorkingMemoryInfo()
|
||||
if memory_str:
|
||||
@@ -225,7 +217,7 @@ class WorkingMemoryProcessor(BaseProcessor):
|
||||
logger.debug(f"{self.log_prefix} 异步合并记忆成功: {memory_id1} 和 {memory_id2}...")
|
||||
logger.debug(f"{self.log_prefix} 合并后的记忆梗概: {merged_memory.summary.get('brief')}")
|
||||
logger.debug(f"{self.log_prefix} 合并后的记忆详情: {merged_memory.summary.get('detailed')}")
|
||||
logger.debug(f"{self.log_prefix} 合并后的记忆要点: {merged_memory.summary.get('keypoints')}")
|
||||
logger.debug(f"{self.log_prefix} 合并后的记忆要点: {merged_memory.summary.get('key_points')}")
|
||||
logger.debug(f"{self.log_prefix} 合并后的记忆事件: {merged_memory.summary.get('events')}")
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -118,6 +118,7 @@ class MemoryActivator:
|
||||
|
||||
# 只取response的第一个元素(字符串)
|
||||
response_str = response[0]
|
||||
print(f"response_str: {response_str[1]}")
|
||||
keywords = list(get_keywords_from_json(response_str))
|
||||
|
||||
# 更新关键词缓存
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from typing import Dict, List, Optional, Type, Any
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, _ACTION_REGISTRY
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
|
||||
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.common.logger_manager import get_logger
|
||||
@@ -135,6 +136,7 @@ class ActionManager:
|
||||
thinking_id: str,
|
||||
observations: List[Observation],
|
||||
expressor: DefaultExpressor,
|
||||
replyer: DefaultReplyer,
|
||||
chat_stream: ChatStream,
|
||||
log_prefix: str,
|
||||
shutting_down: bool = False,
|
||||
@@ -150,6 +152,7 @@ class ActionManager:
|
||||
thinking_id: 思考ID
|
||||
observations: 观察列表
|
||||
expressor: 表达器
|
||||
replyer: 回复器
|
||||
chat_stream: 聊天流
|
||||
log_prefix: 日志前缀
|
||||
shutting_down: 是否正在关闭
|
||||
@@ -176,6 +179,7 @@ class ActionManager:
|
||||
thinking_id=thinking_id,
|
||||
observations=observations,
|
||||
expressor=expressor,
|
||||
replyer=replyer,
|
||||
chat_stream=chat_stream,
|
||||
log_prefix=log_prefix,
|
||||
shutting_down=shutting_down,
|
||||
|
||||
@@ -2,5 +2,6 @@
|
||||
from . import reply_action # noqa
|
||||
from . import no_reply_action # noqa
|
||||
from . import exit_focus_chat_action # noqa
|
||||
from . import emoji_action # noqa
|
||||
|
||||
# 在此处添加更多动作模块导入
|
||||
|
||||
135
src/chat/focus_chat/planners/actions/emoji_action.py
Normal file
135
src/chat/focus_chat/planners/actions/emoji_action.py
Normal file
@@ -0,0 +1,135 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
|
||||
from typing import Tuple, List
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
|
||||
|
||||
logger = get_logger("action_taken")
|
||||
|
||||
|
||||
@register_action
|
||||
class EmojiAction(BaseAction):
|
||||
"""表情动作处理类
|
||||
|
||||
处理构建和发送消息表情的动作。
|
||||
"""
|
||||
|
||||
action_name: str = "emoji"
|
||||
action_description: str = "当你想发送一个表情辅助你的回复表达"
|
||||
action_parameters: dict[str:str] = {
|
||||
"description": "文字描述你想要发送的表情",
|
||||
}
|
||||
action_require: list[str] = [
|
||||
"你想要发送一个表情",
|
||||
"表达情绪时可以选择使用",
|
||||
"一般在你回复之后可以选择性使用"
|
||||
]
|
||||
|
||||
associated_types: list[str] = ["emoji"]
|
||||
|
||||
default = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
action_data: dict,
|
||||
reasoning: str,
|
||||
cycle_timers: dict,
|
||||
thinking_id: str,
|
||||
observations: List[Observation],
|
||||
chat_stream: ChatStream,
|
||||
log_prefix: str,
|
||||
replyer: DefaultReplyer,
|
||||
**kwargs,
|
||||
):
|
||||
"""初始化回复动作处理器
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_data: 动作数据,包含 message, emojis, target 等
|
||||
reasoning: 执行该动作的理由
|
||||
cycle_timers: 计时器字典
|
||||
thinking_id: 思考ID
|
||||
observations: 观察列表
|
||||
replyer: 回复器
|
||||
chat_stream: 聊天流
|
||||
log_prefix: 日志前缀
|
||||
"""
|
||||
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
|
||||
self.observations = observations
|
||||
self.replyer = replyer
|
||||
self.chat_stream = chat_stream
|
||||
self.log_prefix = log_prefix
|
||||
|
||||
async def handle_action(self) -> Tuple[bool, str]:
|
||||
"""
|
||||
处理回复动作
|
||||
|
||||
Returns:
|
||||
Tuple[bool, str]: (是否执行成功, 回复文本)
|
||||
"""
|
||||
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
|
||||
return await self._handle_reply(
|
||||
reasoning=self.reasoning,
|
||||
reply_data=self.action_data,
|
||||
cycle_timers=self.cycle_timers,
|
||||
thinking_id=self.thinking_id,
|
||||
)
|
||||
|
||||
async def _handle_reply(
|
||||
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
|
||||
) -> tuple[bool, str]:
|
||||
"""
|
||||
处理统一的回复动作 - 可包含文本和表情,顺序任意
|
||||
|
||||
reply_data格式:
|
||||
{
|
||||
"description": "描述你想要发送的表情"
|
||||
}
|
||||
"""
|
||||
logger.info(f"{self.log_prefix} 决定发送表情")
|
||||
# 从聊天观察获取锚定消息
|
||||
# chatting_observation: ChattingObservation = next(
|
||||
# obs for obs in self.observations if isinstance(obs, ChattingObservation)
|
||||
# )
|
||||
# if reply_data.get("target"):
|
||||
# anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
|
||||
# else:
|
||||
# anchor_message = None
|
||||
|
||||
# 如果没有找到锚点消息,创建一个占位符
|
||||
# if not anchor_message:
|
||||
# logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
|
||||
# anchor_message = await create_empty_anchor_message(
|
||||
# self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
|
||||
# )
|
||||
# else:
|
||||
# anchor_message.update_chat_stream(self.chat_stream)
|
||||
|
||||
logger.info(f"{self.log_prefix} 为了表情包创建占位符")
|
||||
anchor_message = await create_empty_anchor_message(
|
||||
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
|
||||
)
|
||||
|
||||
success, reply_set = await self.replyer.deal_emoji(
|
||||
cycle_timers=cycle_timers,
|
||||
action_data=reply_data,
|
||||
anchor_message=anchor_message,
|
||||
# reasoning=reasoning,
|
||||
thinking_id=thinking_id,
|
||||
)
|
||||
|
||||
reply_text = ""
|
||||
for reply in reply_set:
|
||||
type = reply[0]
|
||||
data = reply[1]
|
||||
if type == "text":
|
||||
reply_text += data
|
||||
elif type == "emoji":
|
||||
reply_text += data
|
||||
|
||||
return success, reply_text
|
||||
@@ -22,12 +22,11 @@ class NoReplyAction(BaseAction):
|
||||
"""
|
||||
|
||||
action_name = "no_reply"
|
||||
action_description = "不回复"
|
||||
action_description = "暂时不回复消息"
|
||||
action_parameters = {}
|
||||
action_require = [
|
||||
"话题无关/无聊/不感兴趣/不懂",
|
||||
"聊天记录中最新一条消息是你自己发的且无人回应你",
|
||||
"你连续发送了太多消息,且无人回复",
|
||||
"想要休息一下",
|
||||
]
|
||||
default = True
|
||||
|
||||
|
||||
134
src/chat/focus_chat/planners/actions/no_reply_complex_action.py
Normal file
134
src/chat/focus_chat/planners/actions/no_reply_complex_action.py
Normal file
@@ -0,0 +1,134 @@
|
||||
import asyncio
|
||||
import traceback
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.utils.timer_calculator import Timer
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
|
||||
from typing import Tuple, List
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
|
||||
|
||||
logger = get_logger("action_taken")
|
||||
|
||||
# 常量定义
|
||||
WAITING_TIME_THRESHOLD = 1200 # 等待新消息时间阈值,单位秒
|
||||
|
||||
|
||||
@register_action
|
||||
class NoReplyAction(BaseAction):
|
||||
"""不回复动作处理类
|
||||
|
||||
处理决定不回复的动作。
|
||||
"""
|
||||
|
||||
action_name = "no_reply"
|
||||
action_description = "不回复"
|
||||
action_parameters = {}
|
||||
action_require = [
|
||||
"话题无关/无聊/不感兴趣/不懂",
|
||||
"聊天记录中最新一条消息是你自己发的且无人回应你",
|
||||
"你连续发送了太多消息,且无人回复",
|
||||
]
|
||||
default = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
action_data: dict,
|
||||
reasoning: str,
|
||||
cycle_timers: dict,
|
||||
thinking_id: str,
|
||||
observations: List[Observation],
|
||||
log_prefix: str,
|
||||
shutting_down: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""初始化不回复动作处理器
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_data: 动作数据
|
||||
reasoning: 执行该动作的理由
|
||||
cycle_timers: 计时器字典
|
||||
thinking_id: 思考ID
|
||||
observations: 观察列表
|
||||
log_prefix: 日志前缀
|
||||
shutting_down: 是否正在关闭
|
||||
"""
|
||||
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
|
||||
self.observations = observations
|
||||
self.log_prefix = log_prefix
|
||||
self._shutting_down = shutting_down
|
||||
|
||||
async def handle_action(self) -> Tuple[bool, str]:
|
||||
"""
|
||||
处理不回复的情况
|
||||
|
||||
工作流程:
|
||||
1. 等待新消息、超时或关闭信号
|
||||
2. 根据等待结果更新连续不回复计数
|
||||
3. 如果达到阈值,触发回调
|
||||
|
||||
Returns:
|
||||
Tuple[bool, str]: (是否执行成功, 空字符串)
|
||||
"""
|
||||
logger.info(f"{self.log_prefix} 决定不回复: {self.reasoning}")
|
||||
|
||||
observation = self.observations[0] if self.observations else None
|
||||
|
||||
try:
|
||||
with Timer("等待新消息", self.cycle_timers):
|
||||
# 等待新消息、超时或关闭信号,并获取结果
|
||||
await self._wait_for_new_message(observation, self.thinking_id, self.log_prefix)
|
||||
|
||||
return True, "" # 不回复动作没有回复文本
|
||||
|
||||
except asyncio.CancelledError:
|
||||
logger.info(f"{self.log_prefix} 处理 'no_reply' 时等待被中断 (CancelledError)")
|
||||
raise
|
||||
except Exception as e: # 捕获调用管理器或其他地方可能发生的错误
|
||||
logger.error(f"{self.log_prefix} 处理 'no_reply' 时发生错误: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
return False, ""
|
||||
|
||||
async def _wait_for_new_message(self, observation: ChattingObservation, thinking_id: str, log_prefix: str) -> bool:
|
||||
"""
|
||||
等待新消息 或 检测到关闭信号
|
||||
|
||||
参数:
|
||||
observation: 观察实例
|
||||
thinking_id: 思考ID
|
||||
log_prefix: 日志前缀
|
||||
|
||||
返回:
|
||||
bool: 是否检测到新消息 (如果因关闭信号退出则返回 False)
|
||||
"""
|
||||
wait_start_time = asyncio.get_event_loop().time()
|
||||
while True:
|
||||
# --- 在每次循环开始时检查关闭标志 ---
|
||||
if self._shutting_down:
|
||||
logger.info(f"{log_prefix} 等待新消息时检测到关闭信号,中断等待。")
|
||||
return False # 表示因为关闭而退出
|
||||
# -----------------------------------
|
||||
|
||||
thinking_id_timestamp = parse_thinking_id_to_timestamp(thinking_id)
|
||||
|
||||
# 检查新消息
|
||||
if await observation.has_new_messages_since(thinking_id_timestamp):
|
||||
logger.info(f"{log_prefix} 检测到新消息")
|
||||
return True
|
||||
|
||||
# 检查超时 (放在检查新消息和关闭之后)
|
||||
if asyncio.get_event_loop().time() - wait_start_time > WAITING_TIME_THRESHOLD:
|
||||
logger.warning(f"{log_prefix} 等待新消息超时({WAITING_TIME_THRESHOLD}秒)")
|
||||
return False
|
||||
|
||||
try:
|
||||
# 短暂休眠,让其他任务有机会运行,并能更快响应取消或关闭
|
||||
await asyncio.sleep(0.5) # 缩短休眠时间
|
||||
except asyncio.CancelledError:
|
||||
# 如果在休眠时被取消,再次检查关闭标志
|
||||
# 如果是正常关闭,则不需要警告
|
||||
if not self._shutting_down:
|
||||
logger.warning(f"{log_prefix} _wait_for_new_message 的休眠被意外取消")
|
||||
# 无论如何,重新抛出异常,让上层处理
|
||||
raise
|
||||
@@ -45,6 +45,8 @@ class PluginAction(BaseAction):
|
||||
self._services["expressor"] = kwargs["expressor"]
|
||||
if "chat_stream" in kwargs:
|
||||
self._services["chat_stream"] = kwargs["chat_stream"]
|
||||
if "replyer" in kwargs:
|
||||
self._services["replyer"] = kwargs["replyer"]
|
||||
|
||||
self.log_prefix = kwargs.get("log_prefix", "")
|
||||
self._load_plugin_config() # 初始化时加载插件配置
|
||||
|
||||
@@ -4,11 +4,10 @@ from src.common.logger_manager import get_logger
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
|
||||
from typing import Tuple, List
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
|
||||
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
|
||||
from src.config.config import global_config
|
||||
|
||||
logger = get_logger("action_taken")
|
||||
|
||||
