feat: 修改emoji为embedding匹配

This commit is contained in:
tcmofashi
2025-03-05 09:49:19 +08:00
parent d1ac1b0573
commit 669f9e400a

View File

@@ -14,10 +14,12 @@ import asyncio
import time
from PIL import Image
import io
from loguru import logger
from nonebot import get_driver
from ..chat.config import global_config
from ..models.utils_model import LLM_request
from utils import get_embedding
driver = get_driver()
config = driver.config
@@ -27,16 +29,6 @@ class EmojiManager:
_instance = None
EMOJI_DIR = "data/emoji" # 表情包存储目录
EMOTION_KEYWORDS = {
'happy': ['开心', '快乐', '高兴', '欢喜', '', '喜悦', '兴奋', '愉快', '', ''],
'angry': ['生气', '愤怒', '恼火', '不爽', '火大', '', '气愤', '恼怒', '发火', '不满'],
'sad': ['伤心', '难过', '悲伤', '痛苦', '', '忧伤', '悲痛', '哀伤', '委屈', '失落'],
'surprised': ['惊讶', '震惊', '吃惊', '意外', '', '诧异', '惊奇', '惊喜', '不敢相信', '目瞪口呆'],
'disgusted': ['恶心', '讨厌', '厌恶', '反感', '嫌弃', '', '嫌恶', '憎恶', '不喜欢', ''],
'fearful': ['害怕', '恐惧', '惊恐', '担心', '', '惊吓', '惊慌', '畏惧', '胆怯', ''],
'neutral': ['普通', '一般', '还行', '正常', '平静', '平淡', '一般般', '凑合', '还好', '就这样']
}
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
@@ -64,7 +56,7 @@ class EmojiManager:
# 启动时执行一次完整性检查
self.check_emoji_file_integrity()
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 初始化表情管理器失败: {str(e)}")
logger.error(f"初始化表情管理器失败: {str(e)}")
def _ensure_db(self):
"""确保数据库已初始化"""
@@ -77,7 +69,7 @@ class EmojiManager:
"""确保emoji集合存在并创建索引"""
if 'emoji' not in self.db.db.list_collection_names():
self.db.db.create_collection('emoji')
self.db.db.emoji.create_index([('tags', 1)])
self.db.db.emoji.create_index([('embedding', '2dsphere')])
self.db.db.emoji.create_index([('filename', 1)], unique=True)
def record_usage(self, emoji_id: str):
@@ -89,79 +81,8 @@ class EmojiManager:
{'$inc': {'usage_count': 1}}
)
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 记录表情使用失败: {str(e)}")
logger.error(f"记录表情使用失败: {str(e)}")
async def _get_emotion_from_text(self, text: str) -> List[str]:
"""从文本中识别情感关键词
Args:
text: 输入文本
Returns:
List[str]: 匹配到的情感标签列表
"""
try:
prompt = f'分析这段文本:"{text}",从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签。只需要返回标签不要输出其他任何内容。'
content, _ = await self.llm.generate_response(prompt)
emotion = content.strip().lower()
if emotion in self.EMOTION_KEYWORDS:
print(f"\033[1;32m[成功]\033[0m 识别到的情感: {emotion}")
return [emotion]
return ['neutral']
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 情感分析失败: {str(e)}")
return ['neutral']
async def get_emoji_for_emotion(self, emotion_tag: str) -> Optional[str]:
try:
self._ensure_db()
# 构建查询条件:标签匹配任一情感
query = {'tags': {'$in': emotion_tag}}
# print(f"\033[1;34m[调试]\033[0m 表情查询条件: {query}")
try:
# 随机获取一个匹配的表情
emoji = self.db.db.emoji.aggregate([
{'$match': query},
{'$sample': {'size': 1}}
]).next()
print(f"\033[1;32m[成功]\033[0m 找到匹配的表情")
if emoji and 'path' in emoji:
# 更新使用次数
self.db.db.emoji.update_one(
{'_id': emoji['_id']},
{'$inc': {'usage_count': 1}}
)
return emoji['path']
except StopIteration:
# 如果没有匹配的表情,从所有表情中随机选择一个
print(f"\033[1;33m[提示]\033[0m 未找到匹配的表情,随机选择一个")
try:
emoji = self.db.db.emoji.aggregate([
{'$sample': {'size': 1}}
]).next()
if emoji and 'path' in emoji:
# 更新使用次数
self.db.db.emoji.update_one(
{'_id': emoji['_id']},
{'$inc': {'usage_count': 1}}
)
return emoji['path']
except StopIteration:
print(f"\033[1;31m[错误]\033[0m 数据库中没有任何表情")
return None
return None
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 获取表情包失败: {str(e)}")
return None
async def get_emoji_for_text(self, text: str) -> Optional[str]:
"""根据文本内容获取相关表情包
Args:
@@ -171,77 +92,84 @@ class EmojiManager:
"""
try:
self._ensure_db()
# 获取情感标签
emotions = await self._get_emotion_from_text(text)
print(""+ str(text) + " 获取到的情感标签为:" + str(emotions))
if not emotions:
# 获取文本的embedding
text_embedding = get_embedding(text)
if not text_embedding:
logger.error("无法获取文本的embedding")
return None
# 构建查询条件:标签匹配任一情感
query = {'tags': {'$in': emotions}}
print(f"\033[1;34m[调试]\033[0m 表情查询条件: {query}")
print(f"\033[1;34m[调试]\033[0m 匹配到的情感: {emotions}")
# 使用embedding进行相似度搜索获取最相似的3个表情包
pipeline = [
{
"$search": {
"index": "default",
"knnBeta": {
"vector": text_embedding,
"path": "embedding",
"k": 3
}
}
}
]
try:
