refactor(api, chat): 改进异步处理并解决并发问题

内存可视化器 API 端点之前在异步路由中执行同步的阻塞操作(文件 I/O、数据处理)。在处理大型图文件时,这可能导致服务器冻结。现在,这些任务已被移至 ThreadPoolExecutor,从而使 API 非阻塞并显著提高响应速度。

在聊天消息管理器中,竞争条件可能导致消息处理重叠或中断后数据流停滞。此提交引入了:
- 并发锁(`is_chatter_processing`)以防止流循环同时运行多个 chatter 实例。
- 故障保护机制,在中断时重置处理状态,确保数据流能够恢复并正确继续。
This commit is contained in:
tt-P607
2025-12-02 14:40:58 +08:00
parent 1027c5abf7
commit 659a8e0d78
4 changed files with 860 additions and 115 deletions

680
scripts/memory_cleaner.py Normal file
View File

@@ -0,0 +1,680 @@
"""
记忆清理脚本
功能:
1. 遍历所有长期记忆
2. 使用 LLM 评估每条记忆的价值
3. 删除无效/低价值记忆
4. 合并/精简相似记忆
使用方式:
cd Bot
python scripts/memory_cleaner.py [--dry-run] [--batch-size 10]
"""
import argparse
import asyncio
import json
import sys
from datetime import datetime
from pathlib import Path
# 添加项目根目录到 Python 路径
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
# ==================== 配置 ====================
# LLM 评估提示词
EVALUATION_PROMPT = """你是一个非常严格的记忆价值评估专家。你的任务是大幅清理低质量记忆,只保留真正有价值的信息。
## 核心原则:宁缺毋滥!
- 默认态度是 DELETE删除
- 只有非常明确、有具体信息的记忆才能保留
- 有任何疑虑就删除
## 必须删除的记忆(直接 delete
1. **无意义内容**
- 单字/短语回复:"""1""""""""""哈哈""呜呜"
- 表情包、颜文字、emoji 刷屏
- "某人发了图片/表情/语音"等无实质内容
- 乱码、无法理解的内容
2. **模糊/缺乏上下文的信息**
- "用户说了什么" 但没有具体内容
- "某人和某人聊天" 但不知道聊什么
- 泛泛的描述如"用户很开心"但不知道原因
- 指代不明的内容("那个""这个"""
3. **水群/无营养聊天**
- 群内的日常寒暄、问好
- 闲聊、灌水、抖机灵
- 无实际信息的互动
- 复读、玩梗、接龙
- 讨论与用户个人无关的话题
4. **临时/过时信息**
- 游戏状态、在线状态
- 已过期的活动、事件
- 天气、时间等即时信息
- "刚才""现在"等时效性表述
5. **重复/冗余**
- 相同内容的多条记录
- 可以合并的相似信息
6. **AI自身的记忆**
- AI说了什么话
- AI的回复内容
- AI的想法/计划
## 可以保留的记忆(必须同时满足):
1. **有明确的主体**:知道是谁(具体的用户名/昵称/ID
2. **有具体的内容**:知道具体说了什么、做了什么、是什么
3. **有长期价值**:这个信息在一个月后仍然有参考意义
**保留示例**
- "用户张三说他是程序员,在杭州工作"
- "李四说他喜欢打篮球,每周三都会去"
- "小明说他女朋友叫小红在一起2年了"
- "用户A的生日是3月15日"
**删除示例**
- "用户发了个表情"
- "群里在聊天"
- "某人说了什么"
- "今天天气很好"
- "哈哈哈太好笑了"
## 待评估记忆
{memories}
## 输出要求
严格按以下 JSON 格式输出,不要有任何其他内容:
```json
{{
"evaluations": [
{{
"memory_id": "记忆的ID从上面复制",
"action": "delete",
"reason": "删除原因"
}},
{{
"memory_id": "另一个ID",
"action": "keep",
"reason": "保留原因"
}}
]
}}
```
action 只能是:
- "delete": 删除(应该是大多数)
- "keep": 保留(只有高价值记忆)
- "summarize": 精简(很少用,只有内容过长但有价值时)
如果 action 是 summarize需要加 "new_content": "精简后的内容"
直接输出 JSON不要任何解释。"""
class MemoryCleaner:
"""记忆清理器"""
def __init__(self, dry_run: bool = True, batch_size: int = 10, concurrency: int = 5):
"""
初始化清理器
Args:
dry_run: 是否为模拟运行(不实际修改数据)
batch_size: 每批处理的记忆数量
concurrency: 并发请求数
"""
self.dry_run = dry_run
self.batch_size = batch_size
self.concurrency = concurrency
self.data_dir = project_root / "data" / "memory_graph"
self.memory_file = self.data_dir / "memory_graph.json"
self.backup_dir = self.data_dir / "backups"
# 并发控制
self.semaphore: asyncio.Semaphore | None = None
# 统计信息
self.stats = {
"total": 0,
"kept": 0,
"deleted": 0,
"summarized": 0,
"errors": 0,
"deleted_nodes": 0,
"deleted_edges": 0,
}
# 日志文件
self.log_file = self.data_dir / f"cleanup_log_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
self.cleanup_log = []
def load_memories(self) -> dict:
"""加载记忆数据"""