@@ -21,21 +20,13 @@ class ReplyAction(BaseAction):
|
||||
"""
|
||||
|
||||
action_name: str = "reply"
|
||||
action_description: str = "表达想法,可以只包含文本、表情或两者都有"
|
||||
action_description: str = "当你想要参与回复或者聊天"
|
||||
action_parameters: dict[str:str] = {
|
||||
"text": "你想要表达的内容(可选)",
|
||||
"emojis": "描述当前使用表情包的场景,一段话描述(可选)",
|
||||
"target": "你想要回复的原始文本内容(非必须,仅文本,不包含发送者)(可选)",
|
||||
"target": "如果你要明确回复特定某人的某句话,请在target参数中中指定那句话的原始文本(非必须,仅文本,不包含发送者)(可选)",
|
||||
}
|
||||
action_require: list[str] = [
|
||||
"有实质性内容需要表达",
|
||||
"有人提到你,但你还没有回应他",
|
||||
"在合适的时候添加表情(不要总是添加),表情描述要详细,描述当前场景,一段话描述",
|
||||
"如果你有明确的,要回复特定某人的某句话,或者你想回复较早的消息,请在target中指定那句话的原始文本",
|
||||
"一次只回复一个人,一次只回复一个话题,突出重点",
|
||||
"如果是自己发的消息想继续,需自然衔接",
|
||||
"避免重复或评价自己的发言,不要和自己聊天",
|
||||
f"注意你的回复要求:{global_config.expression.expression_style}",
|
||||
"你想要闲聊或者随便附和",
|
||||
"有人提到你",
|
||||
]
|
||||
|
||||
associated_types: list[str] = ["text", "emoji"]
|
||||
@@ -49,9 +40,9 @@ class ReplyAction(BaseAction):
|
||||
cycle_timers: dict,
|
||||
thinking_id: str,
|
||||
observations: List[Observation],
|
||||
expressor: DefaultExpressor,
|
||||
chat_stream: ChatStream,
|
||||
log_prefix: str,
|
||||
replyer: DefaultReplyer,
|
||||
**kwargs,
|
||||
):
|
||||
"""初始化回复动作处理器
|
||||
@@ -63,13 +54,13 @@ class ReplyAction(BaseAction):
|
||||
cycle_timers: 计时器字典
|
||||
thinking_id: 思考ID
|
||||
observations: 观察列表
|
||||
expressor: 表达器
|
||||
replyer: 回复器
|
||||
chat_stream: 聊天流
|
||||
log_prefix: 日志前缀
|
||||
"""
|
||||
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
|
||||
self.observations = observations
|
||||
self.expressor = expressor
|
||||
self.replyer = replyer
|
||||
self.chat_stream = chat_stream
|
||||
self.log_prefix = log_prefix
|
||||
|
||||
@@ -121,7 +112,7 @@ class ReplyAction(BaseAction):
|
||||
else:
|
||||
anchor_message.update_chat_stream(self.chat_stream)
|
||||
|
||||
success, reply_set = await self.expressor.deal_reply(
|
||||
success, reply_set = await self.replyer.deal_reply(
|
||||
cycle_timers=cycle_timers,
|
||||
action_data=reply_data,
|
||||
anchor_message=anchor_message,
|
||||
|
||||
141
src/chat/focus_chat/planners/actions/reply_complex_action.py
Normal file
141
src/chat/focus_chat/planners/actions/reply_complex_action.py
Normal file
@@ -0,0 +1,141 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
|
||||
from typing import Tuple, List
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from chat.focus_chat.replyer.default_expressor import DefaultExpressor
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
|
||||
from src.config.config import global_config
|
||||
|
||||
logger = get_logger("action_taken")
|
||||
|
||||
|
||||
@register_action
|
||||
class ReplyAction(BaseAction):
|
||||
"""回复动作处理类
|
||||
|
||||
处理构建和发送消息回复的动作。
|
||||
"""
|
||||
|
||||
action_name: str = "reply"
|
||||
action_description: str = "表达想法,可以只包含文本、表情或两者都有"
|
||||
action_parameters: dict[str:str] = {
|
||||
"text": "你想要表达的内容(可选)",
|
||||
"emojis": "描述当前使用表情包的场景,一段话描述(可选)",
|
||||
"target": "你想要回复的原始文本内容(非必须,仅文本,不包含发送者)(可选)",
|
||||
}
|
||||
action_require: list[str] = [
|
||||
"有实质性内容需要表达",
|
||||
"有人提到你,但你还没有回应他",
|
||||
"在合适的时候添加表情(不要总是添加),表情描述要详细,描述当前场景,一段话描述",
|
||||
"如果你有明确的,要回复特定某人的某句话,或者你想回复较早的消息,请在target中指定那句话的原始文本",
|
||||
"一次只回复一个人,一次只回复一个话题,突出重点",
|
||||
"如果是自己发的消息想继续,需自然衔接",
|
||||
"避免重复或评价自己的发言,不要和自己聊天",
|
||||
f"注意你的回复要求:{global_config.expression.expression_style}",
|
||||
]
|
||||
|
||||
associated_types: list[str] = ["text", "emoji"]
|
||||
|
||||
default = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
action_data: dict,
|
||||
reasoning: str,
|
||||
cycle_timers: dict,
|
||||
thinking_id: str,
|
||||
observations: List[Observation],
|
||||
expressor: DefaultExpressor,
|
||||
chat_stream: ChatStream,
|
||||
log_prefix: str,
|
||||
**kwargs,
|
||||
):
|
||||
"""初始化回复动作处理器
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_data: 动作数据,包含 message, emojis, target 等
|
||||
reasoning: 执行该动作的理由
|
||||
cycle_timers: 计时器字典
|
||||
thinking_id: 思考ID
|
||||
observations: 观察列表
|
||||
expressor: 表达器
|
||||
chat_stream: 聊天流
|
||||
log_prefix: 日志前缀
|
||||
"""
|
||||
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
|
||||
self.observations = observations
|
||||
self.expressor = expressor
|
||||
self.chat_stream = chat_stream
|
||||
self.log_prefix = log_prefix
|
||||
|
||||
async def handle_action(self) -> Tuple[bool, str]:
|
||||
"""
|
||||
处理回复动作
|
||||
|
||||
Returns:
|
||||
Tuple[bool, str]: (是否执行成功, 回复文本)
|
||||
"""
|
||||
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
|
||||
return await self._handle_reply(
|
||||
reasoning=self.reasoning,
|
||||
reply_data=self.action_data,
|
||||
cycle_timers=self.cycle_timers,
|
||||
thinking_id=self.thinking_id,
|
||||
)
|
||||
|
||||
async def _handle_reply(
|
||||
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
|
||||
) -> tuple[bool, str]:
|
||||
"""
|
||||
处理统一的回复动作 - 可包含文本和表情,顺序任意
|
||||
|
||||
reply_data格式:
|
||||
{
|
||||
"text": "你好啊" # 文本内容列表(可选)
|
||||
"target": "锚定消息", # 锚定消息的文本内容
|
||||
"emojis": "微笑" # 表情关键词列表(可选)
|
||||
}
|
||||
"""
|
||||
logger.info(f"{self.log_prefix} 决定回复: {self.reasoning}")
|
||||
|
||||
# 从聊天观察获取锚定消息
|
||||
chatting_observation: ChattingObservation = next(
|
||||
obs for obs in self.observations if isinstance(obs, ChattingObservation)
|
||||
)
|
||||
if reply_data.get("target"):
|
||||
anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
|
||||
else:
|
||||
anchor_message = None
|
||||
|
||||
# 如果没有找到锚点消息,创建一个占位符
|
||||
if not anchor_message:
|
||||
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
|
||||
anchor_message = await create_empty_anchor_message(
|
||||
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
|
||||
)
|
||||
else:
|
||||
anchor_message.update_chat_stream(self.chat_stream)
|
||||
|
||||
success, reply_set = await self.expressor.deal_reply(
|
||||
cycle_timers=cycle_timers,
|
||||
action_data=reply_data,
|
||||
anchor_message=anchor_message,
|
||||
reasoning=reasoning,
|
||||
thinking_id=thinking_id,
|
||||
)
|
||||
|
||||
reply_text = ""
|
||||
for reply in reply_set:
|
||||
type = reply[0]
|
||||
data = reply[1]
|
||||
if type == "text":
|
||||
reply_text += data
|
||||
elif type == "emoji":
|
||||
reply_text += data
|
||||
|
||||
return success, reply_text
|
||||
26
src/chat/focus_chat/planners/base_planner.py
Normal file
26
src/chat/focus_chat/planners/base_planner.py
Normal file
@@ -0,0 +1,26 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Dict, Any
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from src.chat.focus_chat.info.info_base import InfoBase
|
||||
|
||||
|
||||
class BasePlanner(ABC):
|
||||
"""规划器基类"""
|
||||
|
||||
def __init__(self, log_prefix: str, action_manager: ActionManager):
|
||||
self.log_prefix = log_prefix
|
||||
self.action_manager = action_manager
|
||||
|
||||
@abstractmethod
|
||||
async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]:
|
||||
"""
|
||||
规划下一步行动
|
||||
|
||||
Args:
|
||||
all_plan_info: 所有计划信息
|
||||
running_memorys: 回忆信息
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: 规划结果
|
||||
"""
|
||||
pass
|
||||
@@ -16,6 +16,7 @@ from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from json_repair import repair_json
|
||||
from src.chat.focus_chat.planners.base_planner import BasePlanner
|
||||
|
||||
logger = get_logger("planner")
|
||||
|
||||
@@ -73,9 +74,9 @@ action_name: {action_name}
|
||||
)
|
||||
|
||||
|
||||
class ActionPlanner:
|
||||
class ActionPlanner(BasePlanner):
|
||||
def __init__(self, log_prefix: str, action_manager: ActionManager):
|
||||
self.log_prefix = log_prefix
|
||||
super().__init__(log_prefix, action_manager)
|
||||
# LLM规划器配置
|
||||
self.planner_llm = LLMRequest(
|
||||
model=global_config.model.focus_planner,
|
||||
@@ -83,8 +84,6 @@ class ActionPlanner:
|
||||
request_type="focus.planner", # 用于动作规划
|
||||
)
|
||||
|
||||
self.action_manager = action_manager
|
||||
|
||||
async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]:
|
||||
"""
|
||||
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
|
||||
@@ -117,6 +116,7 @@ class ActionPlanner:
|
||||
cycle_info = ""
|
||||
structured_info = ""
|
||||
extra_info = []
|
||||
current_mind = ""
|
||||
observed_messages = []
|
||||
observed_messages_str = ""
|
||||
chat_type = "group"
|
||||
53
src/chat/focus_chat/planners/planner_factory.py
Normal file
53
src/chat/focus_chat/planners/planner_factory.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from typing import Dict, Type
|
||||
from src.chat.focus_chat.planners.base_planner import BasePlanner
|
||||
from src.chat.focus_chat.planners.planner_complex import ActionPlanner as ComplexActionPlanner
|
||||
from src.chat.focus_chat.planners.planner_simple import ActionPlanner as SimpleActionPlanner
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from src.config.config import global_config
|
||||
from src.common.logger_manager import get_logger
|
||||
|
||||
logger = get_logger("planner_factory")
|
||||
|
||||
|
||||
class PlannerFactory:
|
||||
"""规划器工厂类,用于创建不同类型的规划器实例"""
|
||||
|
||||
# 注册所有可用的规划器类型
|
||||
_planner_types: Dict[str, Type[BasePlanner]] = {
|
||||
"complex": ComplexActionPlanner,
|
||||
"simple": SimpleActionPlanner,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def register_planner(cls, name: str, planner_class: Type[BasePlanner]) -> None:
|
||||
"""
|
||||
注册新的规划器类型
|
||||
|
||||
Args:
|
||||
name: 规划器类型名称
|
||||
planner_class: 规划器类
|
||||
"""
|
||||
cls._planner_types[name] = planner_class
|
||||
logger.info(f"注册新的规划器类型: {name}")
|
||||
|
||||
@classmethod
|
||||
def create_planner(cls, log_prefix: str, action_manager: ActionManager) -> BasePlanner:
|
||||
"""
|
||||
创建规划器实例
|
||||
|
||||
Args:
|
||||
log_prefix: 日志前缀
|
||||
action_manager: 动作管理器实例
|
||||
|
||||
Returns:
|
||||
BasePlanner: 规划器实例
|
||||
"""
|
||||
planner_type = global_config.focus_chat.planner_type
|
||||
|
||||
if planner_type not in cls._planner_types:
|
||||
logger.warning(f"{log_prefix} 未知的规划器类型: {planner_type},使用默认规划器")
|
||||
planner_type = "complex"
|
||||
|
||||
planner_class = cls._planner_types[planner_type]
|
||||
logger.info(f"{log_prefix} 使用{planner_type}规划器")
|
||||
return planner_class(log_prefix=log_prefix, action_manager=action_manager)
|
||||
384
src/chat/focus_chat/planners/planner_simple.py
Normal file
384
src/chat/focus_chat/planners/planner_simple.py
Normal file
@@ -0,0 +1,384 @@
|
||||
import json # <--- 确保导入 json
|
||||
import traceback
|
||||
from typing import List, Dict, Any, Optional
|
||||
from rich.traceback import install
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
from src.chat.focus_chat.info.info_base import InfoBase
|
||||
from src.chat.focus_chat.info.obs_info import ObsInfo
|
||||
from src.chat.focus_chat.info.cycle_info import CycleInfo
|
||||
from src.chat.focus_chat.info.mind_info import MindInfo
|
||||
from src.chat.focus_chat.info.action_info import ActionInfo
|
||||
from src.chat.focus_chat.info.structured_info import StructuredInfo
|
||||
from src.chat.focus_chat.info.self_info import SelfInfo
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from json_repair import repair_json
|
||||
from src.chat.focus_chat.planners.base_planner import BasePlanner
|
||||
from datetime import datetime
|
||||
|
||||
logger = get_logger("planner")
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
|
||||
def init_prompt():
|
||||
Prompt(
|
||||
"""
|
||||
你的自我认知是:
|
||||
{self_info_block}
|
||||
{extra_info_block}
|
||||
{memory_str}
|
||||
|
||||
{time_block}
|
||||
|
||||
你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容:
|
||||
|
||||
{chat_content_block}
|
||||
|
||||
{mind_info_block}
|
||||
|
||||
{cycle_info_block}
|
||||
注意,除了下面动作选项之外,你在群聊里不能做其他任何事情,这是你能力的边界,现在请你选择合适的action:
|
||||
{moderation_prompt}
|
||||
|
||||
{action_options_text}
|
||||
|
||||
以严格的 JSON 格式输出,且仅包含 JSON 内容,不要有任何其他文字或解释。
|
||||
请你以下面格式输出:
|
||||
{{
|
||||
"action": "action_name"
|
||||
"参数": "参数的值"(可能有多个参数),
|
||||
}}
|
||||
|
||||
请输出你提取的JSON,不要有任何其他文字或解释:
|
||||
|
||||
""",
|
||||
"simple_planner_prompt",
|
||||
)
|
||||
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
动作名称:{action_name}
|
||||
描述:{action_description}
|
||||
{action_parameters}
|
||||
使用该动作的场景:
|
||||
{action_require}""",
|
||||
"action_prompt",
|
||||
)
|
||||
|
||||
|
||||
class ActionPlanner(BasePlanner):
|
||||
def __init__(self, log_prefix: str, action_manager: ActionManager):
|
||||
super().__init__(log_prefix, action_manager)
|
||||
# LLM规划器配置
|
||||
self.planner_llm = LLMRequest(
|
||||
model=global_config.model.focus_planner,
|
||||
max_tokens=1000,
|
||||
request_type="focus.planner", # 用于动作规划
|
||||
)
|
||||
|
||||
self.utils_llm = LLMRequest(
|
||||
model=global_config.model.utils_small,
|
||||
max_tokens=1000,
|
||||
request_type="focus.planner", # 用于动作规划
|
||||
)
|
||||
|
||||
async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]:
|
||||
"""
|
||||
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
|
||||
|
||||
参数:
|
||||
all_plan_info: 所有计划信息
|
||||
running_memorys: 回忆信息
|
||||
"""
|
||||
|
||||
action = "no_reply" # 默认动作
|
||||
reasoning = "规划器初始化默认"
|
||||
action_data = {}
|
||||
|
||||
try:
|
||||
# 获取观察信息
|
||||
extra_info: list[str] = []
|
||||
|
||||
# 设置默认值
|
||||
nickname_str = ""
|
||||
for nicknames in global_config.bot.alias_names:
|
||||
nickname_str += f"{nicknames},"
|
||||
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||||
|
||||
personality_block = individuality.get_personality_prompt(x_person=2, level=2)
|
||||
identity_block = individuality.get_identity_prompt(x_person=2, level=2)
|
||||
|
||||
self_info = name_block + personality_block + identity_block
|
||||
current_mind = "你思考了很久,没有想清晰要做什么"
|
||||
|
||||
cycle_info = ""
|
||||
structured_info = ""
|
||||
extra_info = []
|
||||
observed_messages = []
|
||||
observed_messages_str = ""
|
||||
chat_type = "group"
|
||||
is_group_chat = True
|
||||
for info in all_plan_info:
|
||||
if isinstance(info, ObsInfo):
|
||||
observed_messages = info.get_talking_message()
|
||||
observed_messages_str = info.get_talking_message_str_truncate()
|
||||
chat_type = info.get_chat_type()
|
||||
is_group_chat = chat_type == "group"
|
||||
elif isinstance(info, MindInfo):
|
||||
current_mind = info.get_current_mind()
|
||||
elif isinstance(info, CycleInfo):
|
||||
cycle_info = info.get_observe_info()
|
||||
elif isinstance(info, SelfInfo):
|
||||
self_info = info.get_processed_info()
|
||||
elif isinstance(info, StructuredInfo):
|
||||
structured_info = info.get_processed_info()
|
||||
# print(f"structured_info: {structured_info}")
|
||||
# elif not isinstance(info, ActionInfo): # 跳过已处理的ActionInfo
|
||||
# extra_info.append(info.get_processed_info())
|
||||
|
||||
# 获取当前可用的动作
|
||||
current_available_actions = self.action_manager.get_using_actions()
|
||||
|
||||
# 如果没有可用动作或只有no_reply动作,直接返回no_reply
|
||||
if not current_available_actions or (
|
||||
len(current_available_actions) == 1 and "no_reply" in current_available_actions
|
||||
):
|
||||
action = "no_reply"
|
||||
reasoning = "没有可用的动作" if not current_available_actions else "只有no_reply动作可用,跳过规划"
|
||||
logger.info(f"{self.log_prefix}{reasoning}")
|
||||
self.action_manager.restore_actions()
|
||||
logger.debug(
|
||||
f"{self.log_prefix}沉默后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
|
||||
)
|
||||
return {
|
||||
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
|
||||
"current_mind": current_mind,
|
||||
"observed_messages": observed_messages,
|
||||
}
|
||||
|
||||
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
|
||||
prompt = await self.build_planner_prompt(
|
||||
self_info_block=self_info,
|
||||
is_group_chat=is_group_chat, # <-- Pass HFC state
|
||||
chat_target_info=None,
|
||||
observed_messages_str=observed_messages_str, # <-- Pass local variable
|
||||
current_mind=current_mind, # <-- Pass argument
|
||||
structured_info=structured_info, # <-- Pass SubMind info
|
||||
current_available_actions=current_available_actions, # <-- Pass determined actions
|
||||
cycle_info=cycle_info, # <-- Pass cycle info
|
||||
extra_info=extra_info,
|
||||
running_memorys=running_memorys,
|
||||
)
|
||||
|
||||
# --- 调用 LLM (普通文本生成) ---
|
||||
llm_content = None
|
||||
try:
|
||||
prompt = f"{prompt}"
|
||||
llm_content, (reasoning_content, _) = await self.planner_llm.generate_response_async(prompt=prompt)
|
||||
|
||||
logger.debug(
|
||||
f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}"
|
||||
)
|
||||
|
||||
logger.debug(f"{self.log_prefix}LLM 原始响应: {llm_content}")
|
||||
logger.debug(f"{self.log_prefix}LLM 原始理由响应: {reasoning_content}")
|
||||
except Exception as req_e:
|
||||
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
|
||||
reasoning = f"LLM 请求失败,你的模型出现问题: {req_e}"
|
||||
action = "no_reply"
|
||||
|
||||
|
||||
if llm_content:
|
||||
try:
|
||||
fixed_json_string = repair_json(llm_content)
|
||||
if isinstance(fixed_json_string, str):
|
||||
try:
|
||||
parsed_json = json.loads(fixed_json_string)
|
||||
except json.JSONDecodeError as decode_error:
|
||||
logger.error(f"JSON解析错误: {str(decode_error)}")
|
||||
parsed_json = {}
|
||||
else:
|
||||
# 如果repair_json直接返回了字典对象,直接使用
|
||||
parsed_json = fixed_json_string
|
||||
|
||||
# 提取决策,提供默认值
|
||||
extracted_action = parsed_json.get("action", "no_reply")
|
||||
# extracted_reasoning = parsed_json.get("reasoning", "LLM未提供理由")
|
||||
extracted_reasoning = ""
|
||||
|
||||
# 将所有其他属性添加到action_data
|
||||
action_data = {}
|
||||
for key, value in parsed_json.items():
|
||||
if key not in ["action", "reasoning"]:
|
||||
action_data[key] = value
|
||||
|
||||
action_data["identity"] = self_info
|
||||
|
||||
# 对于reply动作不需要额外处理,因为相关字段已经在上面的循环中添加到action_data
|
||||
|
||||
if extracted_action not in current_available_actions:
|
||||
logger.warning(
|
||||
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
|
||||
)
|
||||
action = "no_reply"
|
||||
reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}"
|
||||
else:
|
||||
# 动作有效且可用
|
||||
action = extracted_action
|
||||
reasoning = extracted_reasoning
|
||||
|
||||
except Exception as json_e:
|
||||
logger.warning(
|
||||
f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'"
|
||||
)
|
||||
traceback.print_exc()
|
||||
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
|
||||
action = "no_reply"
|
||||
|
||||
except Exception as outer_e:
|
||||
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}")
|
||||
traceback.print_exc()
|
||||
action = "no_reply"
|
||||
reasoning = f"Planner 内部处理错误: {outer_e}"
|
||||
|
||||
# logger.debug(
|
||||
# f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}"
|
||||
# )
|
||||
|
||||
# 恢复到默认动作集
|
||||
self.action_manager.restore_actions()
|
||||
logger.debug(
|
||||
f"{self.log_prefix}规划后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
|
||||
)
|
||||
|
||||
action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning}
|
||||
|
||||
plan_result = {
|
||||
"action_result": action_result,
|
||||
"current_mind": current_mind,
|
||||
"observed_messages": observed_messages,
|
||||
"action_prompt": prompt,
|
||||
}
|
||||
|
||||
return plan_result
|
||||
|
||||
async def build_planner_prompt(
|
||||
self,
|
||||
self_info_block: str,
|
||||
is_group_chat: bool, # Now passed as argument
|
||||
chat_target_info: Optional[dict], # Now passed as argument
|
||||
observed_messages_str: str,
|
||||
current_mind: Optional[str],
|
||||
structured_info: Optional[str],
|
||||
current_available_actions: Dict[str, ActionInfo],
|
||||
cycle_info: Optional[str],
|
||||
extra_info: list[str],
|
||||
running_memorys: List[Dict[str, Any]],
|
||||
) -> str:
|
||||
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
|
||||
try:
|
||||
memory_str = ""
|
||||
if global_config.focus_chat.parallel_processing:
|
||||
memory_str = ""
|
||||
if running_memorys:
|
||||
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
|
||||
for running_memory in running_memorys:
|
||||
memory_str += f"{running_memory['topic']}: {running_memory['content']}\n"
|
||||
|
||||
chat_context_description = "你现在正在一个群聊中"
|
||||
chat_target_name = None # Only relevant for private
|
||||
if not is_group_chat and chat_target_info:
|
||||
chat_target_name = (
|
||||
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
|
||||
)
|
||||
chat_context_description = f"你正在和 {chat_target_name} 私聊"
|
||||
|
||||
chat_content_block = ""
|
||||
if observed_messages_str:
|
||||
chat_content_block = f"聊天记录:\n{observed_messages_str}"
|
||||
else:
|
||||
chat_content_block = "你还未开始聊天"
|
||||
|
||||
mind_info_block = ""
|
||||
if current_mind:
|
||||
mind_info_block = f"对聊天的规划:{current_mind}"
|
||||
else:
|
||||
mind_info_block = "你刚参与聊天"
|
||||
|
||||
personality_block = individuality.get_prompt(x_person=2, level=2)
|
||||
|
||||
action_options_block = ""
|
||||
for using_actions_name, using_actions_info in current_available_actions.items():
|
||||
# print(using_actions_name)
|
||||
# print(using_actions_info)
|
||||
# print(using_actions_info["parameters"])
|
||||
# print(using_actions_info["require"])
|
||||
# print(using_actions_info["description"])
|
||||
|
||||
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
|
||||
|
||||
param_text = ""
|
||||
for param_name, param_description in using_actions_info["parameters"].items():
|
||||
param_text += f" {param_name}: {param_description}\n"
|
||||
|
||||
require_text = ""
|
||||
for require_item in using_actions_info["require"]:
|
||||
require_text += f" - {require_item}\n"
|
||||
|
||||
if param_text:
|
||||
param_text = f"参数:\n{param_text}"
|
||||
else:
|
||||
param_text = "无需参数"
|
||||
|
||||
using_action_prompt = using_action_prompt.format(
|
||||
action_name=using_actions_name,
|
||||
action_description=using_actions_info["description"],
|
||||
action_parameters=param_text,
|
||||
action_require=require_text,
|
||||
)
|
||||
|
||||
action_options_block += using_action_prompt
|
||||
|
||||
extra_info_block = "\n".join(extra_info)
|
||||
extra_info_block += f"\n{structured_info}"
|
||||
if extra_info or structured_info:
|
||||
extra_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策"
|
||||
else:
|
||||
extra_info_block = ""
|
||||
|
||||
# moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
|
||||
moderation_prompt_block = ""
|
||||
|
||||
# 获取当前时间
|
||||
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
planner_prompt_template = await global_prompt_manager.get_prompt_async("simple_planner_prompt")
|
||||
prompt = planner_prompt_template.format(
|
||||
