Merge branch 'dev' into dev

This commit is contained in:
SmartMita
2025-04-24 18:05:20 +09:00
committed by GitHub
27 changed files with 1190 additions and 535 deletions

View File

@@ -0,0 +1,71 @@
{
"测试时间": "2025-04-24 13:22:36",
"测试迭代次数": 3,
"不使用工具调用": {
"平均耗时": 3.1020479996999106,
"最短耗时": 2.980656862258911,
"最长耗时": 3.2487313747406006,
"标准差": 0.13581516492157006,
"所有耗时": [
2.98,
3.08,
3.25
]
},
"不使用工具调用_详细响应": [
{
"内容摘要": "那个猫猫头表情包真的太可爱了,墨墨发的表情包也好萌,感觉可以分享一下我收藏的猫猫头系列",
"推理内容摘要": ""
},
{
"内容摘要": "那个猫猫头表情包确实很魔性,我存了好多张,每次看到都觉得特别治愈。墨墨好像也喜欢这种可爱的表情包,可以分享一下我收藏的。",
"推理内容摘要": ""
},
{
"内容摘要": "那个猫猫头表情包真的超可爱,我存了好多张,每次看到都会忍不住笑出来。墨墨发的表情包也好萌,感觉可以和大家分享一下我收藏的猫猫头。\n\n工具无",
"推理内容摘要": ""
}
],
"使用工具调用": {
"平均耗时": 7.927528937657674,
"最短耗时": 5.714647531509399,
"最长耗时": 11.046205997467041,
"标准差": 2.778799784731646,
"所有耗时": [
7.02,
11.05,
5.71
]
},
"使用工具调用_详细响应": [
{
"内容摘要": "这个猫猫头表情包确实挺有意思的不过他们好像还在讨论版本问题。小千石在问3.8和3.11谁大,这挺简单的。",
"推理内容摘要": "",
"工具调用数量": 1,
"工具调用详情": [
{
"工具名称": "compare_numbers",
"参数": "{\"num1\":3.8,\"num2\":3.11}"
}
]
},
{
"内容摘要": "3.8和3.11谁大这个问题有点突然,不过可以简单比较一下。可能小千石在测试我或者真的想知道答案。现在群里的话题有点分散,既有技术讨论又有表情包的话题,我还是先回答数字比较的问题好了,毕竟比较直接。",
"推理内容摘要": "",
"工具调用数量": 1,
"工具调用详情": [
{
"工具名称": "compare_numbers",
"参数": "{\"num1\":3.8,\"num2\":3.11}"
}
]
},
{
"内容摘要": "他们还在纠结调试消息的事儿不过好像讨论得差不多了。猫猫头表情包确实挺有意思的但感觉聊得有点散了哦。小千石问3.8和3.11谁大,这个问题可以回答一下。",
"推理内容摘要": "",
"工具调用数量": 0,
"工具调用详情": []
}
],
"差异百分比": 155.56
}

View File

@@ -286,6 +286,7 @@ class BotConfig:
llm_observation: Dict[str, str] = field(default_factory=lambda: {})
llm_sub_heartflow: Dict[str, str] = field(default_factory=lambda: {})
llm_heartflow: Dict[str, str] = field(default_factory=lambda: {})
llm_tool_use: Dict[str, str] = field(default_factory=lambda: {})
api_urls: Dict[str, str] = field(default_factory=lambda: {})

View File

@@ -41,12 +41,11 @@ class BaseTool:
"function": {"name": cls.name, "description": cls.description, "parameters": cls.parameters},
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行工具函数
Args:
function_args: 工具调用参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果

View File

@@ -19,7 +19,7 @@ class CompareNumbersTool(BaseTool):
"required": ["num1", "num2"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行比较两个数的大小
Args:

View File

@@ -21,7 +21,7 @@ class SearchKnowledgeTool(BaseTool):
"required": ["query"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行知识库搜索
Args:
@@ -32,7 +32,7 @@ class SearchKnowledgeTool(BaseTool):
Dict: 工具执行结果
"""
try:
query = function_args.get("query", message_txt)
query = function_args.get("query")
threshold = function_args.get("threshold", 0.4)
# 调用知识库搜索

View File

@@ -20,7 +20,7 @@ class GetMemoryTool(BaseTool):
"required": ["topic"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行记忆获取
Args:
@@ -31,7 +31,7 @@ class GetMemoryTool(BaseTool):
Dict: 工具执行结果
"""
try:
topic = function_args.get("topic", message_txt)
topic = function_args.get("topic")
max_memory_num = function_args.get("max_memory_num", 2)
# 将主题字符串转换为列表

View File

@@ -17,7 +17,7 @@ class GetCurrentDateTimeTool(BaseTool):
"required": [],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行获取当前时间、日期、年份和星期
Args:

View File

@@ -24,7 +24,7 @@ class SearchKnowledgeFromLPMMTool(BaseTool):
"required": ["query"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行知识库搜索
Args:
@@ -35,7 +35,7 @@ class SearchKnowledgeFromLPMMTool(BaseTool):
Dict: 工具执行结果
"""
try:
query = function_args.get("query", message_txt)
query = function_args.get("query")
# threshold = function_args.get("threshold", 0.4)
# 调用知识库搜索

View File

@@ -50,8 +50,8 @@ class ToolUser:
prompt += message_txt
# prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name}{bot_name}是你的名字。根据之前的聊天记录补充问题信息,搜索时避开你的名字。\n"
prompt += "必须调用 'lpmm_get_knowledge' 工具来获取知识。\n"
prompt += "你现在需要对群里的聊天内容进行回复,现在选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
# prompt += "必须调用 'lpmm_get_knowledge' 工具来获取知识。\n"
prompt += "你现在需要对群里的聊天内容进行回复,请你思考应该使用什么工具,然后选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
@@ -68,7 +68,7 @@ class ToolUser:
return get_all_tool_definitions()
@staticmethod
async def _execute_tool_call(tool_call, message_txt: str):
async def _execute_tool_call(tool_call):
"""执行特定的工具调用
Args:
@@ -89,7 +89,7 @@ class ToolUser:
return None
# 执行工具
result = await tool_instance.execute(function_args, message_txt)
result = await tool_instance.execute(function_args)
if result:
# 直接使用 function_name 作为 tool_type
tool_type = function_name
@@ -159,13 +159,15 @@ class ToolUser:
tool_calls_str = ""
for tool_call in tool_calls:
tool_calls_str += f"{tool_call['function']['name']}\n"
logger.info(f"根据:\n{prompt}\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}")
logger.info(
f"根据:\n{prompt}\n\n内容:{content}\n\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}"
)
tool_results = []
structured_info = {} # 动态生成键
# 执行所有工具调用
for tool_call in tool_calls:
result = await self._execute_tool_call(tool_call, message_txt)
result = await self._execute_tool_call(tool_call)
if result:
tool_results.append(result)
# 使用工具名称作为键

View File

@@ -0,0 +1,17 @@
from src.plugins.moods.moods import MoodManager
import enum
class ChatState(enum.Enum):
ABSENT = "没在看群"
CHAT = "随便水群"
FOCUSED = "激情水群"
class ChatStateInfo:
def __init__(self):
self.chat_status: ChatState = ChatState.ABSENT
self.current_state_time = 120
self.mood_manager = MoodManager()
self.mood = self.mood_manager.get_prompt()

View File

@@ -13,6 +13,7 @@ mai_state_config = LogConfig(
logger = get_module_logger("mai_state_manager", config=mai_state_config)
# enable_unlimited_hfc_chat = True
enable_unlimited_hfc_chat = False
@@ -38,7 +39,7 @@ class MaiState(enum.Enum):
if self == MaiState.OFFLINE:
return 0
elif self == MaiState.PEEKING:
return 1
return 2
elif self == MaiState.NORMAL_CHAT:
return 3
elif self == MaiState.FOCUSED_CHAT:
@@ -52,11 +53,11 @@ class MaiState(enum.Enum):
if self == MaiState.OFFLINE:
return 0
elif self == MaiState.PEEKING:
return 0
return 1
elif self == MaiState.NORMAL_CHAT:
return 1
elif self == MaiState.FOCUSED_CHAT:
return 2
return 3
class MaiStateInfo:

View File

@@ -22,9 +22,6 @@ class Mind:
self.subheartflow_manager = subheartflow_manager
self.llm_model = llm_model
self.individuality = Individuality.get_instance()
# Main mind state is still managed by Heartflow for now
# self.current_mind = "你什么也没想"
# self.past_mind = []
async def do_a_thinking(self, current_main_mind: str, mai_state_info: "MaiStateInfo", schedule_info: str):
"""

View File

@@ -78,15 +78,17 @@ class ChattingObservation(Observation):
return self.talking_message_str
async def observe(self):
# 自上一次观察的新消息
new_messages_list = get_raw_msg_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=self.last_observe_time,
timestamp_end=datetime.now().timestamp(), # 使用当前时间作为结束时间戳
timestamp_end=datetime.now().timestamp(),
limit=self.max_now_obs_len,
limit_mode="latest",
)
if new_messages_list: # 检查列表是否为空
last_obs_time_mark = self.last_observe_time
last_obs_time_mark = self.last_observe_time
if new_messages_list:
self.last_observe_time = new_messages_list[-1]["time"]
self.talking_message.extend(new_messages_list)
@@ -97,9 +99,7 @@ class ChattingObservation(Observation):
self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的
oldest_messages_str = await build_readable_messages(
messages=oldest_messages,
timestamp_mode="normal",
read_mark=last_obs_time_mark,
messages=oldest_messages, timestamp_mode="normal", read_mark=0
)
# 调用 LLM 总结主题
@@ -137,7 +137,11 @@ class ChattingObservation(Observation):
)
self.mid_memory_info = mid_memory_str
self.talking_message_str = await build_readable_messages(messages=self.talking_message, timestamp_mode="normal")
self.talking_message_str = await build_readable_messages(
messages=self.talking_message,
timestamp_mode="normal",
read_mark=last_obs_time_mark,
)
logger.trace(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.talking_message_str}"

View File

@@ -1,26 +1,19 @@
from .observation import Observation, ChattingObservation
import asyncio
from src.plugins.moods.moods import MoodManager
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
from typing import Optional, List, Dict, Callable
import traceback
from src.plugins.chat.utils import parse_text_timestamps
import enum
from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
from src.individuality.individuality import Individuality
import random
from src.plugins.person_info.relationship_manager import relationship_manager
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.plugins.chat.message import MessageRecv
from src.plugins.chat.chat_stream import chat_manager
import math
from src.plugins.heartFC_chat.heartFC_chat import HeartFChatting
from src.plugins.heartFC_chat.normal_chat import NormalChat
# from src.do_tool.tool_use import ToolUser
from src.heart_flow.mai_state_manager import MaiStateInfo
from src.heart_flow.chat_state_info import ChatState, ChatStateInfo
from src.heart_flow.sub_mind import SubMind
# 定义常量 (从 interest.py 移动过来)
@@ -40,41 +33,6 @@ interest_log_config = LogConfig(
interest_logger = get_module_logger("InterestChatting", config=interest_log_config)
def init_prompt():
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += "{extra_info}\n"
# prompt += "{prompt_schedule}\n"
# prompt += "{relation_prompt_all}\n"
prompt += "{prompt_personality}\n"
prompt += "刚刚你的想法是:\n我是{bot_name},我想,{current_thinking_info}\n"
prompt += "-----------------------------------\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "\n你现在{mood_info}\n"
# prompt += "你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += "现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,要不要对群里的话题进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。\n"
prompt += "回复的要求是:平淡一些,简短一些,说中文,如果你要回复,最好只回复一个人的一个话题\n"
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写。不要回复自己的发言,尽量不要说你说过的话。"
prompt += "现在请你{hf_do_next},不要分点输出,生成内心想法,文字不要浮夸"
Prompt(prompt, "sub_heartflow_prompt_before")
class ChatState(enum.Enum):
ABSENT = "没在看群"
CHAT = "随便水群"
FOCUSED = "激情水群"
class ChatStateInfo:
def __init__(self):
self.chat_status: ChatState = ChatState.ABSENT
self.current_state_time = 120
self.mood_manager = MoodManager()
self.mood = self.mood_manager.get_prompt()
base_reply_probability = 0.05
probability_increase_rate_per_second = 0.08
max_reply_probability = 1
@@ -261,15 +219,9 @@ class SubHeartflow:
self.mai_states = mai_states
# 思维状态相关
self.current_mind = "什么也没想" # 当前想法
self.past_mind = [] # 历史想法记录
# 聊天状态管理
self.chat_state: ChatStateInfo = ChatStateInfo() # 该sub_heartflow的聊天状态信息
self.interest_chatting = InterestChatting(
state_change_callback=self.set_chat_state
) # 该sub_heartflow的兴趣系统
self.interest_chatting = InterestChatting(state_change_callback=self.set_chat_state)
# 活动状态管理
self.last_active_time = time.time() # 最后活跃时间
@@ -283,11 +235,8 @@ class SubHeartflow:
self.running_knowledges = [] # 运行中的知识
# LLM模型配置
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="sub_heart_flow",
self.sub_mind = SubMind(
subheartflow_id=self.subheartflow_id, chat_state=self.chat_state, observations=self.observations
)
self.log_prefix = chat_manager.get_stream_name(self.subheartflow_id) or self.subheartflow_id
@@ -380,7 +329,7 @@ class SubHeartflow:
logger.info(f"{log_prefix} 麦麦准备开始专注聊天 (创建新实例)...")
try:
self.heart_fc_instance = HeartFChatting(
chat_id=self.chat_id,
chat_id=self.chat_id, sub_mind=self.sub_mind, observations=self.observations
)
if await self.heart_fc_instance._initialize():
await self.heart_fc_instance.start() # 初始化成功后启动循环
@@ -477,104 +426,8 @@ class SubHeartflow:
logger.info(f"{self.log_prefix} 子心流后台任务已停止。")
async def do_thinking_before_reply(
self,
extra_info: str,
obs_id: list[str] = None,
):
self.last_active_time = time.time()
current_thinking_info = self.current_mind
mood_info = self.chat_state.mood
observation = self._get_primary_observation()
chat_observe_info = ""
if obs_id:
try:
chat_observe_info = observation.get_observe_info(obs_id)
logger.debug(f"[{self.subheartflow_id}] Using specific observation IDs: {obs_id}")
except Exception as e:
logger.error(
f"[{self.subheartflow_id}] Error getting observe info with IDs {obs_id}: {e}. Falling back."
)
chat_observe_info = observation.get_observe_info()
else:
chat_observe_info = observation.get_observe_info()
# logger.debug(f"[{self.subheartflow_id}] Using default observation info.")
extra_info_prompt = ""
if extra_info:
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
else:
extra_info_prompt = "无工具信息。\n"
individuality = Individuality.get_instance()
prompt_personality = f"你的名字是{individuality.personality.bot_nickname},你"
prompt_personality += individuality.personality.personality_core
if individuality.personality.personality_sides:
random_side = random.choice(individuality.personality.personality_sides)
prompt_personality += f"{random_side}"
if individuality.identity.identity_detail:
random_detail = random.choice(individuality.identity.identity_detail)
prompt_personality += f"{random_detail}"
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
local_random = random.Random()
current_minute = int(time.strftime("%M"))
local_random.seed(current_minute)
hf_options = [
("继续生成你在这个聊天中的想法,在原来想法的基础上继续思考", 0.7),
("生成你在这个聊天中的想法,在原来的想法上尝试新的话题", 0.1),
("生成你在这个聊天中的想法,不要太深入", 0.1),
("继续生成你在这个聊天中的想法,进行深入思考", 0.1),
]
hf_do_next = local_random.choices(
[option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1
)[0]
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info=extra_info_prompt,
prompt_personality=prompt_personality,
bot_name=individuality.personality.bot_nickname,
current_thinking_info=current_thinking_info,
time_now=time_now,
chat_observe_info=chat_observe_info,
mood_info=mood_info,
hf_do_next=hf_do_next,
)
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
logger.debug(f"[{self.subheartflow_id}] 心流思考prompt:\n{prompt}\n")
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{response}\n")
if not response:
response = "(不知道该想些什么...)"
logger.warning(f"[{self.subheartflow_id}] LLM 返回空结果,思考失败。")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] 内心独白获取失败: {e}")
response = "(思考时发生错误...)"
self.update_current_mind(response)
return self.current_mind, self.past_mind
def update_current_mind(self, response):
self.past_mind.append(self.current_mind)
self.current_mind = response
self.sub_mind.update_current_mind(response)
def add_observation(self, observation: Observation):
for existing_obs in self.observations:
@@ -621,7 +474,7 @@ class SubHeartflow:
interest_state = await self.get_interest_state()
return {
"interest_state": interest_state,
"current_mind": self.current_mind,
"current_mind": self.sub_mind.current_mind,
"chat_state": self.chat_state.chat_status.value,
"last_active_time": self.last_active_time,
}
@@ -661,6 +514,3 @@ class SubHeartflow:
self.chat_state.chat_status = ChatState.ABSENT # 状态重置为不参与
logger.info(f"{self.log_prefix} 子心流关闭完成。")
init_prompt()

246
src/heart_flow/sub_mind.py Normal file
View File

@@ -0,0 +1,246 @@
from .observation import Observation
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
from src.individuality.individuality import Individuality
import random
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.do_tool.tool_use import ToolUser
from src.plugins.utils.json_utils import safe_json_dumps, normalize_llm_response, process_llm_tool_calls
from src.heart_flow.chat_state_info import ChatStateInfo
subheartflow_config = LogConfig(
console_format=SUB_HEARTFLOW_STYLE_CONFIG["console_format"],
file_format=SUB_HEARTFLOW_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("subheartflow", config=subheartflow_config)
def init_prompt():
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += "{extra_info}\n"
# prompt += "{prompt_schedule}\n"
# prompt += "{relation_prompt_all}\n"
prompt += "{prompt_personality}\n"
prompt += "刚刚你的想法是:\n我是{bot_name},我想,{current_thinking_info}\n"
prompt += "-----------------------------------\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "\n你现在{mood_info}\n"
prompt += "现在请你生成你的内心想法,要求思考群里正在进行的话题,之前大家聊过的话题,群里成员的关系。"
prompt += "请你思考,要不要对群里的话题进行回复,以及如何对群聊内容进行回复\n"
prompt += "回复的要求是:平淡一些,简短一些,如果你要回复,最好只回复一个人的一个话题\n"
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要回复自己的发言\n"
prompt += "现在请你先输出想法,{hf_do_next},不要分点输出,文字不要浮夸"
prompt += "在输出完想法后,请你思考应该使用什么工具。工具可以帮你取得一些你不知道的信息,或者进行一些操作。"
prompt += "如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。\n"
Prompt(prompt, "sub_heartflow_prompt_before")
class SubMind:
def __init__(self, subheartflow_id: str, chat_state: ChatStateInfo, observations: Observation):
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="sub_heart_flow",
)
self.chat_state = chat_state
self.observations = observations
self.current_mind = ""
self.past_mind = []
self.structured_info = {}
async def do_thinking_before_reply(self):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
返回:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
"""
# 更新活跃时间
self.last_active_time = time.time()
# ---------- 1. 准备基础数据 ----------
# 获取现有想法和情绪状态
current_thinking_info = self.current_mind
mood_info = self.chat_state.mood
# 获取观察对象
observation = self.observations[0]
if not observation:
logger.error(f"[{self.subheartflow_id}] 无法获取观察对象")
self.update_current_mind("(我没看到任何聊天内容...)")
return self.current_mind, self.past_mind
# 获取观察内容
chat_observe_info = observation.get_observe_info()
# ---------- 2. 准备工具和个性化数据 ----------
# 初始化工具
tool_instance = ToolUser()
tools = tool_instance._define_tools()
# 获取个性化信息
individuality = Individuality.get_instance()
# 构建个性部分
prompt_personality = f"你的名字是{individuality.personality.bot_nickname},你"
prompt_personality += individuality.personality.personality_core
# 随机添加个性侧面
if individuality.personality.personality_sides:
random_side = random.choice(individuality.personality.personality_sides)
prompt_personality += f"{random_side}"
# 随机添加身份细节
if individuality.identity.identity_detail:
random_detail = random.choice(individuality.identity.identity_detail)
prompt_personality += f"{random_detail}"
# 获取当前时间
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# ---------- 3. 构建思考指导部分 ----------
# 创建本地随机数生成器,基于分钟数作为种子
local_random = random.Random()
current_minute = int(time.strftime("%M"))
local_random.seed(current_minute)
# 思考指导选项和权重
hf_options = [
("继续生成你在这个聊天中的想法,在原来想法的基础上继续思考,但是不要纠结于同一个话题", 0.6),
("生成你在这个聊天中的想法,在原来的想法上尝试新的话题", 0.1),
("生成你在这个聊天中的想法,不要太深入", 0.2),
("继续生成你在这个聊天中的想法,进行深入思考", 0.1),
]
# 加权随机选择思考指导
hf_do_next = local_random.choices(
[option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1
)[0]
# ---------- 4. 构建最终提示词 ----------
# 获取提示词模板并填充数据
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info="", # 可以在这里添加额外信息
prompt_personality=prompt_personality,
bot_name=individuality.personality.bot_nickname,
current_thinking_info=current_thinking_info,
time_now=time_now,
chat_observe_info=chat_observe_info,
mood_info=mood_info,
hf_do_next=hf_do_next,
)
logger.debug(f"[{self.subheartflow_id}] 心流思考提示词构建完成")
# ---------- 5. 执行LLM请求并处理响应 ----------
content = "" # 初始化内容变量
_reasoning_content = "" # 初始化推理内容变量
try:
# 调用LLM生成响应
response = await self.llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
# 标准化响应格式
success, normalized_response, error_msg = normalize_llm_response(
response, log_prefix=f"[{self.subheartflow_id}] "
)
if not success:
# 处理标准化失败情况
logger.warning(f"[{self.subheartflow_id}] {error_msg}")
content = "LLM响应格式无法处理"
else:
# 从标准化响应中提取内容
if len(normalized_response) >= 2:
content = normalized_response[0]
_reasoning_content = normalized_response[1] if len(normalized_response) > 1 else ""
# 处理可能的工具调用
if len(normalized_response) == 3:
# 提取并验证工具调用
success, valid_tool_calls, error_msg = process_llm_tool_calls(
normalized_response, log_prefix=f"[{self.subheartflow_id}] "
)
if success and valid_tool_calls:
# 记录工具调用信息
tool_calls_str = ", ".join(
[call.get("function", {}).get("name", "未知工具") for call in valid_tool_calls]
)
logger.info(
f"[{self.subheartflow_id}] 模型请求调用{len(valid_tool_calls)}个工具: {tool_calls_str}"
)
# 收集工具执行结果
await self._execute_tool_calls(valid_tool_calls, tool_instance)
elif not success:
logger.warning(f"[{self.subheartflow_id}] {error_msg}")
except Exception as e:
# 处理总体异常
logger.error(f"[{self.subheartflow_id}] 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
content = "思考过程中出现错误"
# 记录最终思考结果
logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{content}\n")
# 处理空响应情况
if not content:
content = "(不知道该想些什么...)"
logger.warning(f"[{self.subheartflow_id}] LLM返回空结果思考失败。")
# ---------- 6. 更新思考状态并返回结果 ----------
# 更新当前思考内容
self.update_current_mind(content)
return self.current_mind, self.past_mind
async def _execute_tool_calls(self, tool_calls, tool_instance):
"""
执行一组工具调用并收集结果
参数:
tool_calls: 工具调用列表
tool_instance: 工具使用器实例
"""
tool_results = []
structured_info = {} # 动态生成键
# 执行所有工具调用
for tool_call in tool_calls:
try:
result = await tool_instance._execute_tool_call(tool_call)
if result:
tool_results.append(result)
# 使用工具名称作为键
tool_name = result["name"]
if tool_name not in structured_info:
structured_info[tool_name] = []
structured_info[tool_name].append({"name": result["name"], "content": result["content"]})
except Exception as tool_e:
logger.error(f"[{self.subheartflow_id}] 工具执行失败: {tool_e}")
# 如果有工具结果,记录并更新结构化信息
if structured_info:
logger.debug(f"工具调用收集到结构化信息: {safe_json_dumps(structured_info, ensure_ascii=False)}")
self.structured_info = structured_info
def update_current_mind(self, response):
self.past_mind.append(self.current_mind)
self.current_mind = response
init_prompt()

View File

@@ -456,7 +456,7 @@ class SubHeartflowManager:
for subheartflow in self.subheartflows.values():
# 检查子心流是否活跃(非ABSENT状态)
if subheartflow.chat_state.chat_status != ChatState.ABSENT:
minds.append(subheartflow.current_mind)
minds.append(subheartflow.sub_mind.current_mind)
return minds
def update_main_mind_in_subflows(self, main_mind: str):

View File

@@ -83,7 +83,7 @@ class ChatBot:
return
if groupinfo != None and groupinfo.group_id not in global_config.talk_allowed_groups:
logger.debug(f"{groupinfo.group_id}被禁止回复")
logger.trace(f"{groupinfo.group_id}被禁止回复")
return
if message.message_info.template_info and not message.message_info.template_info.template_default:

View File

@@ -327,8 +327,10 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
# 提取最终的句子内容
final_sentences = [content for content, sep in merged_segments if content] # 只保留有内容的段
# 清理可能引入的空字符串
final_sentences = [s for s in final_sentences if s]
# 清理可能引入的空字符串和仅包含空白的字符串
final_sentences = [
s for s in final_sentences if s.strip()
] # 过滤掉空字符串以及仅包含空白(如换行符、空格)的字符串
logger.debug(f"分割并合并后的句子: {final_sentences}")
return final_sentences

View File

@@ -1,8 +1,7 @@
import asyncio
import time
import traceback
from typing import List, Optional, Dict, Any, TYPE_CHECKING
import json
from typing import List, Optional, Dict, Any
from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending
from src.plugins.chat.message import MessageSet, Seg # Local import needed after move
from src.plugins.chat.chat_stream import ChatStream
@@ -17,6 +16,10 @@ from src.plugins.heartFC_chat.heartFC_generator import HeartFCGenerator
from src.do_tool.tool_use import ToolUser
from ..chat.message_sender import message_manager # <-- Import the global manager
from src.plugins.chat.emoji_manager import emoji_manager
from src.plugins.utils.json_utils import process_llm_tool_response # 导入新的JSON工具
from src.heart_flow.sub_mind import SubMind
from src.heart_flow.observation import Observation
from src.plugins.heartFC_chat.heartflow_prompt_builder import global_prompt_manager
# --- End import ---
@@ -31,13 +34,6 @@ interest_log_config = LogConfig(
logger = get_module_logger("HeartFCLoop", config=interest_log_config) # Logger Name Changed
# Forward declaration for type hinting
if TYPE_CHECKING:
# Keep this if HeartFCController methods are still needed elsewhere,
# but the instance variable will be removed from HeartFChatting
# from .heartFC_controler import HeartFCController
from src.heart_flow.heartflow import SubHeartflow, heartflow # <-- 同时导入 heartflow 实例用于类型检查
PLANNER_TOOL_DEFINITION = [
{
"type": "function",
@@ -72,7 +68,7 @@ class HeartFChatting:
其生命周期现在由其关联的 SubHeartflow 的 FOCUSED 状态控制。
"""
def __init__(self, chat_id: str):
def __init__(self, chat_id: str, sub_mind: SubMind, observations: Observation):
"""
HeartFChatting 初始化函数
@@ -82,7 +78,8 @@ class HeartFChatting:
# 基础属性
self.stream_id: str = chat_id # 聊天流ID
self.chat_stream: Optional[ChatStream] = None # 关联的聊天流
self.sub_hf: SubHeartflow = None # 关联的子心流
self.sub_mind: SubMind = sub_mind # 关联的子思维
self.observations: Observation = observations # 关联的观察
# 初始化状态控制
self._initialized = False # 是否已初始化标志
@@ -119,18 +116,10 @@ class HeartFChatting:
log_prefix = self._get_log_prefix() # 获取前缀
try:
self.chat_stream = chat_manager.get_stream(self.stream_id)
if not self.chat_stream:
logger.error(f"{log_prefix} 获取ChatStream失败。")
return False
# <-- 在这里导入 heartflow 实例
from src.heart_flow.heartflow import heartflow
self.sub_hf = heartflow.get_subheartflow(self.stream_id)
if not self.sub_hf:
logger.warning(f"{log_prefix} 获取SubHeartflow失败。一些功能可能受限。")
self._initialized = True
logger.info(f"麦麦感觉到了激发了HeartFChatting{log_prefix} 初始化成功。")
return True
@@ -245,9 +234,6 @@ class HeartFChatting:
action = planner_result.get("action", "error")
reasoning = planner_result.get("reasoning", "Planner did not provide reasoning.")
emoji_query = planner_result.get("emoji_query", "")
# current_mind = planner_result.get("current_mind", "[Mind unavailable]")
# send_emoji_from_tools = planner_result.get("send_emoji_from_tools", "") # Emoji from tools
observed_messages = planner_result.get("observed_messages", [])
llm_error = planner_result.get("llm_error", False)
if llm_error:
@@ -259,7 +245,7 @@ class HeartFChatting:
elif action == "text_reply":
logger.debug(f"{log_prefix} HeartFChatting: 麦麦决定回复文本. 理由: {reasoning}")
action_taken_this_cycle = True
anchor_message = await self._get_anchor_message(observed_messages)
anchor_message = await self._get_anchor_message()
if not anchor_message:
logger.error(f"{log_prefix} 循环: 无法获取锚点消息用于回复. 跳过周期.")
else:
@@ -304,7 +290,7 @@ class HeartFChatting:
f"{log_prefix} HeartFChatting: 麦麦决定回复表情 ('{emoji_query}'). 理由: {reasoning}"
)
action_taken_this_cycle = True
anchor = await self._get_anchor_message(observed_messages)
anchor = await self._get_anchor_message()
if anchor:
try:
# --- Handle Emoji (Moved) --- #
@@ -322,19 +308,13 @@ class HeartFChatting:
# --- 新增:等待新消息 ---
logger.debug(f"{log_prefix} HeartFChatting: 开始等待新消息 (自 {planner_start_db_time})...")
observation = None
if self.sub_hf:
observation = self.sub_hf._get_primary_observation()
observation = self.observations[0]
if observation:
with Timer("Wait New Msg", cycle_timers): # <--- Start Wait timer
wait_start_time = time.monotonic()
while True:
# Removed timer check within wait loop
# async with self._timer_lock:
# if self._loop_timer <= 0:
# logger.info(f"{log_prefix} HeartFChatting: 等待新消息时计时器耗尽。")
# break # 计时器耗尽,退出等待
# 检查是否有新消息
has_new = await observation.has_new_messages_since(planner_start_db_time)
if has_new:
@@ -395,14 +375,6 @@ class HeartFChatting:
self._processing_lock.release()
# logger.trace(f"{log_prefix} 循环释放了处理锁.") # Reduce noise
# --- Timer Decrement Logging Removed ---
# async with self._timer_lock:
# self._loop_timer -= cycle_duration
# # Log timer decrement less aggressively
# if cycle_duration > 0.1 or not action_taken_this_cycle:
# logger.debug(
# f"{log_prefix} HeartFChatting: 周期耗时 {cycle_duration:.2f}s. 剩余时间: {self._loop_timer:.1f}s."
# )
if cycle_duration > 0.1:
logger.debug(f"{log_prefix} HeartFChatting: 周期耗时 {cycle_duration:.2f}s.")
@@ -437,77 +409,34 @@ class HeartFChatting:
"""
log_prefix = self._get_log_prefix()
observed_messages: List[dict] = []
tool_result_info = {}
get_mid_memory_id = []
# send_emoji_from_tools = "" # Emoji suggested by tools
current_mind: Optional[str] = None
llm_error = False # Flag for LLM failure
# --- Ensure SubHeartflow is available ---
if not self.sub_hf:
# Attempt to re-fetch if missing (might happen if initialization order changes)
self.sub_hf = heartflow.get_subheartflow(self.stream_id)
if not self.sub_hf:
logger.error(f"{log_prefix}[Planner] SubHeartflow is not available. Cannot proceed.")
return {
"action": "error",
"reasoning": "SubHeartflow unavailable",
"llm_error": True,
"observed_messages": [],
}
current_mind: Optional[str] = None
llm_error = False
try:
# Access observation via self.sub_hf
observation = self.sub_hf._get_primary_observation()
observation = self.observations[0]
await observation.observe()
observed_messages = observation.talking_message
observed_messages_str = observation.talking_message_str
except Exception as e:
logger.error(f"{log_prefix}[Planner] 获取观察信息时出错: {e}")
# Handle error gracefully, maybe return an error state
observed_messages_str = "[Error getting observation]"
# Consider returning error here if observation is critical
# --- 结束获取观察信息 --- #
# --- (Moved from _replier_work) 1. 思考前使用工具 --- #
try:
# Access tool_user directly
tool_result = await self.tool_user.use_tool(
message_txt=observed_messages_str,
chat_stream=self.chat_stream,
observation=self.sub_hf._get_primary_observation(),
)
if tool_result.get("used_tools", False):
tool_result_info = tool_result.get("structured_info", {})
logger.debug(f"{log_prefix}[Planner] 规划前工具结果: {tool_result_info}")
get_mid_memory_id = [
mem["content"] for mem in tool_result_info.get("mid_chat_mem", []) if "content" in mem
]
except Exception as e_tool:
logger.error(f"{log_prefix}[Planner] 规划前工具使用失败: {e_tool}")
# --- 结束工具使用 --- #
# --- (Moved from _replier_work) 2. SubHeartflow 思考 --- #
try:
current_mind, _past_mind = await self.sub_hf.do_thinking_before_reply(
extra_info=tool_result_info,
obs_id=get_mid_memory_id,
)
# logger.debug(f"{log_prefix}[Planner] SubHF Mind: {current_mind}")
current_mind, _past_mind = await self.sub_mind.do_thinking_before_reply()
except Exception as e_subhf:
logger.error(f"{log_prefix}[Planner] SubHeartflow 思考失败: {e_subhf}")
current_mind = "[思考时出错]"
# --- 结束 SubHeartflow 思考 --- #
# --- 使用 LLM 进行决策 --- #
action = "no_reply" # Default action
emoji_query = "" # Default emoji query (used if action is emoji_reply or text_reply with emoji)
action = "no_reply" # 默认动作
emoji_query = "" # 默认表情查询
reasoning = "默认决策或获取决策失败"
llm_error = False # LLM错误标志
try:
prompt = await self._build_planner_prompt(observed_messages_str, current_mind)
prompt = await self._build_planner_prompt(
observed_messages_str, current_mind, self.sub_mind.structured_info
)
payload = {
"model": self.planner_llm.model_name,
"messages": [{"role": "user", "content": prompt}],
@@ -515,83 +444,66 @@ class HeartFChatting:
"tool_choice": {"type": "function", "function": {"name": "decide_reply_action"}},
}
response = await self.planner_llm._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
# 执行LLM请求
try:
response = await self.planner_llm._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
)
except Exception as req_e:
logger.error(f"{log_prefix}[Planner] LLM请求执行失败: {req_e}")
return {
"action": "error",
"reasoning": f"LLM请求执行失败: {req_e}",
"emoji_query": "",
"current_mind": current_mind,
"observed_messages": observed_messages,
"llm_error": True,
}
# 使用辅助函数处理工具调用响应
success, arguments, error_msg = process_llm_tool_response(
response, expected_tool_name="decide_reply_action", log_prefix=f"{log_prefix}[Planner] "
)
if len(response) == 3:
_, _, tool_calls = response
if tool_calls and isinstance(tool_calls, list) and len(tool_calls) > 0:
tool_call = tool_calls[0]
if (
tool_call.get("type") == "function"
and tool_call.get("function", {}).get("name") == "decide_reply_action"
):
try:
arguments = json.loads(tool_call["function"]["arguments"])
action = arguments.get("action", "no_reply")
reasoning = arguments.get("reasoning", "未提供理由")
# Planner explicitly provides emoji query if action is emoji_reply or text_reply wants emoji
emoji_query = arguments.get("emoji_query", "")
logger.debug(
f"{log_prefix}[Planner] LLM Prompt: {prompt}\n决策: {action}, 理由: {reasoning}, EmojiQuery: '{emoji_query}'"
)
except json.JSONDecodeError as json_e:
logger.error(
f"{log_prefix}[Planner] 解析工具参数失败: {json_e}. Args: {tool_call['function'].get('arguments')}"
)
action = "error"
reasoning = "工具参数解析失败"
llm_error = True
except Exception as parse_e:
logger.error(f"{log_prefix}[Planner] 处理工具参数时出错: {parse_e}")
action = "error"
reasoning = "处理工具参数时出错"
llm_error = True
else:
logger.warning(
f"{log_prefix}[Planner] LLM 未按预期调用 'decide_reply_action' 工具。Tool calls: {tool_calls}"
)
action = "error"
reasoning = "LLM未调用预期工具"
llm_error = True
else:
logger.warning(f"{log_prefix}[Planner] LLM 响应中未包含有效的工具调用。Tool calls: {tool_calls}")
action = "error"
reasoning = "LLM响应无工具调用"
llm_error = True
if success:
# 提取决策参数
action = arguments.get("action", "no_reply")
reasoning = arguments.get("reasoning", "未提供理由")
emoji_query = arguments.get("emoji_query", "")
# 记录决策结果
logger.debug(f"{log_prefix}[Planner] 决策结果: {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'")
else:
logger.warning(f"{log_prefix}[Planner] LLM 未返回预期的工具调用响应。Response parts: {len(response)}")
# 处理工具调用失败
logger.warning(f"{log_prefix}[Planner] {error_msg}")
action = "error"
reasoning = "LLM响应格式错误"
reasoning = error_msg
llm_error = True
except Exception as llm_e:
logger.error(f"{log_prefix}[Planner] Planner LLM 调用失败: {llm_e}")
# logger.error(traceback.format_exc()) # Maybe too verbose for loop?
logger.error(f"{log_prefix}[Planner] Planner LLM处理过程中出错: {llm_e}")
logger.error(traceback.format_exc()) # 记录完整堆栈以便调试
action = "error"
reasoning = f"LLM 调用失败: {llm_e}"
reasoning = f"LLM处理失败: {llm_e}"
llm_error = True
# --- 结束 LLM 决策 --- #
return {
"action": action,
"reasoning": reasoning,
"emoji_query": emoji_query, # Explicit query from Planner/LLM
"emoji_query": emoji_query,
"current_mind": current_mind,
# "send_emoji_from_tools": send_emoji_from_tools, # Emoji suggested by tools (used as fallback)
"observed_messages": observed_messages,
"llm_error": llm_error,
}
async def _get_anchor_message(self, observed_messages: List[dict]) -> Optional[MessageRecv]:
async def _get_anchor_message(self) -> Optional[MessageRecv]:
"""
重构观察到的最后一条消息作为回复的锚点,
如果重构失败或观察为空,则创建一个占位符。
"""
try:
# --- Create Placeholder --- #
placeholder_id = f"mid_pf_{int(time.time() * 1000)}"
placeholder_user = UserInfo(
user_id="system_trigger", user_nickname="System Trigger", platform=self.chat_stream.platform
@@ -652,64 +564,67 @@ class HeartFChatting:
raise RuntimeError("发送回复失败_send_response_messages返回None")
async def shutdown(self):
"""
Gracefully shuts down the HeartFChatting instance by cancelling the active loop task.
"""
"""优雅关闭HeartFChatting实例取消活动循环任务"""
log_prefix = self._get_log_prefix()
logger.info(f"{log_prefix} Shutting down HeartFChatting...")
logger.info(f"{log_prefix} 正在关闭HeartFChatting...")
# 取消循环任务
if self._loop_task and not self._loop_task.done():
logger.info(f"{log_prefix} Cancelling active PF loop task.")
logger.info(f"{log_prefix} 正在取消HeartFChatting循环任务")
self._loop_task.cancel()
try:
await asyncio.wait_for(self._loop_task, timeout=1.0) # Shorter timeout?
except asyncio.CancelledError:
logger.info(f"{log_prefix} PF loop task cancelled successfully.")
except asyncio.TimeoutError:
logger.warning(f"{log_prefix} Timeout waiting for PF loop task cancellation.")
await asyncio.wait_for(self._loop_task, timeout=1.0)
logger.info(f"{log_prefix} HeartFChatting循环任务已取消")
except (asyncio.CancelledError, asyncio.TimeoutError):
pass
except Exception as e:
logger.error(f"{log_prefix} Error during loop task cancellation: {e}")
logger.error(f"{log_prefix} 取消循环任务出错: {e}")
else:
logger.info(f"{log_prefix} No active PF loop task found to cancel.")
logger.info(f"{log_prefix} 没有活动的HeartFChatting循环任务")
# 清理状态
self._loop_active = False
self._loop_task = None
if self._processing_lock.locked():
logger.warning(f"{log_prefix} Releasing processing lock during shutdown.")
self._processing_lock.release()
logger.info(f"{log_prefix} HeartFChatting shutdown complete.")
logger.warning(f"{log_prefix} 已释放处理锁")
async def _build_planner_prompt(self, observed_messages_str: str, current_mind: Optional[str]) -> str:
logger.info(f"{log_prefix} HeartFChatting关闭完成")
async def _build_planner_prompt(
self, observed_messages_str: str, current_mind: Optional[str], structured_info: Dict[str, Any]
) -> str:
"""构建 Planner LLM 的提示词"""
prompt = f"你的名字是 {global_config.BOT_NICKNAME}。是一个女大二学生正在QQ聊天正在决定是否以及如何回应当前的聊天。\n"
# 准备结构化信息块
structured_info_block = ""
if structured_info:
structured_info_block = f"以下是一些额外的信息:\n{structured_info}\n"
# 准备聊天内容块
chat_content_block = ""
if observed_messages_str:
prompt += "观察到的最新聊天内容如下 (最近的消息在最后)\n---\n"
prompt += observed_messages_str
prompt += "\n---"
chat_content_block = "观察到的最新聊天内容如下 (最近的消息在最后)\n---\n"
chat_content_block += observed_messages_str
chat_content_block += "\n---"
else:
prompt += "当前没有观察到新的聊天内容。\n"
prompt += "\n看了以上内容,你产生的内心想法是:"
chat_content_block = "当前没有观察到新的聊天内容。\n"
# 准备当前思维块
current_mind_block = ""
if current_mind:
prompt += f"\n---\n{current_mind}\n---\n\n"
current_mind_block = f"\n---\n{current_mind}\n---\n\n"
else:
prompt += " [没有特别的想法] \n\n"
prompt += (
"请结合你的内心想法和观察到的聊天内容,分析情况并使用 'decide_reply_action' 工具来决定你的最终行动。\n"
"决策依据:\n"
"1. 如果聊天内容无聊、与你无关、或者你的内心想法认为不适合回复(例如在讨论你不懂或不感兴趣的话题),选择 'no_reply'\n"
"2. 如果聊天内容值得回应,且适合用文字表达(参考你的内心想法),选择 'text_reply'。如果你有情绪想表达,想在文字后追加一个表达情绪的表情,请同时提供 'emoji_query' (例如:'开心的''惊讶的')。\n"
"3. 如果聊天内容或你的内心想法适合用一个表情来回应(例如表示赞同、惊讶、无语等),选择 'emoji_reply' 并提供表情主题 'emoji_query'\n"
"4. 如果最后一条消息是你自己发的,并且之后没有人回复你,通常选择 'no_reply',除非有特殊原因需要追问。\n"
"5. 除非大家都在这么做,或者有特殊理由,否则不要重复别人刚刚说过的话或简单附和。\n"
"6. 表情包是用来表达情绪的,不要直接回复或评价别人的表情包,而是根据对话内容和情绪选择是否用表情回应。\n"
"7. 如果观察到的内容只有你自己的发言,选择 'no_reply'\n"
"8. 不要回复你自己的话,不要把自己的话当做别人说的。\n"
"必须调用 'decide_reply_action' 工具并提供 'action''reasoning'。如果选择了 'emoji_reply' 或者选择了 'text_reply' 并想追加表情,则必须提供 'emoji_query'"
current_mind_block = " [没有特别的想法] \n\n"
# 获取提示词模板并填充数据
prompt = (await global_prompt_manager.get_prompt_async("planner_prompt")).format(
bot_name=global_config.BOT_NICKNAME,
structured_info_block=structured_info_block,
chat_content_block=chat_content_block,
current_mind_block=current_mind_block,
)
return prompt
# --- 回复器 (Replier) 的定义 --- #
@@ -726,7 +641,8 @@ class HeartFChatting:
response_set: Optional[List[str]] = None
try:
response_set = await self.gpt_instance.generate_response(
current_mind_info=self.sub_hf.current_mind,
structured_info=self.sub_mind.structured_info,
current_mind_info=self.sub_mind.current_mind,
reason=reason,
message=anchor_message, # Pass anchor_message positionally (matches 'message' parameter)
thinking_id=thinking_id, # Pass thinking_id positionally
@@ -736,8 +652,6 @@ class HeartFChatting:
logger.warning(f"{log_prefix}[Replier-{thinking_id}] LLM生成了一个空回复集。")
return None
# --- 准备并返回结果 --- #
# logger.info(f"{log_prefix}[Replier-{thinking_id}] 成功生成了回复集: {' '.join(response_set)[:50]}...")
return response_set
except Exception as e:
@@ -782,7 +696,6 @@ class HeartFChatting:
return None
chat = anchor_message.chat_stream
# Access MessageManager directly
container = await message_manager.get_container(chat.stream_id)
thinking_message = None

View File

@@ -39,6 +39,7 @@ class HeartFCGenerator:
async def generate_response(
self,
structured_info: str,
current_mind_info: str,
reason: str,
message: MessageRecv,
@@ -46,17 +47,13 @@ class HeartFCGenerator:
) -> Optional[List[str]]:
"""根据当前模型类型选择对应的生成函数"""
logger.info(
f"思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
)
arousal_multiplier = MoodManager.get_instance().get_arousal_multiplier()
with Timer() as t_generate_response:
current_model = self.model_normal
current_model.temperature = global_config.llm_normal["temp"] * arousal_multiplier # 激活度越高,温度越高
model_response = await self._generate_response_with_model(
current_mind_info, reason, message, current_model, thinking_id
structured_info, current_mind_info, reason, message, current_model, thinking_id
)
if model_response:
@@ -71,28 +68,33 @@ class HeartFCGenerator:
return None
async def _generate_response_with_model(
self, current_mind_info: str, reason: str, message: MessageRecv, model: LLMRequest, thinking_id: str
self,
structured_info: str,
current_mind_info: str,
reason: str,
message: MessageRecv,
model: LLMRequest,
thinking_id: str,
) -> str:
sender_name = ""
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
sender_name = f"<{message.chat_stream.user_info.platform}:{message.chat_stream.user_info.user_id}:{message.chat_stream.user_info.user_nickname}:{message.chat_stream.user_info.user_cardname}>"
with Timer() as t_build_prompt:
prompt = await prompt_builder.build_prompt(
build_mode="focus",
reason=reason,
current_mind_info=current_mind_info,
message_txt=message.processed_plain_text,
sender_name=sender_name,
structured_info=structured_info,
message_txt="",
sender_name="",
chat_stream=message.chat_stream,
)
logger.info(f"构建prompt时间: {t_build_prompt.human_readable}")
# logger.info(f"构建prompt时间: {t_build_prompt.human_readable}")
try:
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
logger.info(f"\nprompt:{prompt}\n生成回复{content}\n")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name
)
@@ -103,106 +105,6 @@ class HeartFCGenerator:
return content
async def _get_emotion_tags(self, content: str, processed_plain_text: str):
"""提取情感标签,结合立场和情绪"""
try:
# 构建提示词,结合回复内容、被回复的内容以及立场分析
prompt = f"""
请严格根据以下对话内容,完成以下任务:
1. 判断回复者对被回复者观点的直接立场:
- "支持":明确同意或强化被回复者观点
- "反对":明确反驳或否定被回复者观点
- "中立":不表达明确立场或无关回应
2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签
3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒"
4. 考虑回复者的人格设定为{global_config.personality_core}
对话示例:
被回复「A就是笨」
回复「A明明很聪明」 → 反对-愤怒
当前对话:
被回复:「{processed_plain_text}
回复:「{content}
输出要求:
- 只需输出"立场-情绪"结果,不要解释
- 严格基于文字直接表达的对立关系判断
"""
# 调用模型生成结果
result, _, _ = await self.model_sum.generate_response(prompt)
result = result.strip()
# 解析模型输出的结果
if "-" in result:
stance, emotion = result.split("-", 1)
valid_stances = ["支持", "反对", "中立"]
valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"]
if stance in valid_stances and emotion in valid_emotions:
return stance, emotion # 返回有效的立场-情绪组合
else:
logger.debug(f"无效立场-情感组合:{result}")
return "中立", "平静" # 默认返回中立-平静
else:
logger.debug(f"立场-情感格式错误:{result}")
return "中立", "平静" # 格式错误时返回默认值
except Exception as e:
logger.debug(f"获取情感标签时出错: {e}")
return "中立", "平静" # 出错时返回默认值
async def _get_emotion_tags_with_reason(self, content: str, processed_plain_text: str, reason: str):
"""提取情感标签,结合立场和情绪"""
try:
# 构建提示词,结合回复内容、被回复的内容以及立场分析
prompt = f"""
请严格根据以下对话内容,完成以下任务:
1. 判断回复者对被回复者观点的直接立场:
- "支持":明确同意或强化被回复者观点
- "反对":明确反驳或否定被回复者观点
- "中立":不表达明确立场或无关回应
2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签
3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒"
4. 考虑回复者的人格设定为{global_config.personality_core}
对话示例:
被回复「A就是笨」
回复「A明明很聪明」 → 反对-愤怒
当前对话:
被回复:「{processed_plain_text}
回复:「{content}
原因:「{reason}
输出要求:
- 只需输出"立场-情绪"结果,不要解释
- 严格基于文字直接表达的对立关系判断
"""
# 调用模型生成结果
result, _, _ = await self.model_sum.generate_response(prompt)
result = result.strip()
# 解析模型输出的结果
if "-" in result:
stance, emotion = result.split("-", 1)
valid_stances = ["支持", "反对", "中立"]
valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"]
if stance in valid_stances and emotion in valid_emotions:
return stance, emotion # 返回有效的立场-情绪组合
else:
logger.debug(f"无效立场-情感组合:{result}")
return "中立", "平静" # 默认返回中立-平静
else:
logger.debug(f"立场-情感格式错误:{result}")
return "中立", "平静" # 格式错误时返回默认值
except Exception as e:
logger.debug(f"获取情感标签时出错: {e}")
return "中立", "平静" # 出错时返回默认值
async def _process_response(self, content: str) -> List[str]:
"""处理响应内容,返回处理后的内容和情感标签"""
if not content:

View File

@@ -21,19 +21,42 @@ logger = get_module_logger("prompt")
def init_prompt():
Prompt(
"""
你有以下信息可供参考:
{structured_info}
{chat_target}
{chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言或者回复这条消息\n
网名叫{bot_name}{prompt_personality} {prompt_identity}
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
现在你想要在群里发言或者回复。\n
需要扮演一位网名叫{bot_name}的人进行回复,这个人的特点是:"{prompt_personality} {prompt_identity}"
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,你可以参考贴吧,小红书或者微博的回复风格。
你刚刚脑子里在想:
{current_mind_info}
{reason}
回复尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。请一次只回复一个话题,不要同时回复多个人。{prompt_ger}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话 ,注意只输出回复内容。
回复尽量简短一些。请注意把握聊天内容,不要回复的太有条理,可以有个性。请一次只回复一个话题,不要同时回复多个人,不用指出你回复的是谁{prompt_ger}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,不要说你说过的话 ,注意只输出回复内容。
{moderation_prompt}。注意:不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。""",
"heart_flow_prompt",
)
# Planner提示词
Prompt(
"""你的名字是 {bot_name}。是一个女大二学生正在QQ聊天正在决定是否以及如何回应当前的聊天。
{structured_info_block}
{chat_content_block}
看了以上内容,你产生的内心想法是:
{current_mind_block}
请结合你的内心想法和观察到的聊天内容,分析情况并使用 'decide_reply_action' 工具来决定你的最终行动。
决策依据:
1. 如果聊天内容无聊、与你无关、或者你的内心想法认为不适合回复(例如在讨论你不懂或不感兴趣的话题),选择 'no_reply'
2. 如果聊天内容值得回应,且适合用文字表达(参考你的内心想法),选择 'text_reply'。如果你有情绪想表达,想在文字后追加一个表达情绪的表情,请同时提供 'emoji_query' (例如:'开心的''惊讶的')。
3. 如果聊天内容或你的内心想法适合用一个表情来回应(例如表示赞同、惊讶、无语等),选择 'emoji_reply' 并提供表情主题 'emoji_query'
4. 如果最后一条消息是你自己发的,观察到的内容只有你自己的发言,并且之后没有人回复你,通常选择 'no_reply',除非有特殊原因需要追问。
5. 如果聊天记录中最新的消息是你自己发送的,并且你还想继续回复,你应该紧紧衔接你发送的消息,进行话题的深入,补充,或追问等等;。
6. 表情包是用来表达情绪的,不要直接回复或评价别人的表情包,而是根据对话内容和情绪选择是否用表情回应。
7. 不要回复你自己的话,不要把自己的话当做别人说的。
必须调用 'decide_reply_action' 工具并提供 'action''reasoning'。如果选择了 'emoji_reply' 或者选择了 'text_reply' 并想追加表情,则必须提供 'emoji_query'""",
"planner_prompt",
)
Prompt("你正在qq群里聊天下面是群里在聊的内容", "chat_target_group1")
Prompt("和群里聊天", "chat_target_group2")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
@@ -79,17 +102,26 @@ class PromptBuilder:
self.activate_messages = ""
async def build_prompt(
self, build_mode, reason, current_mind_info, message_txt: str, sender_name: str = "某人", chat_stream=None
self,
build_mode,
reason,
current_mind_info,
structured_info,
message_txt: str,
sender_name: str = "某人",
chat_stream=None,
) -> Optional[tuple[str, str]]:
if build_mode == "normal":
return await self._build_prompt_normal(chat_stream, message_txt, sender_name)
elif build_mode == "focus":
return await self._build_prompt_focus(reason, current_mind_info, chat_stream, message_txt, sender_name)
return await self._build_prompt_focus(
reason, current_mind_info, structured_info, chat_stream,
)
return None
async def _build_prompt_focus(
self, reason, current_mind_info, chat_stream, message_txt: str, sender_name: str = "某人"
self, reason, current_mind_info, structured_info, chat_stream
) -> tuple[str, str]:
individuality = Individuality.get_instance()
prompt_personality = individuality.get_prompt(type="personality", x_person=2, level=1)
@@ -117,26 +149,6 @@ class PromptBuilder:
read_mark=0.0,
)
# 关键词检测与反应
keywords_reaction_prompt = ""
for rule in global_config.keywords_reaction_rules:
if rule.get("enable", False):
if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])):
logger.info(
f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}"
)
keywords_reaction_prompt += rule.get("reaction", "") + ""
else:
for pattern in rule.get("regex", []):
result = pattern.search(message_txt)
if result:
reaction = rule.get("reaction", "")
for name, content in result.groupdict().items():
reaction = reaction.replace(f"[{name}]", content)
logger.info(f"匹配到以下正则表达式:{pattern},触发反应:{reaction}")
keywords_reaction_prompt += reaction + ""
break
# 中文高手(新加的好玩功能)
prompt_ger = ""
if random.random() < 0.04:
@@ -148,12 +160,11 @@ class PromptBuilder:
prompt = await global_prompt_manager.format_prompt(
"heart_flow_prompt",
structured_info=structured_info,
chat_target=await global_prompt_manager.get_prompt_async("chat_target_group1")
if chat_in_group
else await global_prompt_manager.get_prompt_async("chat_target_private1"),
chat_talking_prompt=chat_talking_prompt,
sender_name=sender_name,
message_txt=message_txt,
bot_name=global_config.BOT_NICKNAME,
prompt_personality=prompt_personality,
prompt_identity=prompt_identity,
@@ -162,7 +173,6 @@ class PromptBuilder:
else await global_prompt_manager.get_prompt_async("chat_target_private2"),
current_mind_info=current_mind_info,
reason=reason,
keywords_reaction_prompt=keywords_reaction_prompt,
prompt_ger=prompt_ger,
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
)

View File

@@ -402,3 +402,17 @@ class NormalChat:
# 确保任务状态更新,即使等待出错 (回调函数也会尝试更新)
if self._chat_task is task:
self._chat_task = None
# 清理所有未处理的思考消息
try:
container = await message_manager.get_container(self.stream_id)
if container:
# 查找并移除所有 MessageThinking 类型的消息
thinking_messages = [msg for msg in container.messages[:] if isinstance(msg, MessageThinking)]
if thinking_messages:
for msg in thinking_messages:
container.messages.remove(msg)
logger.info(f"[{self.stream_name}] 清理了 {len(thinking_messages)} 条未处理的思考消息。")
except Exception as e:
logger.error(f"[{self.stream_name}] 清理思考消息时出错: {e}")
logger.error(traceback.format_exc())

View File

@@ -83,6 +83,7 @@ class NormalChatGenerator:
build_mode="normal",
reason="",
current_mind_info="",
structured_info="",
message_txt=message.processed_plain_text,
sender_name=sender_name,
chat_stream=message.chat_stream,

View File

@@ -710,6 +710,8 @@ class LLMRequest:
usage = None # 初始化usage变量避免未定义错误
reasoning_content = ""
content = ""
tool_calls = None # 初始化工具调用变量
async for line_bytes in response.content:
try:
line = line_bytes.decode("utf-8").strip()
@@ -731,11 +733,20 @@ class LLMRequest:
if delta_content is None:
delta_content = ""
accumulated_content += delta_content
# 提取工具调用信息
if "tool_calls" in delta:
if tool_calls is None:
tool_calls = delta["tool_calls"]
else:
# 合并工具调用信息
tool_calls.extend(delta["tool_calls"])
# 检测流式输出文本是否结束
finish_reason = chunk["choices"][0].get("finish_reason")
if delta.get("reasoning_content", None):
reasoning_content += delta["reasoning_content"]
if finish_reason == "stop":
if finish_reason == "stop" or finish_reason == "tool_calls":
chunk_usage = chunk.get("usage", None)
if chunk_usage:
usage = chunk_usage
@@ -763,16 +774,19 @@ class LLMRequest:
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r"<think>.*?</think>", "", content, flags=re.DOTALL).strip()
# 构建消息对象
message = {
"content": content,
"reasoning_content": reasoning_content,
}
# 如果有工具调用,添加到消息中
if tool_calls:
message["tool_calls"] = tool_calls
result = {
"choices": [
{
"message": {
"content": content,
"reasoning_content": reasoning_content,
# 流式输出可能没有工具调用此处不需要添加tool_calls字段
}
}
],
"choices": [{"message": message}],
"usage": usage,
}
return result
@@ -1046,6 +1060,7 @@ class LLMRequest:
# 只有当tool_calls存在且不为空时才返回
if tool_calls:
logger.debug(f"检测到工具调用: {tool_calls}")
return content, reasoning_content, tool_calls
else:
return content, reasoning_content
@@ -1109,8 +1124,31 @@ class LLMRequest:
response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt)
# 原样返回响应,不做处理
return response
async def generate_response_tool_async(self, prompt: str, tools: list, **kwargs) -> Union[str, Tuple]:
"""异步方式根据输入的提示生成模型的响应"""
# 构建请求体不硬编码max_tokens
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
**self.params,
**kwargs,
"tools": tools,
}
logger.debug(f"向模型 {self.model_name} 发送工具调用请求,包含 {len(tools)} 个工具")
response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt)
# 检查响应是否包含工具调用
if isinstance(response, tuple) and len(response) == 3:
content, reasoning_content, tool_calls = response
logger.debug(f"收到工具调用响应,包含 {len(tool_calls) if tool_calls else 0} 个工具调用")
return content, reasoning_content, tool_calls
else:
logger.debug("收到普通响应,无工具调用")
return response
async def get_embedding(self, text: str) -> Union[list, None]:
"""异步方法获取文本的embedding向量

View File

@@ -303,7 +303,9 @@ async def build_readable_messages(
)
readable_read_mark = translate_timestamp_to_human_readable(read_mark, mode=timestamp_mode)
read_mark_line = f"\n--- 以上消息已读 (标记时间: {readable_read_mark}) ---\n"
read_mark_line = (
f"\n\n--- 以上消息已读 (标记时间: {readable_read_mark}) ---\n--- 请关注你上次思考之后以下的新消息---\n"
)
# 组合结果,确保空部分不引入多余的标记或换行
if formatted_before and formatted_after:

View File

@@ -0,0 +1,301 @@
import json
import logging
from typing import Any, Dict, TypeVar, List, Union, Callable, Tuple
# 定义类型变量用于泛型类型提示
T = TypeVar("T")
# 获取logger
logger = logging.getLogger("json_utils")
def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
"""
安全地解析JSON字符串出错时返回默认值
参数:
json_str: 要解析的JSON字符串
default_value: 解析失败时返回的默认值
返回:
解析后的Python对象或在解析失败时返回default_value
"""
if not json_str:
return default_value
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
logger.error(f"JSON解析失败: {e}, JSON字符串: {json_str[:100]}...")
return default_value
except Exception as e:
logger.error(f"JSON解析过程中发生意外错误: {e}")
return default_value
def extract_tool_call_arguments(tool_call: Dict[str, Any], default_value: Dict[str, Any] = None) -> Dict[str, Any]:
"""
从LLM工具调用对象中提取参数
参数:
tool_call: 工具调用对象字典
default_value: 解析失败时返回的默认值
返回:
解析后的参数字典或在解析失败时返回default_value
"""
default_result = default_value or {}
if not tool_call or not isinstance(tool_call, dict):
logger.error(f"无效的工具调用对象: {tool_call}")
return default_result
try:
# 提取function参数
function_data = tool_call.get("function", {})
if not function_data or not isinstance(function_data, dict):
logger.error(f"工具调用缺少function字段或格式不正确: {tool_call}")
return default_result
# 提取arguments
arguments_str = function_data.get("arguments", "{}")
if not arguments_str:
return default_result
# 解析JSON
return safe_json_loads(arguments_str, default_result)
except Exception as e:
logger.error(f"提取工具调用参数时出错: {e}")
return default_result
def get_json_value(
json_obj: Dict[str, Any], key_path: str, default_value: T = None, transform_func: Callable[[Any], T] = None
) -> Union[Any, T]:
"""
从JSON对象中按照路径提取值支持点表示法路径"data.items.0.name"
参数:
json_obj: JSON对象(已解析的字典)
key_path: 键路径,使用点表示法,如"data.items.0.name"
default_value: 获取失败时返回的默认值
transform_func: 可选的转换函数,用于对获取的值进行转换
返回:
路径指向的值或在获取失败时返回default_value
"""
if not json_obj or not key_path:
return default_value
try:
# 分割路径
keys = key_path.split(".")
current = json_obj
# 遍历路径
for key in keys:
# 处理数组索引
if key.isdigit() and isinstance(current, list):
index = int(key)
if 0 <= index < len(current):
current = current[index]
else:
return default_value
# 处理字典键
elif isinstance(current, dict):
if key in current:
current = current[key]
else:
return default_value
else:
return default_value
# 应用转换函数(如果提供)
if transform_func and current is not None:
return transform_func(current)
return current
except Exception as e:
logger.error(f"从JSON获取值时出错: {e}, 路径: {key_path}")
return default_value
def safe_json_dumps(obj: Any, default_value: str = "{}", ensure_ascii: bool = False, pretty: bool = False) -> str:
"""
安全地将Python对象序列化为JSON字符串
参数:
obj: 要序列化的Python对象
default_value: 序列化失败时返回的默认值
ensure_ascii: 是否确保ASCII编码(默认False允许中文等非ASCII字符)
pretty: 是否美化输出JSON
返回:
序列化后的JSON字符串或在序列化失败时返回default_value
"""
try:
indent = 2 if pretty else None
return json.dumps(obj, ensure_ascii=ensure_ascii, indent=indent)
except TypeError as e:
logger.error(f"JSON序列化失败(类型错误): {e}")
return default_value
except Exception as e:
logger.error(f"JSON序列化过程中发生意外错误: {e}")
return default_value
def merge_json_objects(*objects: Dict[str, Any]) -> Dict[str, Any]:
"""
合并多个JSON对象(字典)
参数:
*objects: 要合并的JSON对象(字典)
返回:
合并后的字典,后面的对象会覆盖前面对象的相同键
"""
result = {}
for obj in objects:
if obj and isinstance(obj, dict):
result.update(obj)
return result
def normalize_llm_response(response: Any, log_prefix: str = "") -> Tuple[bool, List[Any], str]:
"""
标准化LLM响应格式将各种格式如元组转换为统一的列表格式
参数:
response: 原始LLM响应
log_prefix: 日志前缀
返回:
元组 (成功标志, 标准化后的响应列表, 错误消息)
"""
# 检查是否为None
if response is None:
return False, [], "LLM响应为None"
# 记录原始类型
logger.debug(f"{log_prefix}LLM响应原始类型: {type(response).__name__}")
# 将元组转换为列表
if isinstance(response, tuple):
logger.debug(f"{log_prefix}将元组响应转换为列表")
response = list(response)
# 确保是列表类型
if not isinstance(response, list):
return False, [], f"无法处理的LLM响应类型: {type(response).__name__}"
# 处理工具调用部分(如果存在)
if len(response) == 3:
content, reasoning, tool_calls = response
# 将工具调用部分转换为列表(如果是元组)
if isinstance(tool_calls, tuple):
logger.debug(f"{log_prefix}将工具调用元组转换为列表")
tool_calls = list(tool_calls)
response[2] = tool_calls
return True, response, ""
def process_llm_tool_calls(response: List[Any], log_prefix: str = "") -> Tuple[bool, List[Dict[str, Any]], str]:
"""
处理并提取LLM响应中的工具调用列表
参数:
response: 标准化后的LLM响应列表
log_prefix: 日志前缀
返回:
元组 (成功标志, 工具调用列表, 错误消息)
"""
# 确保响应格式正确
if len(response) != 3:
return False, [], f"LLM响应元素数量不正确: 预期3个元素实际{len(response)}"
# 提取工具调用部分
tool_calls = response[2]
# 检查工具调用是否有效
if tool_calls is None:
return False, [], "工具调用部分为None"
if not isinstance(tool_calls, list):
return False, [], f"工具调用部分不是列表: {type(tool_calls).__name__}"
if len(tool_calls) == 0:
return False, [], "工具调用列表为空"
# 检查工具调用是否格式正确
valid_tool_calls = []
for i, tool_call in enumerate(tool_calls):
if not isinstance(tool_call, dict):
logger.warning(f"{log_prefix}工具调用[{i}]不是字典: {type(tool_call).__name__}")
continue
if tool_call.get("type") != "function":
logger.warning(f"{log_prefix}工具调用[{i}]不是函数类型: {tool_call.get('type', '未知')}")
continue
if "function" not in tool_call or not isinstance(tool_call["function"], dict):
logger.warning(f"{log_prefix}工具调用[{i}]缺少function字段或格式不正确")
continue
valid_tool_calls.append(tool_call)
# 检查是否有有效的工具调用
if not valid_tool_calls:
return False, [], "没有找到有效的工具调用"
return True, valid_tool_calls, ""
def process_llm_tool_response(
response: Any, expected_tool_name: str = None, log_prefix: str = ""
) -> Tuple[bool, Dict[str, Any], str]:
"""
处理LLM返回的工具调用响应进行常见错误检查并提取参数
参数:
response: LLM的响应预期是[content, reasoning, tool_calls]格式的列表或元组
expected_tool_name: 预期的工具名称,如不指定则不检查
log_prefix: 日志前缀,用于标识日志来源
返回:
三元组(成功标志, 参数字典, 错误描述)
- 如果成功解析,返回(True, 参数字典, "")
- 如果解析失败,返回(False, {}, 错误描述)
"""
# 使用新的标准化函数
success, normalized_response, error_msg = normalize_llm_response(response, log_prefix)
if not success:
return False, {}, error_msg
# 使用新的工具调用处理函数
success, valid_tool_calls, error_msg = process_llm_tool_calls(normalized_response, log_prefix)
if not success:
return False, {}, error_msg
# 检查是否有工具调用
if not valid_tool_calls:
return False, {}, "没有有效的工具调用"
# 获取第一个工具调用
tool_call = valid_tool_calls[0]
# 检查工具名称(如果提供了预期名称)
if expected_tool_name:
actual_name = tool_call.get("function", {}).get("name")
if actual_name != expected_tool_name:
return False, {}, f"工具名称不匹配: 预期'{expected_tool_name}',实际'{actual_name}'"
# 提取并解析参数
try:
arguments = extract_tool_call_arguments(tool_call, {})
return True, arguments, ""
except Exception as e:
logger.error(f"{log_prefix}解析工具参数时出错: {e}")
return False, {}, f"解析参数失败: {str(e)}"

284
tool_call_benchmark.py Normal file
View File

@@ -0,0 +1,284 @@
import asyncio
import time
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
from src.do_tool.tool_use import ToolUser
import statistics
import json
async def run_test(test_name, test_function, iterations=5):
"""
运行指定次数的测试并计算平均响应时间
参数:
test_name: 测试名称
test_function: 要执行的测试函数
iterations: 测试迭代次数
返回:
测试结果统计
"""
print(f"开始 {test_name} 测试({iterations}次迭代)...")
times = []
responses = []
for i in range(iterations):
print(f" 运行第 {i + 1}/{iterations} 次测试...")
start_time = time.time()
response = await test_function()
end_time = time.time()
elapsed = end_time - start_time
times.append(elapsed)
responses.append(response)
print(f" - 耗时: {elapsed:.2f}")
results = {
"平均耗时": statistics.mean(times),
"最短耗时": min(times),
"最长耗时": max(times),
"标准差": statistics.stdev(times) if len(times) > 1 else 0,
"所有耗时": times,
"响应结果": responses,
}
return results
async def test_with_tool_calls():
"""使用工具调用的LLM请求测试"""
# 创建LLM模型实例
llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
# model = global_config.llm_tool_use,
# temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="benchmark_test",
)
# 创建工具实例
tool_instance = ToolUser()
tools = tool_instance._define_tools()
# 简单的测试提示词
prompt = "请分析当前天气情况并查询今日历史上的重要事件。并且3.9和3.11谁比较大?请使用适当的工具来获取这些信息。"
prompt = """
你的名字是麦麦,你包容开放,情绪敏感,有时候有些搞怪幽默, 是一个学习心理学和脑科学的女大学生,现在在读大二,你会刷贴吧,有时候会想瑟瑟,喜欢刷小红书
-----------------------------------
现在是2025-04-24 12:37:00你正在上网和qq群里的网友们聊天群里正在聊的话题是
2025-04-24 12:33:00既文横 说:这条调试消息是napcat控制台输出的还是麦麦log输出的;
2025-04-24 12:33:23麦麦(你) 说:应该是napcat吧;
2025-04-24 12:33:24麦麦(你) 说:[表达了:害羞、害羞。];
2025-04-24 12:33:25兔伽兔伽 说:就打开麦麦的那个终端发的呀;
2025-04-24 12:33:45既文横 说:那应该不是napcat输出的是麦麦输出的消息怀疑版本问题;
2025-04-24 12:34:02兔伽兔伽 说:版本05.15;
2025-04-24 12:34:07麦麦(你) 说:话说你们最近刷贴吧看到那个猫猫头表情包了吗;
2025-04-24 12:34:07麦麦(你) 说:笑死;
2025-04-24 12:34:08麦麦(你) 说:[表达了:惊讶、搞笑。];
2025-04-24 12:34:14兔伽兔伽 说:只开一个终端;
2025-04-24 12:35:45兔伽兔伽 说:回复既文横的消息(怀疑版本问题),说:因为之前你连模型的那个我用的了;
2025-04-24 12:35:56麦麦(你) 说:那个猫猫头真的魔性;
2025-04-24 12:35:56麦麦(你) 说:我存了一堆;
2025-04-24 12:35:56麦麦(你) 说:[表达了:温馨、宠爱];
2025-04-24 12:36:03小千石 说:麦麦3.8和3.11谁大;
--- 以上消息已读 (标记时间: 2025-04-24 12:36:43) ---
--- 请关注你上次思考之后以下的新消息---
2025-04-24 12:36:53墨墨 说:[表情包:开心、满足。];
你现在当前心情:平静。
现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,要不要对群里的话题进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。
回复的要求是:平淡一些,简短一些,说中文,如果你要回复,最好只回复一个人的一个话题
请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写。不要回复自己的发言,尽量不要说你说过的话。
现在请你继续生成你在这个聊天中的想法,在原来想法的基础上继续思考,不要分点输出,生成内心想法,文字不要浮夸
在输出完想法后,请你思考应该使用什么工具,如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。"""
# 发送带有工具调用的请求
response = await llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
result_info = {}
# 简单处理工具调用结果
if len(response) == 3:
content, reasoning_content, tool_calls = response
tool_calls_count = len(tool_calls) if tool_calls else 0
print(f" 工具调用请求生成了 {tool_calls_count} 个工具调用")
# 输出内容和工具调用详情
print("\n 生成的内容:")
print(f" {content[:200]}..." if len(content) > 200 else f" {content}")
if tool_calls:
print("\n 工具调用详情:")
for i, tool_call in enumerate(tool_calls):
tool_name = tool_call["function"]["name"]
tool_params = tool_call["function"].get("arguments", {})
print(f" - 工具 {i + 1}: {tool_name}")
print(
f" 参数: {json.dumps(tool_params, ensure_ascii=False)[:100]}..."
if len(json.dumps(tool_params, ensure_ascii=False)) > 100
else f" 参数: {json.dumps(tool_params, ensure_ascii=False)}"
)
result_info = {"内容": content, "推理内容": reasoning_content, "工具调用": tool_calls}
else:
content, reasoning_content = response
print(" 工具调用请求未生成任何工具调用")
print("\n 生成的内容:")
print(f" {content[:200]}..." if len(content) > 200 else f" {content}")
result_info = {"内容": content, "推理内容": reasoning_content, "工具调用": []}
return result_info
async def test_without_tool_calls():
"""不使用工具调用的LLM请求测试"""
# 创建LLM模型实例
llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="benchmark_test",
)
# 简单的测试提示词(与工具调用相同,以便公平比较)
prompt = """
你的名字是麦麦,你包容开放,情绪敏感,有时候有些搞怪幽默, 是一个学习心理学和脑科学的女大学生,现在在读大二,你会刷贴吧,有时候会想瑟瑟,喜欢刷小红书
刚刚你的想法是:
我是麦麦,我想,('小千石问3.8和3.11谁大已经简单回答了3.11大,现在可以继续聊猫猫头表情包,毕竟大家好像对版本问题兴趣不大,而且猫猫头的话题更轻松有趣。', '')
-----------------------------------
现在是2025-04-24 12:37:00你正在上网和qq群里的网友们聊天群里正在聊的话题是
2025-04-24 12:33:00既文横 说:这条调试消息是napcat控制台输出的还是麦麦log输出的;
2025-04-24 12:33:23麦麦(你) 说:应该是napcat吧;
2025-04-24 12:33:24麦麦(你) 说:[表达了:害羞、害羞。];
2025-04-24 12:33:25兔伽兔伽 说:就打开麦麦的那个终端发的呀;
2025-04-24 12:33:45既文横 说:那应该不是napcat输出的是麦麦输出的消息怀疑版本问题;
2025-04-24 12:34:02兔伽兔伽 说:版本05.15;
2025-04-24 12:34:07麦麦(你) 说:话说你们最近刷贴吧看到那个猫猫头表情包了吗;
2025-04-24 12:34:07麦麦(你) 说:笑死;
2025-04-24 12:34:08麦麦(你) 说:[表达了:惊讶、搞笑。];
2025-04-24 12:34:14兔伽兔伽 说:只开一个终端;
2025-04-24 12:35:45兔伽兔伽 说:回复既文横的消息(怀疑版本问题),说:因为之前你连模型的那个我用的了;
2025-04-24 12:35:56麦麦(你) 说:那个猫猫头真的魔性;
2025-04-24 12:35:56麦麦(你) 说:我存了一堆;
2025-04-24 12:35:56麦麦(你) 说:[表达了:温馨、宠爱];
2025-04-24 12:36:03小千石 说:麦麦3.8和3.11谁大;
2025-04-24 12:36:22麦麦(你) 说:真的魔性那个猫猫头;
2025-04-24 12:36:22麦麦(你) 说:[表达了:害羞、可爱];
2025-04-24 12:36:43麦麦(你) 说:3.11大啦;
2025-04-24 12:36:43麦麦(你) 说:[表达了:害羞、可爱];
--- 以上消息已读 (标记时间: 2025-04-24 12:36:43) ---
--- 请关注你上次思考之后以下的新消息---
2025-04-24 12:36:53墨墨 说:[表情包:开心、满足。];
你现在当前心情:平静。
现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,要不要对群里的话题进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。
回复的要求是:平淡一些,简短一些,说中文,如果你要回复,最好只回复一个人的一个话题
请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写。不要回复自己的发言,尽量不要说你说过的话。
现在请你继续生成你在这个聊天中的想法,在原来想法的基础上继续思考,不要分点输出,生成内心想法,文字不要浮夸
在输出完想法后,请你思考应该使用什么工具,如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。"""
# 发送不带工具调用的请求
response, reasoning_content = await llm_model.generate_response_async(prompt)
# 输出生成的内容
print("\n 生成的内容:")
print(f" {response[:200]}..." if len(response) > 200 else f" {response}")
result_info = {"内容": response, "推理内容": reasoning_content, "工具调用": []}
return result_info
async def main():
"""主测试函数"""
print("=" * 50)
print("LLM工具调用与普通请求性能比较测试")
print("=" * 50)
# 设置测试迭代次数
iterations = 3
# 测试不使用工具调用
results_without_tools = await run_test("不使用工具调用", test_without_tool_calls, iterations)
print("\n" + "-" * 50 + "\n")
# 测试使用工具调用
results_with_tools = await run_test("使用工具调用", test_with_tool_calls, iterations)
# 显示结果比较
print("\n" + "=" * 50)
print("测试结果比较")
print("=" * 50)
print("\n不使用工具调用:")
for key, value in results_without_tools.items():
if key == "所有耗时":
print(f" {key}: {[f'{t:.2f}' for t in value]}")
elif key == "响应结果":
print(f" {key}: [内容已省略,详见结果文件]")
else:
print(f" {key}: {value:.2f}")
print("\n使用工具调用:")
for key, value in results_with_tools.items():
if key == "所有耗时":
print(f" {key}: {[f'{t:.2f}' for t in value]}")
elif key == "响应结果":
tool_calls_counts = [len(res.get("工具调用", [])) for res in value]
print(f" {key}: [内容已省略,详见结果文件]")
print(f" 工具调用数量: {tool_calls_counts}")
else:
print(f" {key}: {value:.2f}")
# 计算差异百分比
diff_percent = ((results_with_tools["平均耗时"] / results_without_tools["平均耗时"]) - 1) * 100
print(f"\n工具调用比普通请求平均耗时相差: {diff_percent:.2f}%")
# 保存结果到JSON文件
results = {
"测试时间": time.strftime("%Y-%m-%d %H:%M:%S"),
"测试迭代次数": iterations,
"不使用工具调用": {
k: (v if k != "所有耗时" else [float(f"{t:.2f}") for t in v])
for k, v in results_without_tools.items()
if k != "响应结果"
},
"不使用工具调用_详细响应": [
{
"内容摘要": resp["内容"][:200] + "..." if len(resp["内容"]) > 200 else resp["内容"],
"推理内容摘要": resp["推理内容"][:200] + "..." if len(resp["推理内容"]) > 200 else resp["推理内容"],
}
for resp in results_without_tools["响应结果"]
],
"使用工具调用": {
k: (v if k != "所有耗时" else [float(f"{t:.2f}") for t in v])
for k, v in results_with_tools.items()
if k != "响应结果"
},
"使用工具调用_详细响应": [
{
"内容摘要": resp["内容"][:200] + "..." if len(resp["内容"]) > 200 else resp["内容"],
"推理内容摘要": resp["推理内容"][:200] + "..." if len(resp["推理内容"]) > 200 else resp["推理内容"],
"工具调用数量": len(resp["工具调用"]),
"工具调用详情": [
{"工具名称": tool["function"]["name"], "参数": tool["function"].get("arguments", {})}
for tool in resp["工具调用"]
],
}
for resp in results_with_tools["响应结果"]
],
"差异百分比": float(f"{diff_percent:.2f}"),
}
with open("llm_tool_benchmark_results.json", "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=2)
print("\n测试结果已保存到 llm_tool_benchmark_results.json")
if __name__ == "__main__":
asyncio.run(main())