feat(cache): 增强嵌入向量处理的健壮性和验证
- 新增 `_validate_embedding` 方法,用于在存入缓存前对嵌入向量进行严格的格式检查、维度验证和数值有效性校验。 - 在缓存查询 (`get`) 和写入 (`set`) 流程中,集成此验证逻辑,确保只有合规的向量才能被处理和存储。 - 增加了在L1和L2向量索引操作中的异常捕获,防止因向量处理失败导致缓存功能中断,提升了系统的整体稳定性。
This commit is contained in:
@@ -65,6 +65,43 @@ class CacheManager:
|
||||
""")
|
||||
conn.commit()
|
||||
|
||||
def _validate_embedding(self, embedding_result: Any) -> Optional[np.ndarray]:
|
||||
"""
|
||||
验证和标准化嵌入向量格式
|
||||
"""
|
||||
try:
|
||||
if embedding_result is None:
|
||||
return None
|
||||
|
||||
# 确保embedding_result是一维数组或列表
|
||||
if isinstance(embedding_result, (list, tuple, np.ndarray)):
|
||||
# 转换为numpy数组进行处理
|
||||
embedding_array = np.array(embedding_result)
|
||||
|
||||
# 如果是多维数组,展平它
|
||||
if embedding_array.ndim > 1:
|
||||
embedding_array = embedding_array.flatten()
|
||||
|
||||
# 检查维度是否符合预期
|
||||
expected_dim = global_config.lpmm_knowledge.embedding_dimension
|
||||
if embedding_array.shape[0] != expected_dim:
|
||||
logger.warning(f"嵌入向量维度不匹配: 期望 {expected_dim}, 实际 {embedding_array.shape[0]}")
|
||||
return None
|
||||
|
||||
# 检查是否包含有效的数值
|
||||
if np.isnan(embedding_array).any() or np.isinf(embedding_array).any():
|
||||
logger.warning("嵌入向量包含无效的数值 (NaN 或 Inf)")
|
||||
return None
|
||||
|
||||
return embedding_array.astype('float32')
|
||||
else:
|
||||
logger.warning(f"嵌入结果格式不支持: {type(embedding_result)}")
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"验证嵌入向量时发生错误: {e}")
|
||||
return None
|
||||
|
||||
def _generate_key(self, tool_name: str, function_args: Dict[str, Any], tool_class: Any) -> str:
|
||||
"""生成确定性的缓存键,包含代码哈希以实现自动失效。"""
|
||||
try:
|
||||
@@ -102,7 +139,9 @@ class CacheManager:
|
||||
if semantic_query and self.embedding_model:
|
||||
embedding_result = await self.embedding_model.get_embedding(semantic_query)
|
||||
if embedding_result:
|
||||
query_embedding = np.array([embedding_result], dtype='float32')
|
||||
validated_embedding = self._validate_embedding(embedding_result)
|
||||
if validated_embedding is not None:
|
||||
query_embedding = np.array([validated_embedding], dtype='float32')
|
||||
|
||||
# 步骤 2a: L1 语义缓存 (FAISS)
|
||||
if query_embedding is not None and self.l1_vector_index.ntotal > 0:
|
||||
@@ -153,10 +192,13 @@ class CacheManager:
|
||||
# 回填 L1
|
||||
self.l1_kv_cache[key] = {"data": data, "expires_at": expires_at}
|
||||
if query_embedding is not None:
|
||||
new_id = self.l1_vector_index.ntotal
|
||||
faiss.normalize_L2(query_embedding)
|
||||
self.l1_vector_index.add(x=query_embedding)
|
||||
self.l1_vector_id_to_key[new_id] = key
|
||||
try:
|
||||
new_id = self.l1_vector_index.ntotal
|
||||
faiss.normalize_L2(query_embedding)
|
||||
self.l1_vector_index.add(x=query_embedding)
|
||||
self.l1_vector_id_to_key[new_id] = key
|
||||
except Exception as e:
|
||||
logger.error(f"回填L1向量索引时发生错误: {e}")
|
||||
return data
|
||||
|
||||
logger.debug(f"缓存未命中: {key}")
|
||||
@@ -186,14 +228,20 @@ class CacheManager:
|
||||
if semantic_query and self.embedding_model:
|
||||
embedding_result = await self.embedding_model.get_embedding(semantic_query)
|
||||
if embedding_result:
|
||||
embedding = np.array([embedding_result], dtype='float32')
|
||||
# 写入 L1 Vector
|
||||
new_id = self.l1_vector_index.ntotal
|
||||
faiss.normalize_L2(embedding)
|
||||
self.l1_vector_index.add(x=embedding)
|
||||
self.l1_vector_id_to_key[new_id] = key
|
||||
# 写入 L2 Vector
|
||||
self.chroma_collection.add(embeddings=embedding.tolist(), ids=[key])
|
||||
validated_embedding = self._validate_embedding(embedding_result)
|
||||
if validated_embedding is not None:
|
||||
try:
|
||||
embedding = np.array([validated_embedding], dtype='float32')
|
||||
# 写入 L1 Vector
|
||||
new_id = self.l1_vector_index.ntotal
|
||||
faiss.normalize_L2(embedding)
|
||||
self.l1_vector_index.add(x=embedding)
|
||||
self.l1_vector_id_to_key[new_id] = key
|
||||
# 写入 L2 Vector
|
||||
self.chroma_collection.add(embeddings=embedding.tolist(), ids=[key])
|
||||
except Exception as e:
|
||||
logger.error(f"写入语义缓存时发生错误: {e}")
|
||||
# 继续执行,不影响主要缓存功能
|
||||
|
||||
logger.info(f"已缓存条目: {key}, TTL: {ttl}s")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user