self_info_block=self_info_block,
|
||||
memory_str=memory_str,
|
||||
time_block=time_block,
|
||||
# bot_name=global_config.bot.nickname,
|
||||
prompt_personality=personality_block,
|
||||
chat_context_description=chat_context_description,
|
||||
chat_content_block=chat_content_block,
|
||||
mind_info_block=mind_info_block,
|
||||
cycle_info_block=cycle_info,
|
||||
action_options_text=action_options_block,
|
||||
# action_available_block=action_available_block,
|
||||
extra_info_block=extra_info_block,
|
||||
moderation_prompt=moderation_prompt_block,
|
||||
)
|
||||
return prompt
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"构建 Planner 提示词时出错: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
return "构建 Planner Prompt 时出错"
|
||||
|
||||
|
||||
init_prompt()
|
||||
650
src/chat/focus_chat/replyer/default_replyer.py
Normal file
650
src/chat/focus_chat/replyer/default_replyer.py
Normal file
@@ -0,0 +1,650 @@
|
||||
import traceback
|
||||
from typing import List, Optional, Dict, Any, Tuple
|
||||
from src.chat.message_receive.message import MessageRecv, MessageThinking, MessageSending
|
||||
from src.chat.message_receive.message import Seg # Local import needed after move
|
||||
from src.chat.message_receive.message import UserInfo
|
||||
from src.chat.message_receive.chat_stream import chat_manager
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
from src.chat.utils.utils_image import image_path_to_base64 # Local import needed after move
|
||||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||||
from src.chat.emoji_system.emoji_manager import emoji_manager
|
||||
from src.chat.focus_chat.heartFC_sender import HeartFCSender
|
||||
from src.chat.utils.utils import process_llm_response
|
||||
from src.chat.utils.info_catcher import info_catcher_manager
|
||||
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
import time
|
||||
from src.chat.focus_chat.expressors.exprssion_learner import expression_learner
|
||||
import random
|
||||
from datetime import datetime
|
||||
import re
|
||||
|
||||
logger = get_logger("expressor")
|
||||
|
||||
|
||||
def init_prompt():
|
||||
Prompt(
|
||||
"""
|
||||
你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:
|
||||
{style_habbits}
|
||||
|
||||
{time_block}
|
||||
你现在正在群里聊天,以下是群里正在进行的聊天内容:
|
||||
{chat_info}
|
||||
|
||||
以上是聊天内容,你需要了解聊天记录中的内容
|
||||
|
||||
{chat_target}
|
||||
{identity},在这聊天中,"{target_message}"引起了你的注意,你想要在群里发言或者回复这条消息。
|
||||
你需要使用合适的语法和句法,参考聊天内容,组织一条日常且口语化的回复。注意不要复读你说过的话。
|
||||
请你根据情景使用以下句法:
|
||||
{grammar_habbits}
|
||||
{config_expression_style},请注意不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容。
|
||||
{keywords_reaction_prompt}
|
||||
请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。
|
||||
不要浮夸,不要夸张修辞,只输出一条回复就好。
|
||||
现在,你说:
|
||||
""",
|
||||
"default_replyer_prompt",
|
||||
)
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:
|
||||
{style_habbits}
|
||||
|
||||
{time_block}
|
||||
你现在正在聊天,以下是你和对方正在进行的聊天内容:
|
||||
{chat_info}
|
||||
|
||||
以上是聊天内容,你需要了解聊天记录中的内容
|
||||
|
||||
{chat_target}
|
||||
{identity},在这聊天中,"{target_message}"引起了你的注意,你想要发言或者回复这条消息。
|
||||
你需要使用合适的语法和句法,参考聊天内容,组织一条日常且口语化的回复。注意不要复读你说过的话。
|
||||
请你根据情景使用以下句法:
|
||||
{grammar_habbits}
|
||||
{config_expression_style},请注意不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容。
|
||||
{keywords_reaction_prompt}
|
||||
请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。
|
||||
不要浮夸,不要夸张修辞,只输出一条回复就好。
|
||||
现在,你说:
|
||||
""",
|
||||
"default_replyer_private_prompt",
|
||||
)
|
||||
|
||||
|
||||
class DefaultReplyer:
|
||||
def __init__(self, chat_id: str):
|
||||
self.log_prefix = "replyer"
|
||||
# TODO: API-Adapter修改标记
|
||||
self.express_model = LLMRequest(
|
||||
model=global_config.model.focus_expressor,
|
||||
# temperature=global_config.model.focus_expressor["temp"],
|
||||
max_tokens=256,
|
||||
request_type="focus.expressor",
|
||||
)
|
||||
self.heart_fc_sender = HeartFCSender()
|
||||
|
||||
self.chat_id = chat_id
|
||||
self.chat_stream: Optional[ChatStream] = None
|
||||
self.is_group_chat = True
|
||||
self.chat_target_info = None
|
||||
|
||||
async def initialize(self):
|
||||
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_id)
|
||||
|
||||
async def _create_thinking_message(self, anchor_message: Optional[MessageRecv], thinking_id: str):
|
||||
"""创建思考消息 (尝试锚定到 anchor_message)"""
|
||||
if not anchor_message or not anchor_message.chat_stream:
|
||||
logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流。")
|
||||
return None
|
||||
|
||||
chat = anchor_message.chat_stream
|
||||
messageinfo = anchor_message.message_info
|
||||
thinking_time_point = parse_thinking_id_to_timestamp(thinking_id)
|
||||
bot_user_info = UserInfo(
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=messageinfo.platform,
|
||||
)
|
||||
|
||||
thinking_message = MessageThinking(
|
||||
message_id=thinking_id,
|
||||
chat_stream=chat,
|
||||
bot_user_info=bot_user_info,
|
||||
reply=anchor_message, # 回复的是锚点消息
|
||||
thinking_start_time=thinking_time_point,
|
||||
)
|
||||
# logger.debug(f"创建思考消息thinking_message:{thinking_message}")
|
||||
|
||||
await self.heart_fc_sender.register_thinking(thinking_message)
|
||||
|
||||
async def deal_reply(
|
||||
self,
|
||||
cycle_timers: dict,
|
||||
action_data: Dict[str, Any],
|
||||
reasoning: str,
|
||||
anchor_message: MessageRecv,
|
||||
thinking_id: str,
|
||||
) -> tuple[bool, Optional[List[Tuple[str, str]]]]:
|
||||
# 创建思考消息
|
||||
await self._create_thinking_message(anchor_message, thinking_id)
|
||||
|
||||
reply = [] # 初始化 reply,防止未定义
|
||||
try:
|
||||
has_sent_something = False
|
||||
|
||||
# 处理文本部分
|
||||
# text_part = action_data.get("text", [])
|
||||
# if text_part:
|
||||
with Timer("生成回复", cycle_timers):
|
||||
# 可以保留原有的文本处理逻辑或进行适当调整
|
||||
reply = await self.reply(
|
||||
# in_mind_reply=text_part,
|
||||
anchor_message=anchor_message,
|
||||
thinking_id=thinking_id,
|
||||
reason=reasoning,
|
||||
action_data=action_data,
|
||||
)
|
||||
|
||||
# with Timer("选择表情", cycle_timers):
|
||||
# emoji_keyword = action_data.get("emojis", [])
|
||||
# emoji_base64 = await self._choose_emoji(emoji_keyword)
|
||||
# if emoji_base64:
|
||||
# reply.append(("emoji", emoji_base64))
|
||||
|
||||
if reply:
|
||||
with Timer("发送消息", cycle_timers):
|
||||
sent_msg_list = await self.send_response_messages(
|
||||
anchor_message=anchor_message,
|
||||
thinking_id=thinking_id,
|
||||
response_set=reply,
|
||||
)
|
||||
has_sent_something = True
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix} 文本回复生成失败")
|
||||
|
||||
if not has_sent_something:
|
||||
logger.warning(f"{self.log_prefix} 回复动作未包含任何有效内容")
|
||||
|
||||
return has_sent_something, sent_msg_list
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"回复失败: {e}")
|
||||
traceback.print_exc()
|
||||
return False, None
|
||||
|
||||
# --- 回复器 (Replier) 的定义 --- #
|
||||
|
||||
async def deal_emoji(
|
||||
self,
|
||||
anchor_message: MessageRecv,
|
||||
thinking_id: str,
|
||||
action_data: Dict[str, Any],
|
||||
cycle_timers: dict,
|
||||
) -> Optional[List[str]]:
|
||||
"""
|
||||
表情动作处理类
|
||||
"""
|
||||
|
||||
await self._create_thinking_message(anchor_message, thinking_id)
|
||||
|
||||
|
||||
try:
|
||||
has_sent_something = False
|
||||
sent_msg_list = []
|
||||
reply = []
|
||||
with Timer("选择表情", cycle_timers):
|
||||
emoji_keyword = action_data.get("description", [])
|
||||
emoji_base64, description = await self._choose_emoji(emoji_keyword)
|
||||
if emoji_base64:
|
||||
logger.info(f"选择表情: {description}")
|
||||
reply.append(("emoji", emoji_base64))
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix} 没有找到合适表情")
|
||||
|
||||
|
||||
if reply:
|
||||
with Timer("发送表情", cycle_timers):
|
||||
sent_msg_list = await self.send_response_messages(
|
||||
anchor_message=anchor_message,
|
||||
thinking_id=thinking_id,
|
||||
response_set=reply,
|
||||
)
|
||||
has_sent_something = True
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix} 表情发送失败")
|
||||
|
||||
if not has_sent_something:
|
||||
logger.warning(f"{self.log_prefix} 表情发送失败")
|
||||
|
||||
return has_sent_something, sent_msg_list
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"回复失败: {e}")
|
||||
traceback.print_exc()
|
||||
return False, None
|
||||
|
||||
|
||||
|
||||
async def reply(
|
||||
self,
|
||||
# in_mind_reply: str,
|
||||
reason: str,
|
||||
anchor_message: MessageRecv,
|
||||
thinking_id: str,
|
||||
action_data: Dict[str, Any],
|
||||
) -> Optional[List[str]]:
|
||||
"""
|
||||
回复器 (Replier): 核心逻辑,负责生成回复文本。
|
||||
(已整合原 HeartFCGenerator 的功能)
|
||||
"""
|
||||
try:
|
||||
# 1. 获取情绪影响因子并调整模型温度
|
||||
# arousal_multiplier = mood_manager.get_arousal_multiplier()
|
||||
# current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
|
||||
# self.express_model.params["temperature"] = current_temp # 动态调整温度
|
||||
|
||||
# 2. 获取信息捕捉器
|
||||
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
|
||||
|
||||
# --- Determine sender_name for private chat ---
|
||||
sender_name_for_prompt = "某人" # Default for group or if info unavailable
|
||||
if not self.is_group_chat and self.chat_target_info:
|
||||
# Prioritize person_name, then nickname
|
||||
sender_name_for_prompt = (
|
||||
self.chat_target_info.get("person_name")
|
||||
or self.chat_target_info.get("user_nickname")
|
||||
or sender_name_for_prompt
|
||||
)
|
||||
# --- End determining sender_name ---
|
||||
|
||||
target_message = action_data.get("target", "")
|
||||
identity = action_data.get("identity", "")
|
||||
|
||||
# 3. 构建 Prompt
|
||||
with Timer("构建Prompt", {}): # 内部计时器,可选保留
|
||||
prompt = await self.build_prompt_focus(
|
||||
chat_stream=self.chat_stream, # Pass the stream object
|
||||
# in_mind_reply=in_mind_reply,
|
||||
identity=identity,
|
||||
reason=reason,
|
||||
sender_name=sender_name_for_prompt, # Pass determined name
|
||||
target_message=target_message,
|
||||
config_expression_style=global_config.expression.expression_style,
|
||||
)
|
||||
|
||||
# 4. 调用 LLM 生成回复
|
||||
content = None
|
||||
reasoning_content = None
|
||||
model_name = "unknown_model"
|
||||
if not prompt:
|
||||
logger.error(f"{self.log_prefix}[Replier-{thinking_id}] Prompt 构建失败,无法生成回复。")
|
||||
return None
|
||||
|
||||
try:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# TODO: API-Adapter修改标记
|
||||
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
|
||||
content, (reasoning_content, model_name) = await self.express_model.generate_response_async(prompt)
|
||||
|
||||
logger.debug(f"prompt: {prompt}")
|
||||
logger.info(f"最终回复: {content}")
|
||||
|
||||
info_catcher.catch_after_llm_generated(
|
||||
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name
|
||||
)
|
||||
|
||||
except Exception as llm_e:
|
||||
# 精简报错信息
|
||||
logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}")
|
||||
return None # LLM 调用失败则无法生成回复
|
||||
|
||||
processed_response = process_llm_response(content)
|
||||
|
||||
# 5. 处理 LLM 响应
|
||||
if not content:
|
||||
logger.warning(f"{self.log_prefix}LLM 生成了空内容。")
|
||||
return None
|
||||
if not processed_response:
|
||||
logger.warning(f"{self.log_prefix}处理后的回复为空。")
|
||||
return None
|
||||
|
||||
reply_set = []
|
||||
for str in processed_response:
|
||||
reply_seg = ("text", str)
|
||||