# 随机获取一个匹配的表情
emoji = self.db.db.emoji.aggregate([
{'$match': query},
{'$sample': {'size': 1}}
]).next()
print(f"\033[1;32m[成功]\033[0m 找到匹配的表情")
if emoji and 'path' in emoji:
# 获取搜索结果
results = list(self.db.db.emoji.aggregate(pipeline))
if not results:
logger.warning("未找到匹配的表情包,尝试随机选择")
# 如果没有匹配的表情,随机选择一个
try:
emoji = self.db.db.emoji.aggregate([
{'$sample': {'size': 1}}
]).next()
if emoji and 'path' in emoji:
# 更新使用次数
self.db.db.emoji.update_one(
{'_id': emoji['_id']},
{'$inc': {'usage_count': 1}}
)
return emoji['path']
except StopIteration:
logger.error("数据库中没有任何表情")
return None
# 从最相似的3个表情包中随机选择一个
selected_emoji = random.choice(results)
if selected_emoji and 'path' in selected_emoji:
# 更新使用次数
self.db.db.emoji.update_one(
{'_id': emoji['_id']},
{'_id': selected_emoji['_id']},
{'$inc': {'usage_count': 1}}
)
return emoji['path']
except StopIteration:
# 如果没有匹配的表情,从所有表情中随机选择一个
print(f"\033[1;33m[提示]\033[0m 未找到匹配的表情,随机选择一个")
try:
emoji = self.db.db.emoji.aggregate([
{'$sample': {'size': 1}}
]).next()
if emoji and 'path' in emoji:
# 更新使用次数
self.db.db.emoji.update_one(
{'_id': emoji['_id']},
{'$inc': {'usage_count': 1}}
)
return emoji['path']
except StopIteration:
print(f"\033[1;31m[错误]\033[0m 数据库中没有任何表情")
return None
logger.success(f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')}")
return selected_emoji['path']
except Exception as search_error:
logger.error(f"搜索表情包失败: {str(search_error)}")
return None
return None
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 获取表情包失败: {str(e)}")
logger.error(f"获取表情包失败: {str(e)}")
return None
async def _get_emoji_tag(self, image_base64: str) -> str:
"""获取表情包的标签"""
try:
prompt = '这是一个表情包,请"happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"中选出1个情感标签。只输出标签不要输出其他任何内容只输出情感标签就好'
prompt = '这是一个表情包,请为其生成简洁的描述,同时生成表情包所蕴含的情绪的描述。'
content, _ = await self.llm.generate_response_for_image(prompt, image_base64)
tag_result = content.strip().lower()
valid_tags = ["happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"]
for tag_match in valid_tags:
if tag_match in tag_result or tag_match == tag_result:
return tag_match
print(f"\033[1;33m[警告]\033[0m 无效的标签: {tag_result}, 跳过")
logger.debug(f"输出描述: {content}")
return content
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 获取标签失败: {str(e)}")
return "skip"
logger.error(f"获取标签失败: {str(e)}")
return None
print(f"\033[1;32m[调试信息]\033[0m 使用默认标签: neutral")
return "skip" # 默认标签
async def _compress_image(self, image_path: str, target_size: int = 0.8 * 1024 * 1024) -> Optional[str]:
"""压缩图片并返回base64编码
Args:
@@ -303,12 +231,12 @@ class EmojiManager:
# 获取压缩后的数据并转换为base64
compressed_data = output_buffer.getvalue()
print(f"\033[1;32m[成功]\033[0m 压缩图片: {os.path.basename(image_path)} ({original_width}x{original_height} -> {new_width}x{new_height})")
logger.success(f"压缩图片: {os.path.basename(image_path)} ({original_width}x{original_height} -> {new_width}x{new_height})")
return base64.b64encode(compressed_data).decode('utf-8')
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 压缩图片失败: {os.path.basename(image_path)}, 错误: {str(e)}")
logger.error(f"压缩图片失败: {os.path.basename(image_path)}, 错误: {str(e)}")
return None
async def scan_new_emojis(self):
@@ -334,35 +262,29 @@ class EmojiManager:
os.remove(image_path)
continue
# 获取表情包的情感标签
tag = await self._get_emoji_tag(image_base64)
if not tag == "skip":
# 获取表情包的描述
discription = await self._get_emoji_tag(image_base64)
embedding = get_embedding(discription)
if discription is not None:
# 准备数据库记录
emoji_record = {
'filename': filename,
'path': image_path,
'tags': [tag],
'embedding':embedding,
'discription': discription,
'timestamp': int(time.time())
}
# 保存到数据库
self.db.db['emoji'].insert_one(emoji_record)
print(f"\033[1;32m[成功]\033[0m 注册新表情包: {filename}")
print(f"标签: {tag}")
logger.success(f"注册新表情包: {filename}")
logger.info(f"描述: {discription}")
else:
print(f"\033[1;33m[警告]\033[0m 跳过表情包: {filename}")
logger.warning(f"跳过表情包: {filename}")
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 扫描表情包失败: {str(e)}")
import traceback
print(traceback.format_exc())
async def _periodic_scan(self, interval_MINS: int = 10):
"""定期扫描新表情包"""
while True:
print(f"\033[1;36m[表情包]\033[0m 开始扫描新表情包...")
await self.scan_new_emojis()
await asyncio.sleep(interval_MINS * 60) # 每600秒扫描一次
logger.error(f"扫描表情包失败: {str(e)}")
logger.error(traceback.format_exc())
def check_emoji_file_integrity(self):
"""检查表情包文件完整性
@@ -378,44 +300,42 @@ class EmojiManager:
for emoji in all_emojis:
try:
if 'path' not in emoji:
print(f"\033[1;33m[提示]\033[0m 发现无效记录缺少path字段ID: {emoji.get('_id', 'unknown')}")
logger.warning(f"发现无效记录缺少path字段ID: {emoji.get('_id', 'unknown')}")
self.db.db.emoji.delete_one({'_id': emoji['_id']})
removed_count += 1
continue
if 'embedding' not in emoji:
logger.warning(f"发现过时记录缺少embedding字段ID: {emoji.get('_id', 'unknown')}")
self.db.db.emoji.delete_one({'_id': emoji['_id']})
removed_count += 1
continue
# 检查文件是否存在
if not os.path.exists(emoji['path']):
print(f"\033[1;33m[提示]\033[0m 表情包文件已被删除: {emoji['path']}")
logger.warning(f"表情包文件已被删除: {emoji['path']}")
# 从数据库中删除记录
result = self.db.db.emoji.delete_one({'_id': emoji['_id']})
if result.deleted_count > 0:
print(f"\033[1;32m[成功]\033[0m 成功删除数据库记录: {emoji['_id']}")
logger.success(f"成功删除数据库记录: {emoji['_id']}")
removed_count += 1
else:
print(f"\033[1;31m[错误]\033[0m 删除数据库记录失败: {emoji['_id']}")
logger.error(f"删除数据库记录失败: {emoji['_id']}")
except Exception as item_error:
print(f"\033[1;31m[错误]\033[0m 处理表情包记录时出错: {str(item_error)}")
logger.error(f"处理表情包记录时出错: {str(item_error)}")
continue
# 验证清理结果
remaining_count = self.db.db.emoji.count_documents({})
if removed_count > 0:
print(f"\033[1;32m[成功]\033[0m 已清理 {removed_count} 个失效的表情包记录")
print(f"\033[1;34m[统计]\033[0m 清理前总数: {total_count} | 清理后总数: {remaining_count}")
# print(f"\033[1;34m[统计]\033[0m 应删除数量: {removed_count} | 实际删除数量: {total_count - remaining_count}")
# 执行数据库压缩
try:
self.db.db.command({"compact": "emoji"})
print(f"\033[1;32m[成功]\033[0m 数据库集合压缩完成")
except Exception as compact_error:
print(f"\033[1;31m[错误]\033[0m 数据库压缩失败: {str(compact_error)}")
logger.success(f"已清理 {removed_count} 个失效的表情包记录")
logger.info(f"清理前总数: {total_count} | 清理后总数: {remaining_count}")
else:
print(f"\033[1;36m[表情包]\033[0m 已检查 {total_count} 个表情包记录")
logger.info(f"已检查 {total_count} 个表情包记录")
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 检查表情包完整性失败: {str(e)}")
import traceback
print(f"\033[1;31m[错误追踪]\033[0m\n{traceback.format_exc()}")
logger.error(f"检查表情包完整性失败: {str(e)}")
logger.error(traceback.format_exc())
async def start_periodic_check(self, interval_MINS: int = 120):
while True: