refactor(video): 视频分析模块重构为纯 inkfox 实现
将视频分析模块 `utils_video.py` 完全重构,移除旧的 rust_video 模块和 Python/OpenCV 降级实现,统一使用 `inkfox.video` 库提供的 Rust 扩展能力。 主要变更: - **依赖简化**: 移除对 `rust_video` 和 `opencv-python` 的依赖,仅依赖 `inkfox`。 - **代码重构**: 删除大量冗余代码,包括旧的 Rust 模块接口、Python 降级逻辑、复杂的并发控制和多种抽帧模式。 - **性能统一**: 关键帧提取统一使用 `inkfox.video.extract_keyframes_from_video`,确保所有环境下的性能一致性。 - **逻辑简化**: 简化了缓存逻辑、并发控制和配置项,使代码更清晰、更易于维护。 - **API 统一**: `_select_model` 和 `_execute_request` 方法调用更新,以适应 `LLMRequest` 的最新接口。 - **文档更新**: 更新了模块文档字符串,以反映新的实现和功能。
This commit is contained in:
committed by
Windpicker-owo
parent
dccf1cffc9
commit
7426c7ae55
@@ -245,7 +245,7 @@ class BilibiliVideoAnalyzer:
|
||||
logger.exception("详细错误信息:")
|
||||
return None
|
||||
|
||||
async def analyze_bilibili_video(self, url: str, prompt: str = None) -> dict[str, Any]:
|
||||
async def analyze_bilibili_video(self, url: str, prompt: str | None = None) -> dict[str, Any]:
|
||||
"""分析哔哩哔哩视频并返回详细信息和AI分析结果"""
|
||||
try:
|
||||
logger.info(f"🎬 开始分析哔哩哔哩视频: {url}")
|
||||
|
||||
@@ -1,9 +1,17 @@
|
||||
#!/usr/bin/env python3
|
||||
"""纯 inkfox 视频关键帧分析工具
|
||||
|
||||
仅依赖 `inkfox.video` 提供的 Rust 扩展能力:
|
||||
- extract_keyframes_from_video
|
||||
- get_system_info
|
||||
|
||||
功能:
|
||||
- 关键帧提取 (base64, timestamp)
|
||||
- 批量 / 逐帧 LLM 描述
|
||||
- 自动模式 (<=3 帧批量,否则逐帧)
|
||||
"""
|
||||
视频分析器模块 - Rust优化版本
|
||||
集成了Rust视频关键帧提取模块,提供高性能的视频分析功能
|
||||
支持SIMD优化、多线程处理和智能关键帧检测
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
@@ -16,39 +24,24 @@ import os
|
||||
import tempfile
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy import exc as sa_exc # type: ignore
|
||||
from sqlalchemy import insert, select, update # type: ignore
|
||||
|
||||
from src.common.database.sqlalchemy_models import Videos, get_db_session
|
||||
from src.common.database.sqlalchemy_models import Videos, get_db_session # type: ignore
|
||||
from src.common.logger import get_logger
|
||||
from src.config.config import global_config, model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
|
||||
# 简易并发控制:同一 hash 只处理一次
|
||||
_video_locks: dict[str, asyncio.Lock] = {}
|
||||
_locks_guard = asyncio.Lock()
|
||||
|
||||
logger = get_logger("utils_video")
|
||||
|
||||
# Rust模块可用性检测
|
||||
RUST_VIDEO_AVAILABLE = False
|
||||
try:
|
||||
import rust_video # pyright: ignore[reportMissingImports]
|
||||
|
||||
RUST_VIDEO_AVAILABLE = True
|
||||
logger.info("✅ Rust 视频处理模块加载成功")
|
||||
except ImportError as e:
|
||||
logger.warning(f"⚠️ Rust 视频处理模块加载失败: {e}")
|
||||
logger.warning("⚠️ 视频识别功能将自动禁用")
|
||||
except Exception as e:
|
||||
logger.error(f"❌ 加载Rust模块时发生错误: {e}")
|
||||
RUST_VIDEO_AVAILABLE = False
|
||||
|
||||
# 全局正在处理的视频哈希集合,用于防止重复处理
|
||||
processing_videos = set()
|
||||
processing_lock = asyncio.Lock()
|
||||
# 为每个视频hash创建独立的锁和事件
|
||||
video_locks = {}
|
||||
video_events = {}
|
||||
video_lock_manager = asyncio.Lock()
|
||||
from inkfox import video
|
||||
|
||||
|
||||
class VideoAnalyzer:
|
||||
@@ -68,59 +61,10 @@ class VideoAnalyzer:
|
||||
|
||||
# 人格与提示模板
|
||||
try:
|
||||
import cv2
|
||||
|
||||
opencv_available = True
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
if not RUST_VIDEO_AVAILABLE and not opencv_available:
|
||||
logger.error("❌ 没有可用的视频处理实现,视频分析器将被禁用")
|
||||
self.disabled = True
|
||||
return
|
||||
elif not RUST_VIDEO_AVAILABLE:
|
||||
logger.warning("⚠️ Rust视频处理模块不可用,将使用Python降级实现")
|
||||
elif not opencv_available:
|
||||
logger.warning("⚠️ OpenCV不可用,仅支持Rust关键帧模式")
|
||||
|
||||
self.disabled = False
|
||||
|
||||
# 使用专用的视频分析配置
|
||||
try:
|
||||
self.video_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.video_analysis, request_type="video_analysis"
|
||||
)
|
||||
logger.debug("✅ 使用video_analysis模型配置")
|
||||
except (AttributeError, KeyError) as e:
|
||||
# 如果video_analysis不存在,使用vlm配置
|
||||
self.video_llm = LLMRequest(model_set=model_config.model_task_config.vlm, request_type="vlm")
|
||||
logger.warning(f"video_analysis配置不可用({e}),回退使用vlm配置")
|
||||
|
||||
# 从配置文件读取参数,如果配置不存在则使用默认值
|
||||
config = global_config.video_analysis
|
||||
|
||||
# 使用 getattr 统一获取配置参数,如果配置不存在则使用默认值
|
||||
self.max_frames = getattr(config, "max_frames", 6)
|
||||
self.frame_quality = getattr(config, "frame_quality", 85)
|
||||
self.max_image_size = getattr(config, "max_image_size", 600)
|
||||
self.enable_frame_timing = getattr(config, "enable_frame_timing", True)
|
||||
|
||||
# Rust模块相关配置
|
||||
self.rust_keyframe_threshold = getattr(config, "rust_keyframe_threshold", 2.0)
|
||||
self.rust_use_simd = getattr(config, "rust_use_simd", True)
|
||||
self.rust_block_size = getattr(config, "rust_block_size", 8192)
|
||||
self.rust_threads = getattr(config, "rust_threads", 0)
|
||||
self.ffmpeg_path = getattr(config, "ffmpeg_path", "ffmpeg")
|
||||
|
||||
# 从personality配置中获取人格信息
|
||||
try:
|
||||
personality_config = global_config.personality
|
||||
self.personality_core = getattr(personality_config, "personality_core", "是一个积极向上的女大学生")
|
||||
self.personality_side = getattr(
|
||||
personality_config, "personality_side", "用一句话或几句话描述人格的侧面特点"
|
||||
)
|
||||
except AttributeError:
|
||||
# 如果没有personality配置,使用默认值
|
||||
persona = global_config.personality
|
||||
self.personality_core = getattr(persona, "personality_core", "是一个积极向上的女大学生")
|
||||
self.personality_side = getattr(persona, "personality_side", "用一句话或几句话描述人格的侧面特点")
|
||||
except Exception: # pragma: no cover
|
||||
self.personality_core = "是一个积极向上的女大学生"
|
||||
self.personality_side = "用一句话或几句话描述人格的侧面特点"
|
||||
|
||||
@@ -130,179 +74,17 @@ class VideoAnalyzer:
|
||||
"""请以第一人称视角阅读这些按时间顺序提取的关键帧。\n核心:{personality_core}\n人格:{personality_side}\n请详细描述视频(主题/人物与场景/动作与时间线/视觉风格/情绪氛围/特殊元素)。""",
|
||||
)
|
||||
|
||||
# 新增的线程池配置
|
||||
self.use_multiprocessing = getattr(config, "use_multiprocessing", True)
|
||||
self.max_workers = getattr(config, "max_workers", 2)
|
||||
self.frame_extraction_mode = getattr(config, "frame_extraction_mode", "fixed_number")
|
||||
self.frame_interval_seconds = getattr(config, "frame_interval_seconds", 2.0)
|
||||
|
||||
# 将配置文件中的模式映射到内部使用的模式名称
|
||||
config_mode = getattr(config, "analysis_mode", "auto")
|
||||
if config_mode == "batch_frames":
|
||||
self.analysis_mode = "batch"
|
||||
elif config_mode == "frame_by_frame":
|
||||
self.analysis_mode = "sequential"
|
||||
elif config_mode == "auto":
|
||||
self.analysis_mode = "auto"
|
||||
else:
|
||||
logger.warning(f"无效的分析模式: {config_mode},使用默认的auto模式")
|
||||
self.analysis_mode = "auto"
|
||||
|
||||
self.frame_analysis_delay = 0.3 # API调用间隔(秒)
|
||||
self.frame_interval = 1.0 # 抽帧时间间隔(秒)
|
||||
self.batch_size = 3 # 批处理时每批处理的帧数
|
||||
self.timeout = 60.0 # 分析超时时间(秒)
|
||||
|
||||
if config:
|
||||
logger.debug("✅ 从配置文件读取视频分析参数")
|
||||
else:
|
||||
logger.warning("配置文件中缺少video_analysis配置,使用默认值")
|
||||
|
||||
# 系统提示词
|
||||
self.system_prompt = "你是一个专业的视频内容分析助手。请仔细观察用户提供的视频关键帧,详细描述视频内容。"
|
||||
|
||||
logger.debug(f"✅ 视频分析器初始化完成,分析模式: {self.analysis_mode}, 线程池: {self.use_multiprocessing}")
|
||||
|
||||
# 获取Rust模块系统信息
|
||||
self._log_system_info()
|
||||
|
||||
def _log_system_info(self):
|
||||
"""记录系统信息"""
|
||||
if not RUST_VIDEO_AVAILABLE:
|
||||
logger.info("⚠️ Rust模块不可用,跳过系统信息获取")
|
||||
return
|
||||
|
||||
try:
|
||||
system_info = rust_video.get_system_info()
|
||||
logger.debug(f"🔧 系统信息: 线程数={system_info.get('threads', '未知')}")
|
||||
self.video_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.video_analysis, request_type="video_analysis"
|
||||
)
|
||||
except Exception:
|
||||
self.video_llm = LLMRequest(model_set=model_config.model_task_config.vlm, request_type="vlm")
|
||||
|
||||
# 记录CPU特性
|
||||
features = []
|
||||
if system_info.get("avx2_supported"):
|
||||
features.append("AVX2")
|
||||
if system_info.get("sse2_supported"):
|
||||
features.append("SSE2")
|
||||
if system_info.get("simd_supported"):
|
||||
features.append("SIMD")
|
||||
self._log_system()
|
||||
|
||||
if features:
|
||||
logger.debug(f"🚀 CPU特性: {', '.join(features)}")
|
||||
else:
|
||||
logger.debug("⚠️ 未检测到SIMD支持")
|
||||
|
||||
logger.debug(f"📦 Rust模块版本: {system_info.get('version', '未知')}")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"获取系统信息失败: {e}")
|
||||
|
||||
def _calculate_video_hash(self, video_data: bytes) -> str:
|
||||
"""计算视频文件的hash值"""
|
||||
hash_obj = hashlib.sha256()
|
||||
hash_obj.update(video_data)
|
||||
return hash_obj.hexdigest()
|
||||
|
||||
async def _check_video_exists(self, video_hash: str) -> Videos | None:
|
||||
"""检查视频是否已经分析过"""
|
||||
try:
|
||||
async with get_db_session() as session:
|
||||
if not session:
|
||||
logger.warning("无法获取数据库会话,跳过视频存在性检查。")
|
||||
return None
|
||||
# 明确刷新会话以确保看到其他事务的最新提交
|
||||
await session.expire_all()
|
||||
stmt = select(Videos).where(Videos.video_hash == video_hash)
|
||||
result = await session.execute(stmt)
|
||||
return result.scalar_one_or_none()
|
||||
except Exception as e:
|
||||
logger.warning(f"检查视频是否存在时出错: {e}")
|
||||
return None
|
||||
|
||||
async def _store_video_result(
|
||||
self, video_hash: str, description: str, metadata: dict | None = None
|
||||
) -> Videos | None:
|
||||
"""存储视频分析结果到数据库"""
|
||||
# 检查描述是否为错误信息,如果是则不保存
|
||||
if description.startswith("❌"):
|
||||
logger.warning(f"⚠️ 检测到错误信息,不保存到数据库: {description[:50]}...")