reply_set.append(reply_seg)
|
||||
|
||||
return reply_set
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}回复生成意外失败: {e}")
|
||||
traceback.print_exc()
|
||||
return None
|
||||
|
||||
async def build_prompt_focus(
|
||||
self,
|
||||
reason,
|
||||
chat_stream,
|
||||
sender_name,
|
||||
# in_mind_reply,
|
||||
identity,
|
||||
target_message,
|
||||
config_expression_style,
|
||||
) -> str:
|
||||
is_group_chat = bool(chat_stream.group_info)
|
||||
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.focus_chat.observation_context_size,
|
||||
)
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
message_list_before_now,
|
||||
replace_bot_name=True,
|
||||
merge_messages=True,
|
||||
timestamp_mode="normal_no_YMD",
|
||||
read_mark=0.0,
|
||||
truncate=True,
|
||||
)
|
||||
|
||||
(
|
||||
learnt_style_expressions,
|
||||
learnt_grammar_expressions,
|
||||
personality_expressions,
|
||||
) = await expression_learner.get_expression_by_chat_id(chat_stream.stream_id)
|
||||
|
||||
style_habbits = []
|
||||
grammar_habbits = []
|
||||
# 1. learnt_expressions加权随机选3条
|
||||
if learnt_style_expressions:
|
||||
weights = [expr["count"] for expr in learnt_style_expressions]
|
||||
selected_learnt = weighted_sample_no_replacement(learnt_style_expressions, weights, 3)
|
||||
for expr in selected_learnt:
|
||||
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
|
||||
style_habbits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||||
# 2. learnt_grammar_expressions加权随机选3条
|
||||
if learnt_grammar_expressions:
|
||||
weights = [expr["count"] for expr in learnt_grammar_expressions]
|
||||
selected_learnt = weighted_sample_no_replacement(learnt_grammar_expressions, weights, 3)
|
||||
for expr in selected_learnt:
|
||||
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
|
||||
grammar_habbits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||||
# 3. personality_expressions随机选1条
|
||||
if personality_expressions:
|
||||
expr = random.choice(personality_expressions)
|
||||
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
|
||||
style_habbits.append(f"当{expr['situation']}时,使用 {expr['style']}")
|
||||
|
||||
style_habbits_str = "\n".join(style_habbits)
|
||||
grammar_habbits_str = "\n".join(grammar_habbits)
|
||||
|
||||
# 关键词检测与反应
|
||||
keywords_reaction_prompt = ""
|
||||
try:
|
||||
# 处理关键词规则
|
||||
for rule in global_config.keyword_reaction.keyword_rules:
|
||||
if any(keyword in target_message for keyword in rule.keywords):
|
||||
logger.info(f"检测到关键词规则:{rule.keywords},触发反应:{rule.reaction}")
|
||||
keywords_reaction_prompt += f"{rule.reaction},"
|
||||
|
||||
# 处理正则表达式规则
|
||||
for rule in global_config.keyword_reaction.regex_rules:
|
||||
for pattern_str in rule.regex:
|
||||
try:
|
||||
pattern = re.compile(pattern_str)
|
||||
if result := pattern.search(target_message):
|
||||
reaction = rule.reaction
|
||||
for name, content in result.groupdict().items():
|
||||
reaction = reaction.replace(f"[{name}]", content)
|
||||
logger.info(f"匹配到正则表达式:{pattern_str},触发反应:{reaction}")
|
||||
keywords_reaction_prompt += reaction + ","
|
||||
break
|
||||
except re.error as e:
|
||||
logger.error(f"正则表达式编译错误: {pattern_str}, 错误信息: {str(e)}")
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.error(f"关键词检测与反应时发生异常: {str(e)}", exc_info=True)
|
||||
|
||||
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
# logger.debug("开始构建 focus prompt")
|
||||
|
||||
# --- Choose template based on chat type ---
|
||||
if is_group_chat:
|
||||
template_name = "default_replyer_prompt"
|
||||
# Group specific formatting variables (already fetched or default)
|
||||
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||||
# chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
template_name,
|
||||
style_habbits=style_habbits_str,
|
||||
grammar_habbits=grammar_habbits_str,
|
||||
chat_target=chat_target_1,
|
||||
chat_info=chat_talking_prompt,
|
||||
time_block=time_block,
|
||||
# bot_name=global_config.bot.nickname,
|
||||
# prompt_personality="",
|
||||
# reason=reason,
|
||||
# in_mind_reply=in_mind_reply,
|
||||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||||
identity=identity,
|
||||
target_message=target_message,
|
||||
config_expression_style=config_expression_style,
|
||||
)
|
||||
else: # Private chat
|
||||
template_name = "default_replyer_private_prompt"
|
||||
chat_target_1 = "你正在和人私聊"
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
template_name,
|
||||
style_habbits=style_habbits_str,
|
||||
grammar_habbits=grammar_habbits_str,
|
||||
chat_target=chat_target_1,
|
||||
chat_info=chat_talking_prompt,
|
||||
time_block=time_block,
|
||||
# bot_name=global_config.bot.nickname,
|
||||
# prompt_personality="",
|
||||
# reason=reason,
|
||||
# in_mind_reply=in_mind_reply,
|
||||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||||
identity=identity,
|
||||
target_message=target_message,
|
||||
config_expression_style=config_expression_style,
|
||||
)
|
||||
|
||||
return prompt
|
||||
|
||||
# --- 发送器 (Sender) --- #
|
||||
|
||||
async def send_response_messages(
|
||||
self,
|
||||
anchor_message: Optional[MessageRecv],
|
||||
response_set: List[Tuple[str, str]],
|
||||
thinking_id: str = "",
|
||||
display_message: str = "",
|
||||
) -> Optional[MessageSending]:
|
||||
"""发送回复消息 (尝试锚定到 anchor_message),使用 HeartFCSender"""
|
||||
chat = self.chat_stream
|
||||
chat_id = self.chat_id
|
||||
if chat is None:
|
||||
logger.error(f"{self.log_prefix} 无法发送回复,chat_stream 为空。")
|
||||
return None
|
||||
if not anchor_message:
|
||||
logger.error(f"{self.log_prefix} 无法发送回复,anchor_message 为空。")
|
||||
return None
|
||||
|
||||
stream_name = chat_manager.get_stream_name(chat_id) or chat_id # 获取流名称用于日志
|
||||
|
||||
# 检查思考过程是否仍在进行,并获取开始时间
|
||||
if thinking_id:
|
||||
# print(f"thinking_id: {thinking_id}")
|
||||
thinking_start_time = await self.heart_fc_sender.get_thinking_start_time(chat_id, thinking_id)
|
||||
else:
|
||||
print("thinking_id is None")
|
||||
# thinking_id = "ds" + str(round(time.time(), 2))
|
||||
thinking_start_time = time.time()
|
||||
|
||||
if thinking_start_time is None:
|
||||
logger.error(f"[{stream_name}]replyer思考过程未找到或已结束,无法发送回复。")
|
||||
return None
|
||||
|
||||
mark_head = False
|
||||
# first_bot_msg: Optional[MessageSending] = None
|
||||
reply_message_ids = [] # 记录实际发送的消息ID
|
||||
|
||||
sent_msg_list = []
|
||||
|
||||
for i, msg_text in enumerate(response_set):
|
||||
# 为每个消息片段生成唯一ID
|
||||
type = msg_text[0]
|
||||
data = msg_text[1]
|
||||
|
||||
if global_config.experimental.debug_show_chat_mode and type == "text":
|
||||
data += "ᶠ"
|
||||
|
||||
part_message_id = f"{thinking_id}_{i}"
|
||||
message_segment = Seg(type=type, data=data)
|
||||
|
||||
if type == "emoji":
|
||||
is_emoji = True
|
||||
else:
|
||||
is_emoji = False
|
||||
reply_to = not mark_head
|
||||
|
||||
bot_message = await self._build_single_sending_message(
|
||||
anchor_message=anchor_message,
|
||||
message_id=part_message_id,
|
||||
message_segment=message_segment,
|
||||
display_message=display_message,
|
||||
reply_to=reply_to,
|
||||
is_emoji=is_emoji,
|
||||
thinking_id=thinking_id,
|
||||
thinking_start_time=thinking_start_time,
|
||||
)
|
||||
|
||||
try:
|
||||
if not mark_head:
|
||||
mark_head = True
|
||||
# first_bot_msg = bot_message # 保存第一个成功发送的消息对象
|
||||
typing = False
|
||||
else:
|
||||
typing = True
|
||||
|
||||
if type == "emoji":
|
||||
typing = False
|
||||
|
||||
if anchor_message.raw_message:
|
||||
set_reply = True
|
||||
else:
|
||||
set_reply = False
|
||||
sent_msg = await self.heart_fc_sender.send_message(
|
||||
bot_message, has_thinking=True, typing=typing, set_reply=set_reply
|
||||
)
|
||||
|
||||
reply_message_ids.append(part_message_id) # 记录我们生成的ID
|
||||
|
||||
sent_msg_list.append((type, sent_msg))
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}发送回复片段 {i} ({part_message_id}) 时失败: {e}")
|
||||
traceback.print_exc()
|
||||
# 这里可以选择是继续发送下一个片段还是中止
|
||||
|
||||
# 在尝试发送完所有片段后,完成原始的 thinking_id 状态
|
||||
try:
|
||||
await self.heart_fc_sender.complete_thinking(chat_id, thinking_id)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}完成思考状态 {thinking_id} 时出错: {e}")
|
||||
|
||||
return sent_msg_list
|
||||
|
||||
async def _choose_emoji(self, send_emoji: str):
|
||||
"""
|
||||
选择表情,根据send_emoji文本选择表情,返回表情base64
|
||||
"""
|
||||
emoji_base64 = ""
|
||||
description = ""
|
||||
emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji)
|
||||
if emoji_raw:
|
||||
emoji_path, description = emoji_raw
|
||||
emoji_base64 = image_path_to_base64(emoji_path)
|
||||
return emoji_base64, description
|
||||
|
||||
async def _build_single_sending_message(
|
||||
self,
|
||||
anchor_message: MessageRecv,
|
||||
message_id: str,
|
||||
message_segment: Seg,
|
||||
reply_to: bool,
|
||||
is_emoji: bool,
|
||||
thinking_id: str,
|
||||
thinking_start_time: float,
|
||||
display_message: str,
|
||||
) -> MessageSending:
|
||||
"""构建单个发送消息"""
|
||||
|
||||
bot_user_info = UserInfo(
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=self.chat_stream.platform,
|
||||
)
|
||||
|
||||
bot_message = MessageSending(
|
||||
message_id=message_id, # 使用片段的唯一ID
|
||||
chat_stream=self.chat_stream,
|
||||
bot_user_info=bot_user_info,
|
||||
sender_info=anchor_message.message_info.user_info,
|
||||
message_segment=message_segment,
|
||||
reply=anchor_message, # 回复原始锚点
|
||||
is_head=reply_to,
|
||||
is_emoji=is_emoji,
|
||||
thinking_start_time=thinking_start_time, # 传递原始思考开始时间
|
||||
display_message=display_message,
|
||||
)
|
||||
|
||||
return bot_message
|
||||
|
||||
|
||||
def weighted_sample_no_replacement(items, weights, k) -> list:
|
||||
"""
|
||||
加权且不放回地随机抽取k个元素。
|
||||
|
||||
参数:
|
||||
items: 待抽取的元素列表
|
||||
weights: 每个元素对应的权重(与items等长,且为正数)
|
||||
k: 需要抽取的元素个数
|
||||
返回:
|
||||
selected: 按权重加权且不重复抽取的k个元素组成的列表
|
||||
|
||||
如果 items 中的元素不足 k 个,就只会返回所有可用的元素
|
||||
|
||||
实现思路:
|
||||
每次从当前池中按权重加权随机选出一个元素,选中后将其从池中移除,重复k次。
|
||||
这样保证了:
|
||||
1. count越大被选中概率越高
|
||||
2. 不会重复选中同一个元素
|
||||
"""
|
||||
selected = []
|
||||
pool = list(zip(items, weights))
|
||||
for _ in range(min(k, len(pool))):
|
||||
total = sum(w for _, w in pool)
|
||||
r = random.uniform(0, total)
|
||||
upto = 0
|
||||
for idx, (item, weight) in enumerate(pool):
|
||||
upto += weight
|
||||
if upto >= r:
|
||||
selected.append(item)
|
||||
pool.pop(idx)
|
||||
break
|
||||
return selected
|
||||
|
||||
|
||||
init_prompt()
|
||||
@@ -224,39 +224,27 @@ class MemoryManager:
|
||||
Returns:
|
||||
包含总结、概括、关键概念和事件的字典
|
||||
"""
|
||||
prompt = f"""请对以下内容进行总结,总结成记忆,输出四部分:
|
||||
prompt = f"""请对以下内容进行总结,总结成记忆,输出两部分:
|
||||
1. 记忆内容主题(精简,20字以内):让用户可以一眼看出记忆内容是什么
|
||||
2. 记忆内容概括(200字以内):让用户可以了解记忆内容的大致内容
|
||||
3. 关键概念和知识(keypoints):多条,提取关键的概念、知识点和关键词,要包含对概念的解释
|
||||
4. 事件描述(events):多条,描述谁(人物)在什么时候(时间)做了什么(事件)
|
||||
2. key_points:多条,包含关键的概念、事件,每条都要包含解释或描述,谁在什么时候干了什么
|
||||
|
||||
内容:
|
||||
{content}
|
||||
|
||||
请按以下JSON格式输出:
|
||||
```json
|
||||
{{
|
||||
"brief": "记忆内容主题(20字以内)",
|
||||
"detailed": "记忆内容概括(200字以内)",
|
||||
"keypoints": [
|
||||
"概念1:解释",
|
||||
"概念2:解释",
|
||||
...
|
||||
],
|
||||
"events": [
|
||||
"事件1:谁在什么时候做了什么",
|
||||
"事件2:谁在什么时候做了什么",
|
||||
"key_points": [
|
||||
"要点1:解释或描述",
|
||||
"要点2:解释或描述",
|
||||
...
|
||||
]
|
||||
}}
|
||||
```
|
||||
请确保输出是有效的JSON格式,不要添加任何额外的说明或解释。
|
||||
"""
|
||||
default_summary = {
|
||||
"brief": "主题未知的记忆",
|
||||
"detailed": "大致内容未知的记忆",
|
||||
"keypoints": ["未知的概念"],
|
||||
"events": ["未知的事件"],
|
||||
"key_points": ["未知的要点"],
|
||||
}
|
||||
|
||||
try:
|
||||
@@ -288,29 +276,14 @@ class MemoryManager:
|
||||
if "brief" not in json_result or not isinstance(json_result["brief"], str):
|
||||
json_result["brief"] = "主题未知的记忆"
|
||||
|
||||
if "detailed" not in json_result or not isinstance(json_result["detailed"], str):
|
||||
json_result["detailed"] = "大致内容未知的记忆"
|
||||
|
||||
# 处理关键概念
|
||||
if "keypoints" not in json_result or not isinstance(json_result["keypoints"], list):
|
||||
json_result["keypoints"] = ["未知的概念"]
|
||||
# 处理关键要点
|
||||
if "key_points" not in json_result or not isinstance(json_result["key_points"], list):
|
||||
json_result["key_points"] = ["未知的要点"]
|
||||
else:
|
||||
# 确保keypoints中的每个项目都是字符串
|
||||
json_result["keypoints"] = [str(point) for point in json_result["keypoints"] if point is not None]
|
||||
if not json_result["keypoints"]:
|
||||
json_result["keypoints"] = ["未知的概念"]
|
||||
|
||||
# 处理事件
|
||||
if "events" not in json_result or not isinstance(json_result["events"], list):
|
||||
json_result["events"] = ["未知的事件"]
|
||||
else:
|
||||
# 确保events中的每个项目都是字符串
|
||||
json_result["events"] = [str(event) for event in json_result["events"] if event is not None]
|
||||
if not json_result["events"]:
|
||||
json_result["events"] = ["未知的事件"]
|
||||
|
||||
# 兼容旧版,将keypoints和events合并到key_points中
|
||||
json_result["key_points"] = json_result["keypoints"] + json_result["events"]
|
||||
# 确保key_points中的每个项目都是字符串
|
||||
json_result["key_points"] = [str(point) for point in json_result["key_points"] if point is not None]
|
||||
if not json_result["key_points"]:
|
||||
json_result["key_points"] = ["未知的要点"]
|
||||
|
||||
return json_result
|
||||
|
||||
@@ -348,52 +321,31 @@ class MemoryManager:
|
||||
|
||||
# 使用LLM根据要求对总结、概括和要点进行精简修改
|
||||
prompt = f"""
|
||||
请根据以下要求,对记忆内容的主题、概括、关键概念和事件进行精简,模拟记忆的遗忘过程:
|
||||
请根据以下要求,对记忆内容的主题和关键要点进行精简,模拟记忆的遗忘过程:
|
||||
要求:{requirements}
|
||||
你可以随机对关键概念和事件进行压缩,模糊或者丢弃,修改后,同样修改主题和概括
|
||||
你可以随机对关键要点进行压缩,模糊或者丢弃,修改后,同样修改主题
|
||||
|
||||
目前主题:{summary["brief"]}
|
||||
|
||||
目前概括:{summary["detailed"]}
|
||||
目前关键要点:
|
||||
{chr(10).join([f"- {point}" for point in summary.get("key_points", [])])}
|
||||
|
||||
目前关键概念:
|
||||
{chr(10).join([f"- {point}" for point in summary.get("keypoints", [])])}
|
||||
|
||||
目前事件:
|
||||
{chr(10).join([f"- {point}" for point in summary.get("events", [])])}
|
||||
|
||||
请生成修改后的主题、概括、关键概念和事件,遵循以下格式:
|
||||
请生成修改后的主题和关键要点,遵循以下格式:
|
||||
```json
|
||||
{{
|
||||
"brief": "修改后的主题(20字以内)",
|
||||
"detailed": "修改后的概括(200字以内)",
|
||||
"keypoints": [
|
||||
"修改后的概念1:解释",
|
||||
"修改后的概念2:解释"
|
||||
],
|
||||
"events": [
|
||||
"修改后的事件1:谁在什么时候做了什么",
|
||||
"修改后的事件2:谁在什么时候做了什么"
|
||||
"key_points": [
|
||||
"修改后的要点1:解释或描述",
|
||||
"修改后的要点2:解释或描述"
|
||||
]
|
||||
}}
|
||||
```
|
||||
请确保输出是有效的JSON格式,不要添加任何额外的说明或解释。
|
||||
"""
|
||||
# 检查summary中是否有旧版结构,转换为新版结构
|
||||
if "keypoints" not in summary and "events" not in summary and "key_points" in summary:
|
||||
# 尝试区分key_points中的keypoints和events
|
||||
# 简单地将前半部分视为keypoints,后半部分视为events
|
||||
key_points = summary.get("key_points", [])
|
||||
halfway = len(key_points) // 2
|
||||
summary["keypoints"] = key_points[:halfway] or ["未知的概念"]
|
||||
summary["events"] = key_points[halfway:] or ["未知的事件"]
|
||||
|
||||
# 定义默认的精简结果
|
||||
default_refined = {
|
||||
"brief": summary["brief"],
|
||||
"detailed": summary["detailed"],
|
||||
"keypoints": summary.get("keypoints", ["未知的概念"])[:1], # 默认只保留第一个关键概念
|
||||
"events": summary.get("events", ["未知的事件"])[:1], # 默认只保留第一个事件
|
||||
"key_points": summary.get("key_points", ["未知的要点"])[:1], # 默认只保留第一个要点
|
||||
}
|
||||
|
||||
try:
|
||||
@@ -421,30 +373,17 @@ class MemoryManager:
|
||||
logger.error(f"修复后的JSON不是字典类型: {type(refined_data)}")
|
||||
refined_data = default_refined
|
||||
|
||||
# 更新总结、概括
|
||||
# 更新总结
|
||||
summary["brief"] = refined_data.get("brief", "主题未知的记忆")
|
||||
summary["detailed"] = refined_data.get("detailed", "大致内容未知的记忆")
|
||||
|
||||
# 更新关键概念
|
||||
keypoints = refined_data.get("keypoints", [])
|
||||
if isinstance(keypoints, list) and keypoints:
|
||||
# 确保所有关键概念都是字符串
|
||||
summary["keypoints"] = [str(point) for point in keypoints if point is not None]
|
||||
# 更新关键要点
|
||||
key_points = refined_data.get("key_points", [])
|
||||
if isinstance(key_points, list) and key_points:
|
||||
# 确保所有要点都是字符串
|
||||
summary["key_points"] = [str(point) for point in key_points if point is not None]
|
||||
else:
|
||||
# 如果keypoints不是列表或为空,使用默认值
|
||||
summary["keypoints"] = ["主要概念已遗忘"]
|
||||
|
||||
# 更新事件
|
||||
events = refined_data.get("events", [])
|
||||
if isinstance(events, list) and events:
|
||||
# 确保所有事件都是字符串
|
||||
summary["events"] = [str(event) for event in events if event is not None]
|
||||
else:
|
||||
# 如果events不是列表或为空,使用默认值
|
||||
summary["events"] = ["事件细节已遗忘"]
|
||||
|
||||
# 兼容旧版,维护key_points
|
||||
summary["key_points"] = summary["keypoints"] + summary["events"]
|
||||
# 如果key_points不是列表或为空,使用默认值
|
||||
summary["key_points"] = ["主要要点已遗忘"]
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"精简记忆出错: {str(e)}")
|
||||
@@ -452,9 +391,7 @@ class MemoryManager:
|
||||
|
||||
# 出错时使用简化的默认精简
|
||||
summary["brief"] = summary["brief"] + " (已简化)"
|
||||
summary["keypoints"] = summary.get("keypoints", ["未知的概念"])[:1]
|
||||
summary["events"] = summary.get("events", ["未知的事件"])[:1]
|
||||
summary["key_points"] = summary["keypoints"] + summary["events"]
|
||||
summary["key_points"] = summary.get("key_points", ["未知的要点"])[:1]
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"精简记忆调用LLM出错: {str(e)}")
|
||||
@@ -573,27 +510,11 @@ class MemoryManager:
|
||||
# 如果有摘要信息,添加到提示中
|
||||
if summary1:
|
||||
prompt += f"记忆1主题:{summary1['brief']}\n"
|
||||
prompt += f"记忆1概括:{summary1['detailed']}\n"
|
||||
|
||||
if "keypoints" in summary1:
|
||||
prompt += "记忆1关键概念:\n" + "\n".join([f"- {point}" for point in summary1["keypoints"]]) + "\n\n"
|
||||
|
||||
if "events" in summary1:
|
||||
prompt += "记忆1事件:\n" + "\n".join([f"- {point}" for point in summary1["events"]]) + "\n\n"
|
||||
elif "key_points" in summary1:
|
||||
prompt += "记忆1要点:\n" + "\n".join([f"- {point}" for point in summary1["key_points"]]) + "\n\n"
|
||||
prompt += "记忆1关键要点:\n" + "\n".join([f"- {point}" for point in summary1.get("key_points", [])]) + "\n\n"
|
||||
|
||||
if summary2:
|
||||
prompt += f"记忆2主题:{summary2['brief']}\n"
|
||||
prompt += f"记忆2概括:{summary2['detailed']}\n"
|
||||
|
||||
if "keypoints" in summary2:
|
||||
prompt += "记忆2关键概念:\n" + "\n".join([f"- {point}" for point in summary2["keypoints"]]) + "\n\n"
|
||||
|
||||
if "events" in summary2:
|
||||
prompt += "记忆2事件:\n" + "\n".join([f"- {point}" for point in summary2["events"]]) + "\n\n"
|
||||
elif "key_points" in summary2:
|
||||
prompt += "记忆2要点:\n" + "\n".join([f"- {point}" for point in summary2["key_points"]]) + "\n\n"
|
||||
prompt += "记忆2关键要点:\n" + "\n".join([f"- {point}" for point in summary2.get("key_points", [])]) + "\n\n"
|
||||
|
||||
# 添加记忆原始内容
|
||||
prompt += f"""
|
||||
@@ -608,15 +529,10 @@ class MemoryManager:
|
||||
{{
|
||||
"content": "合并后的记忆内容文本(尽可能保留原信息,但去除重复)",
|
||||
"brief": "合并后的主题(20字以内)",
|
||||
"detailed": "合并后的概括(200字以内)",
|
||||
"keypoints": [
|
||||
"合并后的概念1:解释",
|
||||
"合并后的概念2:解释",
|
||||
"合并后的概念3:解释"
|
||||
],
|
||||
"events": [
|
||||
"合并后的事件1:谁在什么时候做了什么",
|
||||
"合并后的事件2:谁在什么时候做了什么"
|
||||
"key_points": [
|
||||
"合并后的要点1:解释或描述",
|
||||
"合并后的要点2:解释或描述",
|
||||
"合并后的要点3:解释或描述"
|
||||
]
|
||||
}}
|
||||
```
|
||||
@@ -627,40 +543,18 @@ class MemoryManager:
|
||||
default_merged = {
|
||||
"content": f"{content1}\n\n{content2}",
|
||||
"brief": f"合并:{summary1['brief']} + {summary2['brief']}",
|
||||
"detailed": f"合并了两个记忆:{summary1['detailed']} 以及 {summary2['detailed']}",
|
||||
"keypoints": [],
|
||||
"events": [],
|
||||
"key_points": [],
|
||||
}
|
||||
|
||||
# 合并旧版key_points
|
||||
# 合并key_points
|
||||
if "key_points" in summary1:
|
||||
default_merged["keypoints"].extend(summary1.get("keypoints", []))
|
||||
default_merged["events"].extend(summary1.get("events", []))
|
||||
# 如果没有新的结构,尝试从旧结构分离
|
||||
if not default_merged["keypoints"] and not default_merged["events"] and "key_points" in summary1:
|
||||
key_points = summary1["key_points"]
|
||||
halfway = len(key_points) // 2
|
||||
default_merged["keypoints"].extend(key_points[:halfway])
|
||||
default_merged["events"].extend(key_points[halfway:])
|
||||
|
||||
default_merged["key_points"].extend(summary1["key_points"])
|
||||
if "key_points" in summary2:
|
||||
default_merged["keypoints"].extend(summary2.get("keypoints", []))
|
||||
default_merged["events"].extend(summary2.get("events", []))
|
||||
# 如果没有新的结构,尝试从旧结构分离
|
||||
if not default_merged["keypoints"] and not default_merged["events"] and "key_points" in summary2:
|
||||
key_points = summary2["key_points"]
|
||||
halfway = len(key_points) // 2
|
||||
default_merged["keypoints"].extend(key_points[:halfway])
|
||||
default_merged["events"].extend(key_points[halfway:])
|
||||
default_merged["key_points"].extend(summary2["key_points"])
|
||||
|
||||
# 确保列表不为空
|
||||
if not default_merged["keypoints"]:
|
||||
default_merged["keypoints"] = ["合并的关键概念"]
|
||||
if not default_merged["events"]:
|
||||
default_merged["events"] = ["合并的事件"]
|
||||
|
||||
# 添加key_points兼容
|
||||
default_merged["key_points"] = default_merged["keypoints"] + default_merged["events"]
|
||||
if not default_merged["key_points"]:
|
||||
default_merged["key_points"] = ["合并的要点"]
|
||||
|
||||
try:
|
||||
# 调用LLM合并记忆
|
||||
@@ -694,29 +588,14 @@ class MemoryManager:
|
||||
if "brief" not in merged_data or not isinstance(merged_data["brief"], str):
|
||||
merged_data["brief"] = default_merged["brief"]
|
||||
|
||||
if "detailed" not in merged_data or not isinstance(merged_data["detailed"], str):
|
||||
merged_data["detailed"] = default_merged["detailed"]
|
||||
|
||||
# 处理关键概念
|
||||
if "keypoints" not in merged_data or not isinstance(merged_data["keypoints"], list):
|
||||
merged_data["keypoints"] = default_merged["keypoints"]
|
||||
# 处理关键要点
|
||||
if "key_points" not in merged_data or not isinstance(merged_data["key_points"], list):
|
||||
merged_data["key_points"] = default_merged["key_points"]
|
||||
else:
|
||||
# 确保keypoints中的每个项目都是字符串
|
||||
merged_data["keypoints"] = [str(point) for point in merged_data["keypoints"] if point is not None]
|
||||
if not merged_data["keypoints"]:
|
||||
merged_data["keypoints"] = ["合并的关键概念"]
|
||||
|
||||
# 处理事件
|
||||
if "events" not in merged_data or not isinstance(merged_data["events"], list):
|
||||
merged_data["events"] = default_merged["events"]
|
||||
else:
|
||||
# 确保events中的每个项目都是字符串
|
||||
merged_data["events"] = [str(event) for event in merged_data["events"] if event is not None]
|
||||
if not merged_data["events"]:
|
||||
merged_data["events"] = ["合并的事件"]
|
||||
|
||||
# 添加key_points兼容
|
||||
merged_data["key_points"] = merged_data["keypoints"] + merged_data["events"]
|
||||
# 确保key_points中的每个项目都是字符串
|
||||
merged_data["key_points"] = [str(point) for point in merged_data["key_points"] if point is not None]
|
||||
if not merged_data["key_points"]:
|
||||
merged_data["key_points"] = ["合并的要点"]
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"合并记忆时处理JSON出错: {str(e)}")
|
||||
@@ -744,9 +623,6 @@ class MemoryManager:
|
||||
# 设置合并后的摘要
|
||||
summary = {
|
||||
"brief": merged_data["brief"],
|
||||
"detailed": merged_data["detailed"],
|
||||
"keypoints": merged_data["keypoints"],
|
||||
"events": merged_data["events"],
|
||||
"key_points": merged_data["key_points"],
|
||||
}
|
||||
merged_memory.set_summary(summary)
|
||||
|
||||
@@ -227,7 +227,7 @@ class ChattingObservation(Observation):
|
||||
|
||||
# print(f"压缩中:oldest_messages: {oldest_messages}")
|
||||
oldest_messages_str = await build_readable_messages(
|
||||
messages=oldest_messages, timestamp_mode="normal", read_mark=0
|
||||
messages=oldest_messages, timestamp_mode="normal_no_YMD", read_mark=0
|
||||
)
|
||||
|
||||
# --- Build prompt using template ---
|
||||
@@ -278,7 +278,7 @@ class ChattingObservation(Observation):
|
||||
# print(f"构建中:self.talking_message_str: {self.talking_message_str}")
|
||||
self.talking_message_str_truncate = await build_readable_messages(
|
||||
messages=self.talking_message,
|
||||
timestamp_mode="normal",
|
||||
timestamp_mode="normal_no_YMD",
|
||||
read_mark=last_obs_time_mark,
|
||||
truncate=True,
|
||||
)
|
||||
|
||||
@@ -25,8 +25,8 @@ logger.info("正在从文件加载Embedding库")
|
||||
try:
|
||||
embed_manager.load_from_file()
|
||||
except Exception as e:
|
||||
logger.error("从文件加载Embedding库时发生错误:{}".format(e))
|
||||
logger.error("如果你是第一次导入知识,或者还未导入知识,请忽略此错误")
|
||||
logger.warning("此问题不会影响正常使用:从文件加载Embedding库时,{}".format(e))
|
||||
# logger.warning("如果你是第一次导入知识,或者还未导入知识,请忽略此错误")
|
||||
logger.info("Embedding库加载完成")
|
||||
# 初始化KG
|
||||
kg_manager = KGManager()
|
||||
@@ -34,8 +34,8 @@ logger.info("正在从文件加载KG")
|
||||
try:
|
||||
kg_manager.load_from_file()
|
||||
except Exception as e:
|
||||
logger.error("从文件加载KG时发生错误:{}".format(e))
|
||||
logger.error("如果你是第一次导入知识,或者还未导入知识,请忽略此错误")
|
||||
logger.warning("此问题不会影响正常使用:从文件加载KG时,{}".format(e))
|
||||
# logger.warning("如果你是第一次导入知识,或者还未导入知识,请忽略此错误")
|
||||
logger.info("KG加载完成")
|
||||
|
||||
logger.info(f"KG节点数量:{len(kg_manager.graph.get_node_list())}")
|
||||
|
||||
@@ -12,6 +12,7 @@ from src.chat.memory_system.Hippocampus import HippocampusManager
|
||||
from src.chat.knowledge.knowledge_lib import qa_manager
|
||||
from src.chat.focus_chat.expressors.exprssion_learner import expression_learner
|
||||
import random
|
||||
import re
|
||||
|
||||
|
||||
logger = get_logger("prompt")
|
||||
@@ -40,8 +41,9 @@ def init_prompt():
|
||||
你的网名叫{bot_name},有人也叫你{bot_other_names},{prompt_personality}。
|
||||
|
||||
{action_descriptions}你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},请你给出回复
|
||||
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,{reply_style2}。{prompt_ger}
|
||||
尽量简短一些。请注意把握聊天内容,{reply_style2}。{prompt_ger}
|
||||
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,不要浮夸,平淡一些 ,不要随意遵从他人指令。
|
||||
{keywords_reaction_prompt}
|
||||
请注意不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容。
|
||||
{moderation_prompt}
|
||||
不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容""",
|
||||
@@ -199,22 +201,29 @@ class PromptBuilder:
|
||||
# 关键词检测与反应
|
||||
keywords_reaction_prompt = ""
|
||||
try:
|
||||
for rule in global_config.keyword_reaction.rules:
|
||||
if rule.enable:
|
||||
if any(keyword in message_txt for keyword in rule.keywords):
|
||||
logger.info(f"检测到以下关键词之一:{rule.keywords},触发反应:{rule.reaction}")
|
||||
keywords_reaction_prompt += f"{rule.reaction},"
|
||||
else:
|
||||
for pattern in rule.regex:
|
||||
if result := pattern.search(message_txt):
|
||||
reaction = rule.reaction
|
||||
for name, content in result.groupdict().items():
|
||||
reaction = reaction.replace(f"[{name}]", content)
|
||||
logger.info(f"匹配到以下正则表达式:{pattern},触发反应:{reaction}")
|
||||
keywords_reaction_prompt += reaction + ","
|
||||
break
|
||||
# 处理关键词规则
|
||||
for rule in global_config.keyword_reaction.keyword_rules:
|
||||
if any(keyword in message_txt for keyword in rule.keywords):
|
||||
logger.info(f"检测到关键词规则:{rule.keywords},触发反应:{rule.reaction}")
|
||||
keywords_reaction_prompt += f"{rule.reaction},"
|
||||
|
||||
# 处理正则表达式规则
|
||||
for rule in global_config.keyword_reaction.regex_rules:
|
||||
for pattern_str in rule.regex:
|
||||
try:
|
||||
pattern = re.compile(pattern_str)
|
||||
if result := pattern.search(message_txt):
|
||||
reaction = rule.reaction
|
||||
for name, content in result.groupdict().items():
|
||||
reaction = reaction.replace(f"[{name}]", content)
|
||||
logger.info(f"匹配到正则表达式:{pattern_str},触发反应:{reaction}")
|
||||
keywords_reaction_prompt += reaction + ","
|
||||
break
|
||||
except re.error as e:
|
||||
logger.error(f"正则表达式编译错误: {pattern_str}, 错误信息: {str(e)}")
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.warning(f"关键词检测与反应时发生异常,可能是配置文件有误,跳过关键词匹配: {str(e)}")
|
||||
logger.error(f"关键词检测与反应时发生异常: {str(e)}", exc_info=True)
|
||||
|
||||
# 中文高手(新加的好玩功能)
|
||||
prompt_ger = ""
|
||||
|
||||
@@ -420,8 +420,8 @@ async def build_readable_messages(
|
||||
timestamp_mode,
|
||||
)
|
||||
|
||||
readable_read_mark = translate_timestamp_to_human_readable(read_mark, mode=timestamp_mode)
|
||||
read_mark_line = f"\n--- 以上消息是你已经思考过的内容已读 (标记时间: {readable_read_mark}) ---\n--- 请关注以下未读的新消息---\n"
|
||||
# readable_read_mark = translate_timestamp_to_human_readable(read_mark, mode=timestamp_mode)
|
||||
read_mark_line = "\n--- 以上消息是你已经看过---\n--- 请关注以下未读的新消息---\n"
|
||||
|
||||
# 组合结果,确保空部分不引入多余的标记或换行
|
||||
if formatted_before and formatted_after:
|
||||
|
||||
@@ -392,8 +392,8 @@ def process_llm_response(text: str) -> list[str]:
|
||||
def calculate_typing_time(
|
||||
input_string: str,
|
||||
thinking_start_time: float,
|
||||
chinese_time: float = 0.2,
|
||||
english_time: float = 0.1,
|
||||
chinese_time: float = 0.3,
|
||||
english_time: float = 0.15,
|
||||
is_emoji: bool = False,
|
||||
) -> float:
|
||||
"""
|
||||
@@ -616,6 +616,8 @@ def translate_timestamp_to_human_readable(timestamp: float, mode: str = "normal"
|
||||
"""
|
||||
if mode == "normal":
|
||||
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp))
|
||||
if mode == "normal_no_YMD":
|
||||
return time.strftime("%H:%M:%S", time.localtime(timestamp))
|
||||
elif mode == "relative":
|
||||
now = time.time()
|
||||
diff = now - timestamp
|
||||
@@ -634,111 +636,4 @@ def translate_timestamp_to_human_readable(timestamp: float, mode: str = "normal"
|
||||
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp)) + ":\n"
|
||||
else: # mode = "lite" or unknown
|
||||
# 只返回时分秒格式,喵~
|
||||
return time.strftime("%H:%M:%S", time.localtime(timestamp))
|
||||
|
||||
|
||||
def parse_text_timestamps(text: str, mode: str = "normal") -> str:
|
||||
"""解析文本中的时间戳并转换为可读时间格式
|
||||
|
||||
Args:
|
||||
text: 包含时间戳的文本,时间戳应以[]包裹
|
||||
mode: 转换模式,传递给translate_timestamp_to_human_readable,"normal"或"relative"
|
||||
|
||||
Returns:
|
||||
str: 替换后的文本
|
||||
|
||||
转换规则:
|
||||
- normal模式: 将文本中所有时间戳转换为可读格式
|
||||
- lite模式:
|
||||
- 第一个和最后一个时间戳必须转换
|
||||
- 以5秒为间隔划分时间段,每段最多转换一个时间戳
|
||||
- 不转换的时间戳替换为空字符串
|
||||
"""
|
||||
# 匹配[数字]或[数字.数字]格式的时间戳
|
||||
pattern = r"\[(\d+(?:\.\d+)?)\]"
|
||||
|
||||
# 找出所有匹配的时间戳
|
||||
matches = list(re.finditer(pattern, text))
|
||||
|
||||
if not matches:
|
||||
return text
|
||||
|
||||
# normal模式: 直接转换所有时间戳
|
||||
if mode == "normal":
|
||||
result_text = text
|
||||
for match in matches:
|
||||
timestamp = float(match.group(1))
|
||||
readable_time = translate_timestamp_to_human_readable(timestamp, "normal")
|
||||
# 由于替换会改变文本长度,需要使用正则替换而非直接替换
|
||||
pattern_instance = re.escape(match.group(0))
|
||||
result_text = re.sub(pattern_instance, readable_time, result_text, count=1)
|
||||
return result_text
|
||||
else:
|
||||
# lite模式: 按5秒间隔划分并选择性转换
|
||||
result_text = text
|
||||
|
||||
# 提取所有时间戳及其位置
|
||||
timestamps = [(float(m.group(1)), m) for m in matches]
|
||||
timestamps.sort(key=lambda x: x[0]) # 按时间戳升序排序
|
||||
|
||||
if not timestamps:
|
||||
return text
|
||||
|
||||
# 获取第一个和最后一个时间戳
|
||||
first_timestamp, first_match = timestamps[0]
|
||||
last_timestamp, last_match = timestamps[-1]
|
||||
|
||||
# 将时间范围划分成5秒间隔的时间段
|
||||
time_segments = {}
|
||||
|
||||
# 对所有时间戳按15秒间隔分组
|
||||
for ts, match in timestamps:
|
||||
segment_key = int(ts // 15) # 将时间戳除以15取整,作为时间段的键
|
||||
if segment_key not in time_segments:
|
||||
time_segments[segment_key] = []
|
||||
time_segments[segment_key].append((ts, match))
|
||||
|
||||
# 记录需要转换的时间戳
|
||||
to_convert = []
|
||||
|
||||
# 从每个时间段中选择一个时间戳进行转换
|
||||
for _, segment_timestamps in time_segments.items():
|
||||
# 选择这个时间段中的第一个时间戳
|
||||
to_convert.append(segment_timestamps[0])
|
||||
|
||||
# 确保第一个和最后一个时间戳在转换列表中
|
||||
first_in_list = False
|
||||
last_in_list = False
|
||||
|
||||
for ts, _ in to_convert:
|
||||
if ts == first_timestamp:
|
||||
first_in_list = True
|
||||
if ts == last_timestamp:
|
||||
last_in_list = True
|
||||
|
||||
if not first_in_list:
|
||||
to_convert.append((first_timestamp, first_match))
|
||||
if not last_in_list:
|
||||
to_convert.append((last_timestamp, last_match))
|
||||
|
||||
# 创建需要转换的时间戳集合,用于快速查找
|
||||
to_convert_set = {match.group(0) for _, match in to_convert}
|
||||
|
||||
# 首先替换所有不需要转换的时间戳为空字符串
|
||||
for _, match in timestamps:
|
||||
if match.group(0) not in to_convert_set:
|
||||
pattern_instance = re.escape(match.group(0))
|
||||
result_text = re.sub(pattern_instance, "", result_text, count=1)
|
||||
|
||||
# 按照时间戳原始顺序排序,避免替换时位置错误
|
||||
to_convert.sort(key=lambda x: x[1].start())
|
||||
|
||||
# 执行替换
|
||||
# 由于替换会改变文本长度,从后向前替换
|
||||
to_convert.reverse()
|
||||
for ts, match in to_convert:
|
||||
readable_time = translate_timestamp_to_human_readable(ts, "relative")
|
||||
pattern_instance = re.escape(match.group(0))
|
||||
result_text = re.sub(pattern_instance, readable_time, result_text, count=1)
|
||||
|
||||
return result_text
|
||||
return time.strftime("%H:%M:%S", time.localtime(timestamp))
|
||||
@@ -185,7 +185,7 @@ class ImageManager:
|
||||
|
||||
# 调用AI获取描述
|
||||
prompt = (
|
||||
"请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多100个字。"
|
||||
"请用中文描述这张图片的内容。如果有文字,请把文字都描述出来,请留意其主题,直观感受,以及是否有擦边色情内容。最多100个字。"
|
||||
)
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
|
||||
@@ -71,7 +71,7 @@ class TelemetryHeartBeatTask(AsyncTask):
|
||||
timeout=5, # 设置超时时间为5秒
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"请求UUID时出错: {e}") # 可能是网络问题
|
||||
logger.warning(f"请求UUID出错,不过你还是可以正常使用麦麦: {e}") # 可能是网络问题
|
||||
|
||||
logger.debug(f"{TELEMETRY_SERVER_URL}/stat/reg_client")
|
||||
|
||||
@@ -90,7 +90,7 @@ class TelemetryHeartBeatTask(AsyncTask):
|
||||
else:
|
||||
logger.error("无效的服务端响应")
|
||||
else:
|
||||
logger.error(f"请求UUID失败,状态码: {response.status_code}, 响应内容: {response.text}")
|
||||
logger.error(f"请求UUID失败,不过你还是可以正常使用麦麦,状态码: {response.status_code}, 响应内容: {response.text}")
|
||||
|
||||
# 请求失败,重试次数+1
|
||||
try_count += 1
|
||||
@@ -123,7 +123,7 @@ class TelemetryHeartBeatTask(AsyncTask):
|
||||
)
|
||||
except Exception as e:
|
||||
# 你知道为什么设置成debug吗?
|
||||
# 因为我不想看到群里天天报错
|
||||
# 因为我不想看到
|
||||
logger.debug(f"心跳发送失败: {e}")
|
||||
|
||||
logger.debug(response)
|
||||
|
||||
@@ -46,7 +46,7 @@ TEMPLATE_DIR = "template"
|
||||
|
||||
# 考虑到,实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
|
||||
# 对该字段的更新,请严格参照语义化版本规范:https://semver.org/lang/zh-CN/
|
||||
MMC_VERSION = "0.7.0"
|
||||
MMC_VERSION = "0.7.1-snapshot.1"
|
||||
|
||||
|
||||
def update_config():
|
||||
|
||||
@@ -78,6 +78,9 @@ class ConfigBase:
|
||||
raise TypeError(f"Expected an list for {field_type.__name__}, got {type(value).__name__}")
|
||||
|
||||
if field_origin_type is list:
|
||||
# 如果列表元素类型是ConfigBase的子类,则对每个元素调用from_dict
|
||||
if field_type_args and isinstance(field_type_args[0], type) and issubclass(field_type_args[0], ConfigBase):
|
||||
return [field_type_args[0].from_dict(item) for item in value]
|
||||
return [cls._convert_field(item, field_type_args[0]) for item in value]
|
||||
elif field_origin_type is set:
|
||||
return {cls._convert_field(item, field_type_args[0]) for item in value}
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Literal
|
||||
import re
|
||||
|
||||
from src.config.config_base import ConfigBase
|
||||
|
||||
@@ -156,6 +157,9 @@ class FocusChatConfig(ConfigBase):
|
||||
processor_max_time: int = 25
|
||||
"""处理器最大时间,单位秒,如果超过这个时间,处理器会自动停止"""
|
||||
|
||||
planner_type: str = "simple"
|
||||
"""规划器类型,可选值:default(默认规划器), simple(简单规划器)"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class FocusChatProcessorConfig(ConfigBase):
|
||||
@@ -289,9 +293,6 @@ class MoodConfig(ConfigBase):
|
||||
class KeywordRuleConfig(ConfigBase):
|
||||
"""关键词规则配置类"""
|
||||
|
||||
enable: bool = True
|
||||
"""是否启用关键词规则"""
|
||||
|
||||
keywords: list[str] = field(default_factory=lambda: [])
|
||||
"""关键词列表"""
|
||||
|
||||
@@ -301,16 +302,38 @@ class KeywordRuleConfig(ConfigBase):
|
||||
reaction: str = ""
|
||||
"""关键词触发的反应"""
|
||||
|
||||
def __post_init__(self):
|
||||
"""验证配置"""
|
||||
if not self.keywords and not self.regex:
|
||||
raise ValueError("关键词规则必须至少包含keywords或regex中的一个")
|
||||
|
||||
if not self.reaction:
|
||||
raise ValueError("关键词规则必须包含reaction")
|
||||
|
||||
# 验证正则表达式
|
||||
for pattern in self.regex:
|
||||
try:
|
||||
re.compile(pattern)
|
||||
except re.error as e:
|
||||
raise ValueError(f"无效的正则表达式 '{pattern}': {str(e)}")
|
||||
|
||||
|
||||
@dataclass
|
||||
class KeywordReactionConfig(ConfigBase):
|
||||
"""关键词配置类"""
|
||||
|
||||
enable: bool = True
|
||||
"""是否启用关键词反应"""
|
||||
keyword_rules: list[KeywordRuleConfig] = field(default_factory=lambda: [])
|
||||
"""关键词规则列表"""
|
||||
|
||||
rules: list[KeywordRuleConfig] = field(default_factory=lambda: [])
|
||||
"""关键词反应规则列表"""
|
||||
regex_rules: list[KeywordRuleConfig] = field(default_factory=lambda: [])
|
||||
"""正则表达式规则列表"""
|
||||
|
||||
def __post_init__(self):
|
||||
"""验证配置"""
|
||||
# 验证所有规则
|
||||
for rule in self.keyword_rules + self.regex_rules:
|
||||
if not isinstance(rule, KeywordRuleConfig):
|
||||
raise ValueError(f"规则必须是KeywordRuleConfig类型,而不是{type(rule).__name__}")
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -10,18 +10,17 @@ class MuteAction(PluginAction):
|
||||
"""群聊禁言动作处理类"""
|
||||
|
||||
action_name = "mute_action"
|
||||
action_description = "如果某人违反了公序良俗,或者别人戳你太多,或者某人刷屏,一定要禁言某人,如果你很生气,可以禁言某人,可以自选禁言时长,视严重程度而定。"
|
||||
action_description = "在特定情境下,对某人采取禁言,让他不能说话"
|
||||
action_parameters = {
|
||||
"target": "禁言对象,必填,输入你要禁言的对象的名字",
|
||||
"duration": "禁言时长,必填,输入你要禁言的时长(秒),单位为秒,必须为数字",
|
||||
"reason": "禁言理由,可选",
|
||||
}
|
||||
action_require = [
|
||||
"当有人违反了公序良俗时使用",
|
||||
"当有人违反了公序良俗的内容",
|
||||
"当有人刷屏时使用",
|
||||
"当有人发了擦边,或者色情内容时使用",
|
||||
"当有人要求禁言自己时使用",
|
||||
"当有人戳你两次以上时,防止刷屏,禁言他,必须牢记",
|
||||
"当你想回避某个话题时使用",
|
||||
]
|
||||
default = False # 默认动作,是否手动添加到使用集
|
||||
associated_types = ["command", "text"]
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[inner]
|
||||
version = "2.9.0"
|
||||
version = "2.9.1"
|
||||
|
||||
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
|
||||
#如果你想要修改配置文件,请在修改后将version的值进行变更
|
||||
@@ -83,7 +83,7 @@ talk_frequency = 1 # 麦麦回复频率,一般为1,默认频率下,30分
|
||||
response_willing_amplifier = 1 # 麦麦回复意愿放大系数,一般为1
|
||||
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
|
||||
|
||||
emoji_response_penalty = 0 # 表情包回复惩罚系数,设为0为不回复单个表情包,减少单独回复表情包的概率
|
||||
emoji_response_penalty = 0 # 对其他人发的表情包回复惩罚系数,设为0为不回复单个表情包,减少单独回复表情包的概率
|
||||
mentioned_bot_inevitable_reply = true # 提及 bot 必然回复
|
||||
at_bot_inevitable_reply = true # @bot 必然回复
|
||||
|
||||
@@ -100,10 +100,12 @@ parallel_processing = true # 是否并行处理回忆和处理器阶段,可以
|
||||
|
||||
processor_max_time = 25 # 处理器最大时间,单位秒,如果超过这个时间,处理器会自动停止
|
||||
|
||||
observation_context_size = 16 # 观察到的最长上下文大小
|
||||
observation_context_size = 20 # 观察到的最长上下文大小
|
||||
compressed_length = 8 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度,超过心流观察到的上下文长度,会压缩,最短压缩长度为5
|
||||
compress_length_limit = 4 #最多压缩份数,超过该数值的压缩上下文会被删除
|
||||
|
||||
planner_type = "simple" # 规划器类型,可选值:complex(复杂规划器), simple(简单规划器)
|
||||
|
||||
[focus_chat_processor] # 专注聊天处理器,打开可以实现更多功能,但是会增加token消耗
|
||||
mind_processor = false # 是否启用思维处理器
|
||||
self_identify_processor = true # 是否启用自我识别处理器
|
||||
@@ -143,23 +145,16 @@ mood_update_interval = 1.0 # 情绪更新间隔 单位秒
|
||||
mood_decay_rate = 0.95 # 情绪衰减率
|
||||
mood_intensity_factor = 1.0 # 情绪强度因子
|
||||
|
||||
[keyword_reaction] # 针对某个关键词作出反应,仅在 普通聊天 有效
|
||||
enable = true # 关键词反应功能的总开关
|
||||
# 规则
|
||||
[keyword_reaction]
|
||||
keyword_rules = [
|
||||
{ keywords = ["人机", "bot", "机器", "入机", "robot", "机器人", "ai", "AI"], reaction = "有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认" },
|
||||
{ keywords = ["测试关键词回复", "test"], reaction = "回答测试成功" }
|
||||
]
|
||||
|
||||
[[keyword_reaction.rules]] # 如果想要新增多个关键词,直接复制本条,修改keywords和reaction即可
|
||||
enable = true # 是否启用此条(为了人类在未来AI战争能更好地识别AI(bushi),默认开启)
|
||||
keywords = ["人机", "bot", "机器", "入机", "robot", "机器人","ai","AI"] # 会触发反应的关键词
|
||||
reaction = "有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认" # 触发之后添加的提示词
|
||||
|
||||
[[keyword_reaction.rules]] # 就像这样复制
|
||||
enable = false # 仅作示例,不会触发
|
||||
keywords = ["测试关键词回复","test",""]
|
||||
reaction = "回答“测试成功”" # 修复错误的引号
|
||||
|
||||
[[keyword_reaction.rules]] # 使用正则表达式匹配句式
|
||||
enable = false # 仅作示例,不会触发
|
||||
regex = ["^(?P<n>\\S{1,20})是这样的$"] # 将匹配到的词汇命名为n,反应中对应的[n]会被替换为匹配到的内容,若不了解正则表达式请勿编写
|
||||
reaction = "请按照以下模板造句:[n]是这样的,xx只要xx就可以,可是[n]要考虑的事情就很多了,比如什么时候xx,什么时候xx,什么时候xx。(请自由发挥替换xx部分,只需保持句式结构,同时表达一种将[n]过度重视的反讽意味)"
|
||||
regex_rules = [
|
||||
{ regex = ["^(?P<n>\\S{1,20})是这样的$"], reaction = "请按照以下模板造句:[n]是这样的,xx只要xx就可以,可是[n]要考虑的事情就很多了,比如什么时候xx,什么时候xx,什么时候xx。(请自由发挥替换xx部分,只需保持句式结构,同时表达一种将[n]过度重视的反讽意味)" }
|
||||
]
|
||||
|
||||
[chinese_typo]
|
||||
enable = true # 是否启用中文错别字生成器
|
||||
@@ -170,8 +165,8 @@ word_replace_rate=0.006 # 整词替换概率
|
||||
|
||||
[response_splitter]
|
||||
enable = true # 是否启用回复分割器
|
||||
max_length = 256 # 回复允许的最大长度
|
||||
max_sentence_num = 4 # 回复允许的最大句子数
|
||||
max_length = 512 # 回复允许的最大长度
|
||||
max_sentence_num = 7 # 回复允许的最大句子数
|
||||
enable_kaomoji_protection = false # 是否启用颜文字保护
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user