print(f"📂 加载记忆文件: {self.memory_file}")
if not self.memory_file.exists():
raise FileNotFoundError(f"记忆文件不存在: {self.memory_file}")
with open(self.memory_file, "r", encoding="utf-8") as f:
data = json.load(f)
return data
def extract_memory_text(self, memory_dict: dict) -> str:
"""从记忆字典中提取可读文本"""
parts = []
# 提取基本信息
memory_id = memory_dict.get("id", "unknown")
parts.append(f"ID: {memory_id}")
# 提取节点内容
nodes = memory_dict.get("nodes", [])
for node in nodes:
node_type = node.get("node_type", "")
content = node.get("content", "")
if content:
parts.append(f"[{node_type}] {content}")
# 提取边关系
edges = memory_dict.get("edges", [])
for edge in edges:
relation = edge.get("relation", "")
if relation:
parts.append(f"关系: {relation}")
# 提取元数据
metadata = memory_dict.get("metadata", {})
if metadata:
if "context" in metadata:
parts.append(f"上下文: {metadata['context']}")
if "emotion" in metadata:
parts.append(f"情感: {metadata['emotion']}")
# 提取重要性和状态
importance = memory_dict.get("importance", 0)
status = memory_dict.get("status", "unknown")
created_at = memory_dict.get("created_at", "unknown")
parts.append(f"重要性: {importance}, 状态: {status}, 创建时间: {created_at}")
return "\n".join(parts)
async def evaluate_batch(self, memories: list[dict], batch_id: int = 0) -> tuple[int, list[dict]]:
"""
使用 LLM 评估一批记忆(带并发控制)
Args:
memories: 记忆字典列表
batch_id: 批次编号
Returns:
(批次ID, 评估结果列表)
"""
async with self.semaphore:
# 构建记忆文本
memory_texts = []
for i, mem in enumerate(memories):
text = self.extract_memory_text(mem)
memory_texts.append(f"=== 记忆 {i+1} ===\n{text}")
combined_text = "\n\n".join(memory_texts)
prompt = EVALUATION_PROMPT.format(memories=combined_text)
try:
# 使用 LLMRequest 调用模型
if model_config is None:
raise RuntimeError("model_config 未初始化,请确保已加载配置")
task_config = model_config.model_task_config.utils
llm = LLMRequest(task_config, request_type="memory_cleanup")
response_text, (reasoning, model_name, _) = await llm.generate_response_async(
prompt=prompt,
temperature=0.2,
max_tokens=4000,
)
print(f" ✅ 批次 {batch_id} 完成 (模型: {model_name})")
# 解析 JSON 响应
response_text = response_text.strip()
# 尝试提取 JSON
if "```json" in response_text:
json_start = response_text.find("```json") + 7
json_end = response_text.find("```", json_start)
response_text = response_text[json_start:json_end].strip()
elif "```" in response_text:
json_start = response_text.find("```") + 3
json_end = response_text.find("```", json_start)
response_text = response_text[json_start:json_end].strip()
result = json.loads(response_text)
evaluations = result.get("evaluations", [])
# 为评估结果添加实际的 memory_id
for j, eval_result in enumerate(evaluations):
if j < len(memories):
eval_result["memory_id"] = memories[j].get("id", f"unknown_{batch_id}_{j}")
return (batch_id, evaluations)
except json.JSONDecodeError as e:
print(f" ❌ 批次 {batch_id} JSON 解析失败: {e}")
return (batch_id, [])
except Exception as e:
print(f" ❌ 批次 {batch_id} LLM 调用失败: {e}")
return (batch_id, [])
async def initialize(self):