|
||||
return None
|
||||
|
||||
try:
|
||||
async with get_db_session() as session:
|
||||
if not session:
|
||||
logger.warning("无法获取数据库会话,跳过视频结果存储。")
|
||||
return None
|
||||
# 只根据video_hash查找
|
||||
stmt = select(Videos).where(Videos.video_hash == video_hash)
|
||||
result = await session.execute(stmt)
|
||||
existing_video = result.scalar_one_or_none()
|
||||
|
||||
if existing_video:
|
||||
# 如果已存在,更新描述和计数
|
||||
existing_video.description = description
|
||||
existing_video.count += 1
|
||||
existing_video.timestamp = time.time()
|
||||
if metadata:
|
||||
existing_video.duration = metadata.get("duration")
|
||||
existing_video.frame_count = metadata.get("frame_count")
|
||||
existing_video.fps = metadata.get("fps")
|
||||
existing_video.resolution = metadata.get("resolution")
|
||||
existing_video.file_size = metadata.get("file_size")
|
||||
await session.commit()
|
||||
await session.refresh(existing_video)
|
||||
logger.info(f"✅ 更新已存在的视频记录,hash: {video_hash[:16]}..., count: {existing_video.count}")
|
||||
return existing_video
|
||||
else:
|
||||
video_record = Videos(
|
||||
video_hash=video_hash, description=description, timestamp=time.time(), count=1
|
||||
)
|
||||
if metadata:
|
||||
video_record.duration = metadata.get("duration")
|
||||
video_record.frame_count = metadata.get("frame_count")
|
||||
video_record.fps = metadata.get("fps")
|
||||
video_record.resolution = metadata.get("resolution")
|
||||
video_record.file_size = metadata.get("file_size")
|
||||
|
||||
session.add(video_record)
|
||||
await session.commit()
|
||||
await session.refresh(video_record)
|
||||
logger.info(f"✅ 新视频分析结果已保存到数据库,hash: {video_hash[:16]}...")
|
||||
return video_record
|
||||
except Exception as e:
|
||||
logger.error(f"❌ 存储视频分析结果时出错: {e}")
|
||||
return None
|
||||
|
||||
def set_analysis_mode(self, mode: str):
|
||||
"""设置分析模式"""
|
||||
if mode in ["batch", "sequential", "auto"]:
|
||||
self.analysis_mode = mode
|
||||
# logger.info(f"分析模式已设置为: {mode}")
|
||||
else:
|
||||
logger.warning(f"无效的分析模式: {mode}")
|
||||
|
||||
async def extract_frames(self, video_path: str) -> list[tuple[str, float]]:
|
||||
"""提取视频帧 - 智能选择最佳实现"""
|
||||
# 检查是否应该使用Rust实现
|
||||
if RUST_VIDEO_AVAILABLE and self.frame_extraction_mode == "keyframe":
|
||||
# 优先尝试Rust关键帧提取
|
||||
try:
|
||||
return await self._extract_frames_rust_advanced(video_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Rust高级接口失败: {e},尝试基础接口")
|
||||
try:
|
||||
return await self._extract_frames_rust(video_path)
|
||||
except Exception as e2:
|
||||
logger.warning(f"Rust基础接口也失败: {e2},降级到Python实现")
|
||||
return await self._extract_frames_python_fallback(video_path)
|
||||
else:
|
||||
# 使用Python实现(支持time_interval和fixed_number模式)
|
||||
if not RUST_VIDEO_AVAILABLE:
|
||||
logger.info("🔄 Rust模块不可用,使用Python抽帧实现")
|
||||
else:
|
||||
logger.info(f"🔄 抽帧模式为 {self.frame_extraction_mode},使用Python抽帧实现")
|
||||
return await self._extract_frames_python_fallback(video_path)
|
||||
|
||||
async def _extract_frames_rust_advanced(self, video_path: str) -> list[tuple[str, float]]:
|
||||
"""使用 Rust 高级接口的帧提取"""
|
||||
# ---- 系统信息 ----
|
||||
def _log_system(self) -> None:
|
||||
try:
|
||||
info = video.get_system_info() # type: ignore[attr-defined]
|
||||
logger.info(
|
||||
@@ -312,7 +94,7 @@ class VideoAnalyzer:
|
||||
logger.debug(f"获取系统信息失败: {e}")
|
||||
|
||||
# ---- 关键帧提取 ----
|
||||
async def extract_keyframes(self, video_path: str) -> List[Tuple[str, float]]:
|
||||
async def extract_keyframes(self, video_path: str) -> list[tuple[str, float]]:
|
||||
"""提取关键帧并返回 (base64, timestamp_seconds) 列表"""
|
||||
with tempfile.TemporaryDirectory() as tmp:
|
||||
result = video.extract_keyframes_from_video( # type: ignore[attr-defined]
|
||||
@@ -325,383 +107,124 @@ class VideoAnalyzer:
|
||||
threads=self.threads,
|
||||
verbose=False,
|
||||
)
|
||||
|
||||
logger.info(f"检测到 {len(keyframe_indices)} 个关键帧")
|
||||
|
||||
# 3. 转换选定的关键帧为 base64
|
||||
frames = []
|
||||
frame_count = 0
|
||||
|
||||
for idx in keyframe_indices[: self.max_frames]:
|
||||
if idx < len(frames_data):
|
||||
try:
|
||||
frame = frames_data[idx]
|
||||
frame_data = frame.get_data()
|
||||
|
||||
# 将灰度数据转换为PIL图像
|
||||
frame_array = np.frombuffer(frame_data, dtype=np.uint8).reshape((frame.height, frame.width))
|
||||
pil_image = Image.fromarray(
|
||||
frame_array,
|
||||
mode="L", # 灰度模式
|
||||
)
|
||||
|
||||
# 转换为RGB模式以便保存为JPEG
|
||||
pil_image = pil_image.convert("RGB")
|
||||
|
||||
# 调整图像大小
|
||||
if max(pil_image.size) > self.max_image_size:
|
||||
ratio = self.max_image_size / max(pil_image.size)
|
||||
new_size = tuple(int(dim * ratio) for dim in pil_image.size)
|
||||
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
|
||||
|
||||
# 转换为 base64
|
||||
buffer = io.BytesIO()
|
||||
pil_image.save(buffer, format="JPEG", quality=self.frame_quality)
|
||||
frame_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||||
|
||||
# 估算时间戳
|
||||
estimated_timestamp = frame.frame_number * (1.0 / 30.0) # 假设30fps
|
||||
|
||||
frames.append((frame_base64, estimated_timestamp))
|
||||
frame_count += 1
|
||||
|
||||
logger.debug(
|
||||
f"处理关键帧 {frame_count}: 帧号 {frame.frame_number}, 时间 {estimated_timestamp:.2f}s"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"处理关键帧 {idx} 失败: {e}")
|
||||
continue
|
||||
|
||||
logger.info(f"✅ Rust 高级提取完成: {len(frames)} 关键帧")
|
||||
files = sorted(Path(tmp).glob("keyframe_*.jpg"))[: self.max_frames]
|
||||
total_ms = getattr(result, "total_time_ms", 0)
|
||||
frames: list[tuple[str, float]] = []
|
||||
for i, f in enumerate(files):
|
||||
img = Image.open(f).convert("RGB")
|
||||
if max(img.size) > self.max_image_size:
|
||||
scale = self.max_image_size / max(img.size)
|
||||
img = img.resize((int(img.width * scale), int(img.height * scale)), Image.Resampling.LANCZOS)
|
||||
buf = io.BytesIO()
|
||||
img.save(buf, format="JPEG", quality=self.frame_quality)
|
||||
b64 = base64.b64encode(buf.getvalue()).decode()
|
||||
ts = (i / max(1, len(files) - 1)) * (total_ms / 1000.0) if total_ms else float(i)
|
||||
frames.append((b64, ts))
|
||||
return frames
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Rust 高级帧提取失败: {e}")
|
||||
# 回退到基础方法
|
||||
logger.info("回退到基础 Rust 方法")
|
||||
return await self._extract_frames_rust(video_path)
|
||||
# ---- 批量分析 ----
|
||||
async def _analyze_batch(self, frames: list[tuple[str, float]], question: str | None) -> str:
|
||||
from src.llm_models.payload_content.message import MessageBuilder
|
||||
from src.llm_models.utils_model import RequestType
|
||||
|
||||
async def _extract_frames_rust(self, video_path: str) -> list[tuple[str, float]]:
|
||||
"""使用 Rust 实现的帧提取"""
|
||||
try:
|
||||
logger.info("🔄 使用 Rust 模块提取关键帧...")
|
||||
|
||||
# 创建临时输出目录
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# 使用便捷函数进行关键帧提取,使用配置参数
|
||||
result = rust_video.extract_keyframes_from_video(
|
||||
video_path=video_path,
|
||||
output_dir=temp_dir,
|
||||
threshold=self.rust_keyframe_threshold,
|
||||
max_frames=self.max_frames * 2, # 提取更多帧以便筛选
|
||||
max_save=self.max_frames,
|
||||
ffmpeg_path=self.ffmpeg_path,
|
||||
use_simd=self.rust_use_simd,
|
||||
threads=self.rust_threads,
|
||||
verbose=False, # 使用固定值,不需要配置
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Rust 处理完成: 总帧数 {result.total_frames}, 关键帧 {result.keyframes_extracted}, 处理速度 {result.processing_fps:.1f} FPS"
|
||||
)
|
||||
|
||||
# 转换保存的关键帧为 base64 格式
|
||||
frames = []
|
||||
temp_dir_path = Path(temp_dir)
|
||||
|
||||
# 获取所有保存的关键帧文件
|
||||
keyframe_files = sorted(temp_dir_path.glob("keyframe_*.jpg"))
|
||||
|
||||
for i, keyframe_file in enumerate(keyframe_files):
|
||||
if len(frames) >= self.max_frames:
|
||||
break
|
||||
|
||||
try:
|
||||
# 读取关键帧文件
|
||||
with open(keyframe_file, "rb") as f:
|
||||
image_data = f.read()
|
||||
|
||||
# 转换为 PIL 图像并压缩
|
||||
pil_image = Image.open(io.BytesIO(image_data))
|
||||
|
||||
# 调整图像大小
|
||||
if max(pil_image.size) > self.max_image_size:
|
||||
ratio = self.max_image_size / max(pil_image.size)
|
||||
new_size = tuple(int(dim * ratio) for dim in pil_image.size)
|
||||
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
|
||||
|
||||
# 转换为 base64
|
||||
buffer = io.BytesIO()
|
||||
pil_image.save(buffer, format="JPEG", quality=self.frame_quality)
|
||||
frame_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||||
|
||||
# 估算时间戳(基于帧索引和总时长)
|
||||
if result.total_frames > 0:
|
||||
# 假设关键帧在时间上均匀分布
|
||||
estimated_timestamp = (i * result.total_time_ms / 1000.0) / result.keyframes_extracted
|
||||
else:
|
||||
estimated_timestamp = i * 1.0 # 默认每秒一帧
|
||||
|
||||
frames.append((frame_base64, estimated_timestamp))
|
||||
|
||||
logger.debug(f"处理关键帧 {i + 1}: 估算时间 {estimated_timestamp:.2f}s")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"处理关键帧 {keyframe_file.name} 失败: {e}")
|
||||
continue
|
||||
|
||||
logger.info(f"✅ Rust 提取完成: {len(frames)} 关键帧")
|
||||
return frames
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Rust 帧提取失败: {e}")
|
||||
raise e
|
||||
|
||||
async def _extract_frames_python_fallback(self, video_path: str) -> list[tuple[str, float]]:
|
||||
"""Python降级抽帧实现 - 支持多种抽帧模式"""
|
||||
try:
|
||||
# 导入旧版本分析器
|
||||
from .utils_video_legacy import get_legacy_video_analyzer
|
||||
|
||||
logger.info("🔄 使用Python降级抽帧实现...")
|
||||
legacy_analyzer = get_legacy_video_analyzer()
|
||||
|
||||
# 同步配置参数
|
||||
legacy_analyzer.max_frames = self.max_frames
|
||||
legacy_analyzer.frame_quality = self.frame_quality
|
||||
legacy_analyzer.max_image_size = self.max_image_size
|
||||
legacy_analyzer.frame_extraction_mode = self.frame_extraction_mode
|
||||
legacy_analyzer.frame_interval_seconds = self.frame_interval_seconds
|
||||
legacy_analyzer.use_multiprocessing = self.use_multiprocessing
|
||||
|
||||
# 使用旧版本的抽帧功能
|
||||
frames = await legacy_analyzer.extract_frames(video_path)
|
||||
|
||||
logger.info(f"✅ Python降级抽帧完成: {len(frames)} 帧")
|
||||
return frames
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Python降级抽帧失败: {e}")
|
||||
return []
|
||||
|
||||
async def analyze_frames_batch(self, frames: list[tuple[str, float]], user_question: str = None) -> str:
|
||||
"""批量分析所有帧"""
|
||||
logger.info(f"开始批量分析{len(frames)}帧")
|
||||
|
||||
if not frames:
|
||||
return "❌ 没有可分析的帧"
|
||||
|
||||
# 构建提示词并格式化人格信息,要不然占位符的那个会爆炸
|
||||
prompt = self.batch_analysis_prompt.format(
|
||||
personality_core=self.personality_core, personality_side=self.personality_side
|
||||
)
|
||||
if question:
|
||||
prompt += f"\n用户关注: {question}"
|
||||
|
||||
if user_question:
|
||||
prompt += f"\n\n用户问题: {user_question}"
|
||||
desc = [
|
||||
(f"第{i+1}帧 (时间: {ts:.2f}s)" if self.enable_frame_timing else f"第{i+1}帧")
|
||||
for i, (_b, ts) in enumerate(frames)
|
||||
]
|
||||
prompt += "\n帧列表: " + ", ".join(desc)
|
||||
|
||||
# 添加帧信息到提示词
|
||||
frame_info = []
|
||||
for i, (_frame_base64, timestamp) in enumerate(frames):
|
||||
if self.enable_frame_timing:
|
||||
frame_info.append(f"第{i + 1}帧 (时间: {timestamp:.2f}s)")
|
||||
else:
|
||||
frame_info.append(f"第{i + 1}帧")
|
||||
message_builder = MessageBuilder().add_text_content(prompt)
|
||||
for b64, _ in frames:
|
||||
message_builder.add_image_content(image_format="jpeg", image_base64=b64)
|
||||
messages = [message_builder.build()]
|
||||
|
||||
prompt += f"\n\n视频包含{len(frames)}帧图像:{', '.join(frame_info)}"
|
||||
prompt += "\n\n请基于所有提供的帧图像进行综合分析,关注并描述视频的完整内容和故事发展。"
|
||||
|
||||
try:
|
||||
# 使用多图片分析
|
||||
response = await self._analyze_multiple_frames(frames, prompt)
|
||||
logger.info("✅ 视频识别完成")
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ 视频识别失败: {e}")
|
||||
raise e
|
||||
|
||||
async def _analyze_multiple_frames(self, frames: list[tuple[str, float]], prompt: str) -> str:
|
||||
"""使用多图片分析方法"""
|
||||
logger.info(f"开始构建包含{len(frames)}帧的分析请求")
|
||||
|
||||
# 导入MessageBuilder用于构建多图片消息
|
||||
from src.llm_models.payload_content.message import MessageBuilder, RoleType
|
||||
from src.llm_models.utils_model import RequestType
|
||||
|
||||
# 构建包含多张图片的消息
|
||||
message_builder = MessageBuilder().set_role(RoleType.User).add_text_content(prompt)
|
||||
|
||||
# 添加所有帧图像
|
||||
for _i, (frame_base64, _timestamp) in enumerate(frames):
|
||||
message_builder.add_image_content("jpeg", frame_base64)
|
||||
# logger.info(f"已添加第{i+1}帧到分析请求 (时间: {timestamp:.2f}s, 图片大小: {len(frame_base64)} chars)")
|
||||
|
||||
message = message_builder.build()
|
||||
# logger.info(f"✅ 多帧消息构建完成,包含{len(frames)}张图片")
|
||||
|
||||
# 获取模型信息和客户端
|
||||
selection_result = self.video_llm._model_selector.select_best_available_model(set(), "response")
|
||||
if not selection_result:
|
||||
raise RuntimeError("无法为视频分析选择可用模型。")
|
||||
model_info, api_provider, client = selection_result
|
||||
# logger.info(f"使用模型: {model_info.name} 进行多帧分析")
|
||||
|
||||
# 直接执行多图片请求
|
||||
api_response = await self.video_llm._executor.execute_request(
|
||||
api_provider=api_provider,
|
||||
client=client,
|
||||
request_type=RequestType.RESPONSE,
|
||||
model_info=model_info,
|
||||
message_list=[message],
|
||||
temperature=None,
|
||||
max_tokens=None,
|
||||
# 使用封装好的高级策略执行请求,而不是直接调用内部方法
|
||||
response, _ = await self.video_llm._strategy.execute_with_failover(
|
||||
RequestType.RESPONSE,
|
||||
raise_when_empty=False, # 即使失败也返回默认值,避免程序崩溃
|
||||
message_list=messages,
|
||||
temperature=self.video_llm.model_for_task.temperature,
|
||||
max_tokens=self.video_llm.model_for_task.max_tokens,
|
||||
)
|
||||
|
||||
logger.info(f"视频识别完成,响应长度: {len(api_response.content or '')} ")
|
||||
return api_response.content or "❌ 未获得响应内容"
|
||||
return response.content or "❌ 未获得响应"
|
||||
|
||||
async def analyze_frames_sequential(self, frames: list[tuple[str, float]], user_question: str = None) -> str:
|
||||
"""逐帧分析并汇总"""
|
||||
logger.info(f"开始逐帧分析{len(frames)}帧")
|
||||
|
||||
frame_analyses = []
|
||||
|
||||
for i, (frame_base64, timestamp) in enumerate(frames):
|
||||
# ---- 逐帧分析 ----
|
||||
async def _analyze_sequential(self, frames: list[tuple[str, float]], question: str | None) -> str:
|
||||
results: list[str] = []
|
||||
for i, (b64, ts) in enumerate(frames):
|
||||
prompt = f"分析第{i+1}帧" + (f" (时间: {ts:.2f}s)" if self.enable_frame_timing else "")
|
||||
if question:
|
||||
prompt += f"\n关注: {question}"
|
||||
try:
|
||||
text, _ = await self.video_llm.generate_response_for_image(
|
||||
prompt=prompt, image_base64=b64, image_format="jpeg"
|
||||
)
|
||||
logger.info("✅ 逐帧分析和汇总完成")
|
||||
return summary
|
||||
else:
|
||||
return "❌ 没有可用于汇总的帧"
|
||||
except Exception as e:
|
||||
logger.error(f"❌ 汇总分析失败: {e}")
|
||||
# 如果汇总失败,返回各帧分析结果
|
||||
return f"视频逐帧分析结果:\n\n{chr(10).join(frame_analyses)}"
|
||||
|
||||
async def analyze_video(self, video_path: str, user_question: str = None) -> tuple[bool, str]:
|
||||
"""分析视频的主要方法
|
||||
|
||||
Returns:
|
||||
Tuple[bool, str]: (是否成功, 分析结果或错误信息)
|
||||
"""
|
||||
if self.disabled:
|
||||
error_msg = "❌ 视频分析功能已禁用:没有可用的视频处理实现"
|
||||
logger.warning(error_msg)
|
||||
return (False, error_msg)
|
||||
|
||||
results.append(f"第{i+1}帧: {text}")
|
||||
except Exception as e: # pragma: no cover
|
||||
results.append(f"第{i+1}帧: 失败 {e}")
|
||||
if i < len(frames) - 1:
|
||||
await asyncio.sleep(self.frame_analysis_delay)
|
||||
summary_prompt = "基于以下逐帧结果给出完整总结:\n\n" + "\n".join(results)
|
||||
try:
|
||||
logger.info(f"开始分析视频: {os.path.basename(video_path)}")
|
||||
final, _ = await self.video_llm.generate_response_for_image(
|
||||
prompt=summary_prompt, image_base64=frames[-1][0], image_format="jpeg"
|
||||
)
|
||||
return final
|
||||
except Exception: # pragma: no cover
|
||||
return "\n".join(results)
|
||||
|
||||
# 提取帧
|
||||
frames = await self.extract_frames(video_path)
|
||||
if not frames:
|
||||
error_msg = "❌ 无法从视频中提取有效帧"
|
||||
return (False, error_msg)
|
||||
|
||||
# 根据模式选择分析方法
|
||||
if self.analysis_mode == "auto":
|
||||
# 智能选择:少于等于3帧用批量,否则用逐帧
|
||||
mode = "batch" if len(frames) <= 3 else "sequential"
|
||||
logger.info(f"自动选择分析模式: {mode} (基于{len(frames)}帧)")
|
||||
else:
|
||||
mode = self.analysis_mode
|
||||
|
||||
# 执行分析
|
||||
if mode == "batch":
|
||||
result = await self.analyze_frames_batch(frames, user_question)
|
||||
else: # sequential
|
||||
result = await self.analyze_frames_sequential(frames, user_question)
|
||||
|
||||
logger.info("✅ 视频分析完成")
|
||||
return (True, result)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"❌ 视频分析失败: {e!s}"
|
||||
logger.error(error_msg)
|
||||
return (False, error_msg)
|
||||
# ---- 主入口 ----
|
||||
async def analyze_video(self, video_path: str, question: str | None = None) -> tuple[bool, str]:
|
||||
if not os.path.exists(video_path):
|
||||
return False, "❌ 文件不存在"
|
||||
frames = await self.extract_keyframes(video_path)
|
||||
if not frames:
|
||||
return False, "❌ 未提取到关键帧"
|
||||
mode = self.analysis_mode
|
||||
if mode == "auto":
|
||||
mode = "batch" if len(frames) <= 20 else "sequential"
|
||||
text = await (self._analyze_batch(frames, question) if mode == "batch" else self._analyze_sequential(frames, question))
|
||||
return True, text
|
||||
|
||||
async def analyze_video_from_bytes(
|
||||
self, video_bytes: bytes, filename: str = None, user_question: str = None, prompt: str = None
|
||||
self,
|
||||
video_bytes: bytes,
|
||||
filename: str | None = None,
|
||||
prompt: str | None = None,
|
||||
question: str | None = None,
|
||||
) -> dict[str, str]:
|
||||
"""从字节数据分析视频
|
||||
"""从内存字节分析视频,兼容旧调用 (prompt / question 二选一) 返回 {"summary": str}."""
|
||||
if not video_bytes:
|
||||
return {"summary": "❌ 空视频数据"}
|
||||
# 兼容参数:prompt 优先,其次 question
|
||||
q = prompt if prompt is not None else question
|
||||
video_hash = hashlib.sha256(video_bytes).hexdigest()
|
||||
|
||||
Args:
|
||||
video_bytes: 视频字节数据
|
||||
filename: 文件名(可选,仅用于日志)
|
||||
user_question: 用户问题(旧参数名,保持兼容性)
|
||||
prompt: 提示词(新参数名,与系统调用保持一致)
|
||||
# 查缓存(第一次,未加锁)
|
||||
cached = await self._get_cached(video_hash)
|
||||
if cached:
|
||||
logger.info(f"视频缓存命中(预检查) hash={video_hash[:16]}")
|
||||
return {"summary": cached}
|
||||
|
||||
Returns:
|
||||
Dict[str, str]: 包含分析结果的字典,格式为 {"summary": "分析结果"}
|
||||
"""
|
||||
if self.disabled:
|
||||
return {"summary": "❌ 视频分析功能已禁用:没有可用的视频处理实现"}
|
||||
|
||||
video_hash = None
|
||||
video_event = None
|
||||
|
||||
try:
|
||||
logger.info("开始从字节数据分析视频")
|
||||
|
||||
# 兼容性处理:如果传入了prompt参数,使用prompt;否则使用user_question
|
||||
question = prompt if prompt is not None else user_question
|
||||
|
||||
# 检查视频数据是否有效
|
||||
if not video_bytes:
|
||||
return {"summary": "❌ 视频数据为空"}
|
||||
|
||||
# 计算视频hash值
|
||||
video_hash = self._calculate_video_hash(video_bytes)
|
||||
logger.info(f"视频hash: {video_hash}")
|
||||
|
||||
# 改进的并发控制:使用每个视频独立的锁和事件
|
||||
async with video_lock_manager:
|
||||
if video_hash not in video_locks:
|
||||
video_locks[video_hash] = asyncio.Lock()
|
||||
video_events[video_hash] = asyncio.Event()
|
||||
|
||||
video_lock = video_locks[video_hash]
|
||||
video_event = video_events[video_hash]
|
||||
|
||||
# 尝试获取该视频的专用锁
|
||||
if video_lock.locked():
|
||||
logger.info(f"⏳ 相同视频正在处理中,等待处理完成... (hash: {video_hash[:16]}...)")
|
||||
try:
|
||||
# 等待处理完成的事件信号,最多等待60秒
|
||||
await asyncio.wait_for(video_event.wait(), timeout=60.0)
|
||||
logger.info("✅ 等待结束,检查是否有处理结果")
|
||||
|
||||
# 检查是否有结果了
|
||||
existing_video = await self._check_video_exists(video_hash)
|
||||
if existing_video:
|
||||
logger.info(f"✅ 找到了处理结果,直接返回 (id: {existing_video.id})")
|
||||
return {"summary": existing_video.description}
|
||||
else:
|
||||
logger.warning("⚠️ 等待完成但未找到结果,可能处理失败")
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning("⚠️ 等待超时(60秒),放弃等待")
|
||||
|
||||
# 获取锁开始处理
|
||||
async with video_lock:
|
||||
logger.info(f"🔒 获得视频处理锁,开始处理 (hash: {video_hash[:16]}...)")
|
||||
|
||||
# 再次检查数据库(可能在等待期间已经有结果了)
|
||||
existing_video = await self._check_video_exists(video_hash)
|
||||
if existing_video:
|
||||
logger.info(f"✅ 获得锁后发现已有结果,直接返回 (id: {existing_video.id})")
|
||||
video_event.set() # 通知其他等待者
|
||||
return {"summary": existing_video.description}
|
||||
|
||||
# 未找到已存在记录,开始新的分析
|
||||
logger.info("未找到已存在的视频记录,开始新的分析")
|
||||
|
||||
# 创建临时文件进行分析
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
||||
temp_file.write(video_bytes)
|
||||
temp_path = temp_file.name
|
||||
# 获取锁避免重复处理
|
||||
async with _locks_guard:
|
||||
lock = _video_locks.get(video_hash)
|
||||
if lock is None:
|
||||
lock = asyncio.Lock()
|
||||
_video_locks[video_hash] = lock
|
||||
async with lock:
|
||||
# 双检缓存
|
||||
cached2 = await self._get_cached(video_hash)
|
||||
if cached2:
|
||||
logger.info(f"视频缓存命中(锁后) hash={video_hash[:16]}")
|
||||
return {"summary": cached2}
|
||||
|
||||
try:
|
||||
with tempfile.NamedTemporaryFile(delete=False) as fp:
|
||||
@@ -715,105 +238,64 @@ class VideoAnalyzer:
|
||||
return {"summary": summary}
|
||||
finally:
|
||||
if os.path.exists(temp_path):
|
||||
os.unlink(temp_path)
|
||||
|
||||
# 保存分析结果到数据库(仅保存成功的结果)
|
||||
if success and not result.startswith("❌"):
|
||||
metadata = {"filename": filename, "file_size": len(video_bytes), "analysis_timestamp": time.time()}
|
||||
await self._store_video_result(video_hash=video_hash, description=result, metadata=metadata)
|
||||
logger.info("✅ 分析结果已保存到数据库")
|
||||
else:
|
||||
logger.warning("⚠️ 分析失败,不保存到数据库以便后续重试")
|
||||
|
||||
# 处理完成,通知等待者并清理资源
|
||||
video_event.set()
|
||||
async with video_lock_manager:
|
||||
# 清理资源
|
||||
video_locks.pop(video_hash, None)
|
||||
video_events.pop(video_hash, None)
|
||||
|
||||
return {"summary": result}
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"❌ 从字节数据分析视频失败: {e!s}"
|
||||
logger.error(error_msg)
|
||||
|
||||
# 不保存错误信息到数据库,允许后续重试
|
||||
logger.info("💡 错误信息不保存到数据库,允许后续重试")
|
||||
|
||||
# 处理失败,通知等待者并清理资源
|
||||
try:
|
||||
if video_hash and video_event:
|
||||
async with video_lock_manager:
|
||||
if video_hash in video_events:
|
||||
video_events[video_hash].set()
|
||||
video_locks.pop(video_hash, None)
|
||||
video_events.pop(video_hash, None)
|
||||
except Exception as cleanup_e:
|
||||
logger.error(f"❌ 清理锁资源失败: {cleanup_e}")
|
||||
|
||||
return {"summary": error_msg}
|
||||
|
||||
def is_supported_video(self, file_path: str) -> bool:
|
||||
"""检查是否为支持的视频格式"""
|
||||
supported_formats = {".mp4", ".avi", ".mov", ".mkv", ".flv", ".wmv", ".m4v", ".3gp", ".webm"}
|
||||
return Path(file_path).suffix.lower() in supported_formats
|
||||
|
||||
def get_processing_capabilities(self) -> dict[str, any]:
|
||||
"""获取处理能力信息"""
|
||||
if not RUST_VIDEO_AVAILABLE:
|
||||
return {"error": "Rust视频处理模块不可用", "available": False, "reason": "rust_video模块未安装或加载失败"}
|
||||
try:
|
||||
os.remove(temp_path)
|
||||
except Exception: # pragma: no cover
|
||||
pass
|
||||
except Exception as e: # pragma: no cover
|
||||
return {"summary": f"❌ 处理失败: {e}"}
|
||||
|
||||
# ---- 缓存辅助 ----
|
||||
async def _get_cached(self, video_hash: str) -> str | None:
|
||||
try:
|
||||
system_info = rust_video.get_system_info()
|
||||
async with get_db_session() as session: # type: ignore
|
||||
result = await session.execute(select(Videos).where(Videos.video_hash == video_hash)) # type: ignore
|
||||
obj: Videos | None = result.scalar_one_or_none() # type: ignore
|
||||
if obj and obj.vlm_processed and obj.description:
|
||||
# 更新使用次数
|
||||
try:
|
||||
await session.execute(
|
||||
update(Videos)
|
||||
.where(Videos.id == obj.id) # type: ignore
|
||||
.values(count=obj.count + 1 if obj.count is not None else 1)
|
||||
)
|
||||
await session.commit()
|
||||
except Exception: # pragma: no cover
|
||||
await session.rollback()
|
||||
return obj.description
|
||||
except Exception: # pragma: no cover
|
||||
pass
|
||||
return None
|
||||
|
||||
# 创建一个临时的extractor来获取CPU特性
|
||||
extractor = rust_video.VideoKeyframeExtractor(threads=0, verbose=False)
|
||||
cpu_features = extractor.get_cpu_features()
|
||||
|
||||
capabilities = {
|
||||
"system": {
|
||||
"threads": system_info.get("threads", 0),
|
||||
"rust_version": system_info.get("version", "unknown"),
|
||||
},
|
||||
"cpu_features": cpu_features,
|
||||
"recommended_settings": self._get_recommended_settings(cpu_features),
|
||||
"analysis_modes": ["auto", "batch", "sequential"],
|
||||
"supported_formats": [".mp4", ".avi", ".mov", ".mkv", ".flv", ".wmv", ".m4v", ".3gp", ".webm"],
|
||||
"available": True,
|
||||
}
|
||||
|
||||
return capabilities
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取处理能力信息失败: {e}")
|
||||
return {"error": str(e), "available": False}
|
||||
|
||||
def _get_recommended_settings(self, cpu_features: dict[str, bool]) -> dict[str, any]:
|
||||
"""根据CPU特性推荐最佳设置"""
|
||||
settings = {
|
||||
"use_simd": any(cpu_features.values()),
|
||||
"block_size": 8192,
|
||||
"threads": 0, # 自动检测
|
||||
}
|
||||
|
||||
# 根据CPU特性调整设置
|
||||
if cpu_features.get("avx2", False):
|
||||
settings["block_size"] = 16384 # AVX2支持更大的块
|
||||
settings["optimization_level"] = "avx2"
|
||||
elif cpu_features.get("sse2", False):
|
||||
settings["block_size"] = 8192
|
||||
settings["optimization_level"] = "sse2"
|
||||
else:
|
||||
settings["use_simd"] = False
|
||||
settings["block_size"] = 4096
|
||||
settings["optimization_level"] = "scalar"
|
||||
|
||||
return settings
|
||||
async def _save_cache(self, video_hash: str, summary: str, file_size: int) -> None:
|
||||
try:
|
||||
async with get_db_session() as session: # type: ignore
|
||||
stmt = insert(Videos).values( # type: ignore
|
||||
video_id="",
|
||||
video_hash=video_hash,
|
||||
description=summary,
|
||||
count=1,
|
||||
timestamp=time.time(),
|
||||
vlm_processed=True,
|
||||
duration=None,
|
||||
frame_count=None,
|
||||
fps=None,
|
||||
resolution=None,
|
||||
file_size=file_size,
|
||||
)
|
||||
try:
|
||||
await session.execute(stmt)
|
||||
await session.commit()
|
||||
logger.debug(f"视频缓存写入 success hash={video_hash}")
|
||||
except sa_exc.IntegrityError: # 可能并发已写入
|
||||
await session.rollback()
|
||||
logger.debug(f"视频缓存已存在 hash={video_hash}")
|
||||
except Exception: # pragma: no cover
|
||||
logger.debug("视频缓存写入失败")
|
||||
|
||||
|
||||
# ---- 外部接口 ----
|
||||
_INSTANCE: Optional[VideoAnalyzer] = None
|
||||
_INSTANCE: VideoAnalyzer | None = None
|
||||
|
||||
|
||||
def get_video_analyzer() -> VideoAnalyzer:
|
||||
@@ -827,14 +309,7 @@ def is_video_analysis_available() -> bool:
|
||||
return True
|
||||
|
||||
|
||||
def get_video_analysis_status() -> dict[str, any]:
|
||||
"""获取视频分析功能的详细状态信息
|
||||
|
||||
Returns:
|
||||
Dict[str, any]: 包含功能状态信息的字典
|
||||
"""
|
||||
# 检查OpenCV是否可用
|
||||
opencv_available = False
|
||||
def get_video_analysis_status() -> dict[str, Any]:
|
||||
try:
|
||||
info = video.get_system_info() # type: ignore[attr-defined]
|
||||
except Exception as e: # pragma: no cover
|
||||
|
||||
@@ -461,14 +461,11 @@ class LegacyVideoAnalyzer:
|
||||
# logger.info(f"✅ 多帧消息构建完成,包含{len(frames)}张图片")
|
||||
|
||||
# 获取模型信息和客户端
|
||||
selection_result = self.video_llm._model_selector.select_best_available_model(set(), "response")
|
||||
if not selection_result:
|
||||
raise RuntimeError("无法为视频分析选择可用模型 (legacy)。")
|
||||
model_info, api_provider, client = selection_result
|
||||
model_info, api_provider, client = self.video_llm._select_model()
|
||||
# logger.info(f"使用模型: {model_info.name} 进行多帧分析")
|
||||
|
||||
# 直接执行多图片请求
|
||||
api_response = await self.video_llm._executor.execute_request(
|
||||
api_response = await self.video_llm._execute_request(
|
||||
api_provider=api_provider,
|
||||
client=client,
|
||||
request_type=RequestType.RESPONSE,
|
||||
|
||||
Reference in New Issue
Block a user