"""初始化(创建信号量)"""
self.semaphore = asyncio.Semaphore(self.concurrency)
print(f"🔧 初始化完成 (并发数: {self.concurrency})")
def create_backup(self, data: dict):
"""创建数据备份"""
self.backup_dir.mkdir(parents=True, exist_ok=True)
backup_file = self.backup_dir / f"memory_graph_backup_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
print(f"💾 创建备份: {backup_file}")
with open(backup_file, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
return backup_file
def apply_changes(self, data: dict, evaluations: list[dict]) -> dict:
"""
应用评估结果到数据
Args:
data: 原始数据
evaluations: 评估结果列表
Returns:
修改后的数据
"""
# 创建评估结果索引
eval_map = {e["memory_id"]: e for e in evaluations if "memory_id" in e}
# 需要删除的记忆 ID
to_delete = set()
# 需要更新的记忆
to_update = {}
for eval_result in evaluations:
memory_id = eval_result.get("memory_id")
action = eval_result.get("action")
if action == "delete":
to_delete.add(memory_id)
self.stats["deleted"] += 1
self.cleanup_log.append({
"memory_id": memory_id,
"action": "delete",
"reason": eval_result.get("reason", ""),
"timestamp": datetime.now().isoformat()
})
elif action == "summarize":
to_update[memory_id] = eval_result.get("new_content")
self.stats["summarized"] += 1
self.cleanup_log.append({
"memory_id": memory_id,
"action": "summarize",
"reason": eval_result.get("reason", ""),
"new_content": eval_result.get("new_content"),
"timestamp": datetime.now().isoformat()
})
else:
self.stats["kept"] += 1
if self.dry_run:
print("🔍 [DRY RUN] 不实际修改数据")
return data
# 实际修改数据
# 1. 删除记忆
memories = data.get("memories", {})
for mem_id in to_delete:
if mem_id in memories:
del memories[mem_id]
# 2. 更新记忆内容
for mem_id, new_content in to_update.items():
if mem_id in memories:
# 更新主题节点的内容
memory = memories[mem_id]
for node in memory.get("nodes", []):
if node.get("node_type") in ["主题", "topic", "TOPIC"]:
node["content"] = new_content
break
# 3. 清理孤立节点和边
data = self.cleanup_orphaned_nodes_and_edges(data)
return data
def cleanup_orphaned_nodes_and_edges(self, data: dict) -> dict:
"""
清理孤立的节点和边
孤立节点:其 metadata.memory_ids 中的所有记忆都已被删除
孤立边:其 source 或 target 节点已被删除
"""
print("\n🔗 清理孤立节点和边...")
# 获取当前所有有效的记忆 ID
valid_memory_ids = set(data.get("memories", {}).keys())
print(f" 有效记忆数: {len(valid_memory_ids)}")
# 清理节点
nodes = data.get("nodes", [])
original_node_count = len(nodes)
valid_nodes = []
valid_node_ids = set()
for node in nodes:
node_id = node.get("id")
metadata = node.get("metadata", {})
memory_ids = metadata.get("memory_ids", [])
# 检查节点关联的记忆是否还存在
if memory_ids:
# 过滤掉已删除的记忆 ID
remaining_memory_ids = [mid for mid in memory_ids if mid in valid_memory_ids]
if remaining_memory_ids:
# 更新 metadata 中的 memory_ids
metadata["memory_ids"] = remaining_memory_ids
valid_nodes.append(node)
valid_node_ids.add(node_id)
# 如果没有剩余的有效记忆 ID节点被丢弃
else:
# 没有 memory_ids 的节点(可能是其他方式创建的),检查是否被某个记忆引用
# 保守处理:保留这些节点
valid_nodes.append(node)
valid_node_ids.add(node_id)
deleted_nodes = original_node_count - len(valid_nodes)
data["nodes"] = valid_nodes
print(f" ✅ 节点: {original_node_count}{len(valid_nodes)} (删除 {deleted_nodes})")
# 清理边
edges = data.get("edges", [])
original_edge_count = len(edges)
valid_edges = []
for edge in edges:
source = edge.get("source")
target = edge.get("target")
# 只保留两端节点都存在的边
if source in valid_node_ids and target in valid_node_ids:
valid_edges.append(edge)
deleted_edges = original_edge_count - len(valid_edges)
data["edges"] = valid_edges
print(f" ✅ 边: {original_edge_count}{len(valid_edges)} (删除 {deleted_edges})")
# 更新统计
self.stats["deleted_nodes"] = deleted_nodes
self.stats["deleted_edges"] = deleted_edges
return data
def save_data(self, data: dict):
"""保存修改后的数据"""
if self.dry_run:
print("🔍 [DRY RUN] 跳过保存")
return
print(f"💾 保存数据到: {self.memory_file}")
with open(self.memory_file, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
def save_log(self):
"""保存清理日志"""
print(f"📝 保存清理日志到: {self.log_file}")
with open(self.log_file, "w", encoding="utf-8") as f:
json.dump({
"stats": self.stats,
"dry_run": self.dry_run,
"timestamp": datetime.now().isoformat(),
"log": self.cleanup_log
}, f, ensure_ascii=False, indent=2)
async def run(self):
"""运行清理流程"""
print("=" * 60)
print("🧹 记忆清理脚本 (高并发版)")
print("=" * 60)
print(f"模式: {'模拟运行 (DRY RUN)' if self.dry_run else '实际执行'}")
print(f"批次大小: {self.batch_size}")
print(f"并发数: {self.concurrency}")
print("=" * 60)
# 初始化
await self.initialize()
# 加载数据
data = self.load_memories()
# 获取所有记忆
memories = data.get("memories", {})
memory_list = list(memories.values())
self.stats["total"] = len(memory_list)
print(f"📊 总记忆数: {self.stats['total']}")
if not memory_list:
print("⚠️ 没有记忆需要处理")
return
# 创建备份
if not self.dry_run:
self.create_backup(data)
# 分批
batches = []
for i in range(0, len(memory_list), self.batch_size):
batch = memory_list[i:i + self.batch_size]
batches.append(batch)
total_batches = len(batches)
print(f"📦 共 {total_batches} 个批次,开始并发处理...\n")
# 并发处理所有批次
start_time = datetime.now()
tasks = [
self.evaluate_batch(batch, batch_id=idx)
for idx, batch in enumerate(batches)
]
# 使用 asyncio.gather 并发执行
results = await asyncio.gather(*tasks, return_exceptions=True)
end_time = datetime.now()
elapsed = (end_time - start_time).total_seconds()
# 收集所有评估结果
all_evaluations = []
success_count = 0
error_count = 0
for result in results:
if isinstance(result, Exception):
print(f" ❌ 批次异常: {result}")
error_count += 1
elif isinstance(result, tuple):
batch_id, evaluations = result
if evaluations:
all_evaluations.extend(evaluations)
success_count += 1
else:
error_count += 1
print(f"\n⏱️ 并发处理完成,耗时 {elapsed:.1f}")
print(f" 成功批次: {success_count}/{total_batches}, 失败: {error_count}")
# 统计评估结果
delete_count = sum(1 for e in all_evaluations if e.get("action") == "delete")
keep_count = sum(1 for e in all_evaluations if e.get("action") == "keep")
summarize_count = sum(1 for e in all_evaluations if e.get("action") == "summarize")
print(f" 📊 评估结果: 保留 {keep_count}, 删除 {delete_count}, 精简 {summarize_count}")
# 应用更改
print("\n" + "=" * 60)
print("📊 应用更改...")
data = self.apply_changes(data, all_evaluations)
# 保存数据
self.save_data(data)
# 保存日志
self.save_log()
# 打印统计
print("\n" + "=" * 60)
print("📊 清理统计")
print("=" * 60)
print(f"总记忆数: {self.stats['total']}")
print(f"保留: {self.stats['kept']}")
print(f"删除: {self.stats['deleted']}")
print(f"精简: {self.stats['summarized']}")
print(f"删除节点: {self.stats['deleted_nodes']}")
print(f"删除边: {self.stats['deleted_edges']}")
print(f"错误: {self.stats['errors']}")
print(f"处理速度: {self.stats['total'] / elapsed:.1f} 条/秒")
print("=" * 60)
if self.dry_run:
print("\n⚠️ 这是模拟运行,实际数据未被修改")
print("如要实际执行,请移除 --dry-run 参数")
async def run_cleanup_only(self):
"""只清理孤立节点和边,不重新评估记忆"""
print("=" * 60)
print("🔗 孤立节点/边清理模式")
print("=" * 60)
print(f"模式: {'模拟运行 (DRY RUN)' if self.dry_run else '实际执行'}")
print("=" * 60)
# 加载数据
data = self.load_memories()
# 统计原始数据
memories = data.get("memories", {})
nodes = data.get("nodes", [])
edges = data.get("edges", [])
print(f"📊 当前状态: {len(memories)} 条记忆, {len(nodes)} 个节点, {len(edges)} 条边")
if not self.dry_run:
self.create_backup(data)
# 清理孤立节点和边
if self.dry_run:
# 模拟运行:统计但不修改
valid_memory_ids = set(memories.keys())
# 统计要删除的节点
nodes_to_keep = 0
for node in nodes:
metadata = node.get("metadata", {})
memory_ids = metadata.get("memory_ids", [])
if memory_ids:
remaining = [mid for mid in memory_ids if mid in valid_memory_ids]
if remaining:
nodes_to_keep += 1
else:
nodes_to_keep += 1
nodes_to_delete = len(nodes) - nodes_to_keep
# 统计要删除的边(需要先确定哪些节点会被保留)
valid_node_ids = set()
for node in nodes:
metadata = node.get("metadata", {})
memory_ids = metadata.get("memory_ids", [])
if memory_ids:
remaining = [mid for mid in memory_ids if mid in valid_memory_ids]
if remaining:
valid_node_ids.add(node.get("id"))
else:
valid_node_ids.add(node.get("id"))
edges_to_keep = sum(1 for e in edges if e.get("source") in valid_node_ids and e.get("target") in valid_node_ids)
edges_to_delete = len(edges) - edges_to_keep
print(f"\n🔍 [DRY RUN] 预计清理:")
print(f" 节点: {len(nodes)}{nodes_to_keep} (删除 {nodes_to_delete})")
print(f" 边: {len(edges)}{edges_to_keep} (删除 {edges_to_delete})")
print("\n⚠️ 这是模拟运行,实际数据未被修改")
print("如要实际执行,请移除 --dry-run 参数")
else:
data = self.cleanup_orphaned_nodes_and_edges(data)
self.save_data(data)
print(f"\n✅ 清理完成!")
print(f" 删除节点: {self.stats['deleted_nodes']}")
print(f" 删除边: {self.stats['deleted_edges']}")
async def main():
parser = argparse.ArgumentParser(description="记忆清理脚本 (高并发版)")
parser.add_argument(
"--dry-run",
action="store_true",
help="模拟运行,不实际修改数据"
)
parser.add_argument(
"--batch-size",
type=int,
default=10,
help="每批处理的记忆数量 (默认: 10)"
)
parser.add_argument(
"--concurrency",
type=int,
default=10,
help="并发请求数 (默认: 10)"
)
parser.add_argument(
"--cleanup-only",
action="store_true",
help="只清理孤立节点和边,不重新评估记忆"
)
args = parser.parse_args()
cleaner = MemoryCleaner(
dry_run=args.dry_run,
batch_size=args.batch_size,
concurrency=args.concurrency,
)
if args.cleanup_only:
await cleaner.run_cleanup_only()
else:
await cleaner.run()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -4,7 +4,9 @@
提供 Web API 用于可视化记忆图数据
"""
import asyncio
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from pathlib import Path
from typing import Any
@@ -23,6 +25,9 @@ data_dir = project_root / "data" / "memory_graph"
graph_data_cache = None
current_data_file = None
# 线程池用于异步文件读取
_executor = ThreadPoolExecutor(max_workers=2)
# FastAPI 路由
router = APIRouter()
@@ -64,7 +69,7 @@ def find_available_data_files() -> list[Path]:
async def load_graph_data_from_file(file_path: Path | None = None) -> dict[str, Any]:
"""从磁盘加载图数据"""
"""从磁盘加载图数据(异步,不阻塞主线程)"""
global graph_data_cache, current_data_file
if file_path and file_path != current_data_file:
@@ -86,65 +91,81 @@ async def load_graph_data_from_file(file_path: Path | None = None) -> dict[str,
if not graph_file.exists():
return {"error": f"文件不存在: {graph_file}", "nodes": [], "edges": [], "stats": {}}
with open(graph_file, encoding="utf-8") as f:
data = orjson.loads(f.read())
# 在线程池中异步读取文件,避免阻塞主事件循环
loop = asyncio.get_event_loop()
data = await loop.run_in_executor(_executor, _sync_load_json_file, graph_file)
nodes = data.get("nodes", [])
edges = data.get("edges", [])
metadata = data.get("metadata", {})
nodes_dict = {
node["id"]: {
**node,
"label": node.get("content", ""),
"group": node.get("node_type", ""),
"title": f"{node.get('node_type', '')}: {node.get('content', '')}",
}
for node in nodes
if node.get("id")
}
edges_list = []
seen_edge_ids = set()
for edge in edges:
edge_id = edge.get("id")
if edge_id and edge_id not in seen_edge_ids:
edges_list.append(
{
**edge,
"from": edge.get("source", edge.get("source_id")),
"to": edge.get("target", edge.get("target_id")),
"label": edge.get("relation", ""),
"arrows": "to",
}
)
seen_edge_ids.add(edge_id)
stats = metadata.get("statistics", {})
total_memories = stats.get("total_memories", 0)
graph_data_cache = {
"nodes": list(nodes_dict.values()),
"edges": edges_list,
"memories": [],
"stats": {
"total_nodes": len(nodes_dict),
"total_edges": len(edges_list),
"total_memories": total_memories,
},
"current_file": str(graph_file),
"file_size": graph_file.stat().st_size,
"file_modified": datetime.fromtimestamp(graph_file.stat().st_mtime).isoformat(),
}
# 在线程池中处理数据转换
processed = await loop.run_in_executor(
_executor, _process_graph_data, nodes, edges, metadata, graph_file
)
graph_data_cache = processed
return graph_data_cache
except Exception as e:
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"加载图数据失败: {e}")
def _sync_load_json_file(file_path: Path) -> dict:
"""同步加载 JSON 文件(在线程池中执行)"""
with open(file_path, encoding="utf-8") as f:
return orjson.loads(f.read())
def _process_graph_data(nodes: list, edges: list, metadata: dict, graph_file: Path) -> dict:
"""处理图数据(在线程池中执行)"""
nodes_dict = {
node["id"]: {
**node,
"label": node.get("content", ""),
"group": node.get("node_type", ""),
"title": f"{node.get('node_type', '')}: {node.get('content', '')}",
}
for node in nodes
if node.get("id")
}
edges_list = []
seen_edge_ids = set()
for edge in edges:
edge_id = edge.get("id")
if edge_id and edge_id not in seen_edge_ids:
edges_list.append(
{
**edge,
"from": edge.get("source", edge.get("source_id")),
"to": edge.get("target", edge.get("target_id")),
"label": edge.get("relation", ""),
"arrows": "to",
}
)
seen_edge_ids.add(edge_id)
stats = metadata.get("statistics", {})
total_memories = stats.get("total_memories", 0)
return {
"nodes": list(nodes_dict.values()),
"edges": edges_list,
"memories": [],
"stats": {
"total_nodes": len(nodes_dict),
"total_edges": len(edges_list),
"total_memories": total_memories,
},
"current_file": str(graph_file),
"file_size": graph_file.stat().st_size,
"file_modified": datetime.fromtimestamp(graph_file.stat().st_mtime).isoformat(),
}
@router.get("/", response_class=HTMLResponse)
async def index(request: Request):
"""主页面"""
@@ -152,7 +173,7 @@ async def index(request: Request):
def _format_graph_data_from_manager(memory_manager) -> dict[str, Any]:
"""从 MemoryManager 提取并格式化图数据"""
"""从 MemoryManager 提取并格式化图数据(同步版本,需在线程池中调用)"""
if not memory_manager.graph_store:
return {"nodes": [], "edges": [], "memories": [], "stats": {}}
@@ -216,7 +237,9 @@ async def get_full_graph():
data = {}
if memory_manager and memory_manager._initialized:
data = _format_graph_data_from_manager(memory_manager)
# 在线程池中执行,避免阻塞主事件循环
loop = asyncio.get_event_loop()
data = await loop.run_in_executor(_executor, _format_graph_data_from_manager, memory_manager)
else:
# 如果内存管理器不可用,则从文件加载
data = await load_graph_data_from_file()
@@ -270,71 +293,93 @@ async def get_paginated_graph(
memory_manager = get_memory_manager()
# 获取完整数据
# 获取完整数据(已经是异步的)
if memory_manager and memory_manager._initialized:
full_data = _format_graph_data_from_manager(memory_manager)
loop = asyncio.get_event_loop()
full_data = await loop.run_in_executor(_executor, _format_graph_data_from_manager, memory_manager)
else:
full_data = await load_graph_data_from_file()
nodes = full_data.get("nodes", [])
edges = full_data.get("edges", [])
# 在线程池中处理分页逻辑
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(
_executor,
_process_pagination,
full_data, page, page_size, min_importance, node_types
)
# 过滤节点类型
if node_types:
allowed_types = set(node_types.split(","))
nodes = [n for n in nodes if n.get("group") in allowed_types]
# 按重要性排序如果有importance字段
nodes_with_importance = []
for node in nodes:
# 计算节点重要性(连接的边数)
edge_count = sum(1 for e in edges if e.get("from") == node["id"] or e.get("to") == node["id"])
importance = edge_count / max(len(edges), 1)
if importance >= min_importance:
node["importance"] = importance
nodes_with_importance.append(node)
# 按重要性降序排序
nodes_with_importance.sort(key=lambda x: x.get("importance", 0), reverse=True)
# 分页
total_nodes = len(nodes_with_importance)
total_pages = (total_nodes + page_size - 1) // page_size
start_idx = (page - 1) * page_size
end_idx = min(start_idx + page_size, total_nodes)
paginated_nodes = nodes_with_importance[start_idx:end_idx]
node_ids = set(n["id"] for n in paginated_nodes)
# 只保留连接分页节点的边
paginated_edges = [
e for e in edges
if e.get("from") in node_ids and e.get("to") in node_ids
]
return JSONResponse(content={"success": True, "data": {
"nodes": paginated_nodes,
"edges": paginated_edges,
"pagination": {
"page": page,
"page_size": page_size,
"total_nodes": total_nodes,
"total_pages": total_pages,
"has_next": page < total_pages,
"has_prev": page > 1,
},
"stats": {
"total_nodes": total_nodes,
"total_edges": len(paginated_edges),
"total_memories": full_data.get("stats", {}).get("total_memories", 0),
},
}})
return JSONResponse(content={"success": True, "data": result})
except Exception as e:
import traceback
traceback.print_exc()
return JSONResponse(content={"success": False, "error": str(e)}, status_code=500)
def _process_pagination(full_data: dict, page: int, page_size: int, min_importance: float, node_types: str | None) -> dict:
"""处理分页逻辑(在线程池中执行)"""
nodes = full_data.get("nodes", [])
edges = full_data.get("edges", [])
# 过滤节点类型
if node_types:
allowed_types = set(node_types.split(","))
nodes = [n for n in nodes if n.get("group") in allowed_types]
# 构建边的索引以加速查找
edge_count_map = {}
for e in edges:
from_id = e.get("from")
to_id = e.get("to")
edge_count_map[from_id] = edge_count_map.get(from_id, 0) + 1
edge_count_map[to_id] = edge_count_map.get(to_id, 0) + 1
# 按重要性排序
nodes_with_importance = []
total_edges = max(len(edges), 1)
for node in nodes:
edge_count = edge_count_map.get(node["id"], 0)
importance = edge_count / total_edges
if importance >= min_importance:
node["importance"] = importance
nodes_with_importance.append(node)
# 按重要性降序排序
nodes_with_importance.sort(key=lambda x: x.get("importance", 0), reverse=True)
# 分页
total_nodes = len(nodes_with_importance)
total_pages = (total_nodes + page_size - 1) // page_size
start_idx = (page - 1) * page_size
end_idx = min(start_idx + page_size, total_nodes)
paginated_nodes = nodes_with_importance[start_idx:end_idx]
node_ids = set(n["id"] for n in paginated_nodes)
# 只保留连接分页节点的边
paginated_edges = [
e for e in edges
if e.get("from") in node_ids and e.get("to") in node_ids
]
return {
"nodes": paginated_nodes,
"edges": paginated_edges,
"pagination": {
"page": page,
"page_size": page_size,
"total_nodes": total_nodes,
"total_pages": total_pages,
"has_next": page < total_pages,
"has_prev": page > 1,
},
"stats": {
"total_nodes": total_nodes,
"total_edges": len(paginated_edges),
"total_memories": full_data.get("stats", {}).get("total_memories", 0),
},
}
@router.get("/api/graph/clustered")
async def get_clustered_graph(
max_nodes: int = Query(300, ge=50, le=1000, description="最大节点数"),
@@ -346,9 +391,10 @@ async def get_clustered_graph(
memory_manager = get_memory_manager()
# 获取完整数据
# 获取完整数据(异步)
if memory_manager and memory_manager._initialized:
full_data = _format_graph_data_from_manager(memory_manager)
loop = asyncio.get_event_loop()
full_data = await loop.run_in_executor(_executor, _format_graph_data_from_manager, memory_manager)
else:
full_data = await load_graph_data_from_file()
@@ -364,8 +410,11 @@ async def get_clustered_graph(
"clustered": False,
}})
# 执行聚类
clustered_data = _cluster_graph_data(nodes, edges, max_nodes, cluster_threshold)
# 在线程池中执行聚类
loop = asyncio.get_event_loop()
clustered_data = await loop.run_in_executor(
_executor, _cluster_graph_data, nodes, edges, max_nodes, cluster_threshold
)
return JSONResponse(content={"success": True, "data": {
**clustered_data,

View File

@@ -318,6 +318,15 @@ class StreamLoopManager:
has_messages = force_dispatch or await self._has_messages_to_process(context)
if has_messages:
# 🔒 并发保护:如果 Chatter 正在处理中,跳过本轮
# 这可能发生在1) 打断后重启循环 2) 处理时间超过轮询间隔
if context.is_chatter_processing:
logger.debug(f"🔒 [流工作器] stream={stream_id[:8]}, Chatter正在处理中跳过本轮")
# 不打印"开始处理"日志,直接进入下一轮等待
# 使用较短的等待时间,等待当前处理完成
await asyncio.sleep(1.0)
continue
if force_dispatch:
logger.info(f"⚡ [流工作器] stream={stream_id[:8]}, 任务ID={task_id}, 未读消息 {unread_count} 条,触发强制分发")
else:
@@ -477,10 +486,11 @@ class StreamLoopManager:
logger.warning(f"Chatter管理器未设置: {stream_id}")
return False
# 🔒 防止并发处理:如果已经在处理中,直接返回
# 🔒 二次并发保护(防御性检查)
# 正常情况下不应该触发,如果触发说明有竞态条件
if context.is_chatter_processing:
logger.debug(f"🔒 [并发保护] stream={stream_id[:8]}, Chatter 正在处理中,跳过本次处理请求")
return True # 返回 True这是正常的保护机制不是失败
logger.warning(f"🔒 [并发保护] stream={stream_id[:8]}, Chatter正在处理中(二次检查触发,可能存在竞态)")
return False
# 设置处理状态为正在处理
self._set_stream_processing_status(stream_id, True)
@@ -720,8 +730,8 @@ class StreamLoopManager:
chat_manager = get_chat_manager()
chat_stream = await chat_manager.get_stream(stream_id)
if chat_stream and not chat_stream.group_info:
# 私聊:有消息时几乎立即响应,空转时稍微等待
min_interval = 0.1 if has_messages else 3.0
# 私聊:有消息时快速响应,空转时稍微等待
min_interval = 0.5 if has_messages else 5.0
logger.debug(f"{stream_id} 私聊模式,使用最小间隔: {min_interval:.2f}s")
return min_interval
except Exception as e:

View File

@@ -370,12 +370,18 @@ class MessageManager:
logger.info(f"🚀 打断后重新创建流循环任务: {stream_id}")
# 等待一小段时间确保当前消息已经添加到未读消息中
await asyncio.sleep(0.1)
# 获取当前的stream context
context = chat_stream.context
# 🔒 重要:确保 is_chatter_processing 被重置
# 被取消的任务的 finally 块可能还没执行完,这里强制重置
if context.is_chatter_processing:
logger.debug(f"打断后强制重置 is_chatter_processing: {stream_id}")
context.is_chatter_processing = False
# 等待一小段时间确保当前消息已经添加到未读消息中
await asyncio.sleep(0.1)
# 确保有未读消息需要处理
unread_messages = context.get_unread_messages()
if not unread_messages: