迁移:1f91967(remove:移除willing系统,移除reply2,移除能量值,移除reply_to改为message)

This commit is contained in:
Windpicker-owo
2025-09-03 21:27:28 +08:00
parent a63ca537d1
commit 53e72ecbdb
22 changed files with 151 additions and 947 deletions

View File

@@ -1,6 +1,8 @@
import asyncio
import time
import traceback
import math
import random
from typing import Optional, Dict, Any, Tuple
from src.chat.message_receive.chat_stream import get_chat_manager
@@ -10,7 +12,7 @@ from src.config.config import global_config
from src.chat.planner_actions.planner import ActionPlanner
from src.chat.planner_actions.action_modifier import ActionModifier
from src.person_info.person_info import get_person_info_manager
from src.plugin_system.apis import database_api
from src.plugin_system.apis import database_api, generator_api
from src.plugin_system.base.component_types import ChatMode
from src.mais4u.constant_s4u import ENABLE_S4U
from src.chat.chat_loop.hfc_utils import send_typing, stop_typing
@@ -44,7 +46,6 @@ class CycleProcessor:
async def _send_and_store_reply(
self,
response_set,
reply_to_str,
loop_start_time,
action_message,
cycle_timers: Dict[str, float],
@@ -52,7 +53,7 @@ class CycleProcessor:
actions,
) -> Tuple[Dict[str, Any], str, Dict[str, float]]:
with Timer("回复发送", cycle_timers):
reply_text = await self.response_handler.send_response(response_set, reply_to_str, loop_start_time, action_message)
reply_text = await self.response_handler.send_response(response_set, loop_start_time, action_message)
# 存储reply action信息
person_info_manager = get_person_info_manager()
@@ -60,7 +61,7 @@ class CycleProcessor:
# 获取 platform如果不存在则从 chat_stream 获取,如果还是 None 则使用默认值
platform = action_message.get("chat_info_platform")
if platform is None:
platform = getattr(self.chat_stream, "platform", "unknown")
platform = getattr(self.context.chat_stream, "platform", "unknown")
person_id = person_info_manager.get_person_id(
platform,
@@ -75,7 +76,7 @@ class CycleProcessor:
action_prompt_display=action_prompt_display,
action_done=True,
thinking_id=thinking_id,
action_data={"reply_text": reply_text, "reply_to": reply_to_str},
action_data={"reply_text": reply_text},
action_name="reply",
)
@@ -113,12 +114,6 @@ class CycleProcessor:
"""
action_type = "no_action"
reply_text = "" # 初始化reply_text变量避免UnboundLocalError
reply_to_str = "" # 初始化reply_to_str变量
# 根据interest_value计算概率决定使用哪种planner模式
# interest_value越高越倾向于使用Normal模式
import random
import math
# 使用sigmoid函数将interest_value转换为概率
# 当interest_value为0时概率接近0使用Focus模式
@@ -224,40 +219,23 @@ class CycleProcessor:
"command": command
}
else:
# 执行回复动作
try:
reply_to_str = await self._build_reply_to_str(action_info["action_message"])
except UserWarning:
logger.warning("选取了自己作为回复对象,跳过回复生成")
return {
"action_type": "reply",
"success": False,
"reply_text": "",
"loop_info": None
}
# 生成回复
gather_timeout = global_config.chat.thinking_timeout
try:
response_set = await asyncio.wait_for(
self.response_handler.generate_response(
message_data=action_info["action_message"],
available_actions=action_info["available_actions"],
reply_to=reply_to_str,
request_type="chat.replyer",
),
timeout=gather_timeout
)
except asyncio.TimeoutError:
logger.warning(
f"{self.log_prefix} 并行执行:回复生成超时>{global_config.chat.thinking_timeout}s已跳过"
)
return {
"action_type": "reply",
"success": False,
"reply_text": "",
"loop_info": None
}
success, response_set, _ = await generator_api.generate_reply(
chat_stream=self.context.chat_stream,
reply_message = action_info["action_message"],
available_actions=available_actions,
enable_tool=global_config.tool.enable_tool,
request_type="chat.replyer",
from_plugin=False,
)
if not success or not response_set:
logger.info(f"{action_info['action_message'].get('processed_plain_text')} 的回复生成失败")
return {
"action_type": "reply",
"success": False,
"reply_text": "",
"loop_info": None
}
except asyncio.CancelledError:
logger.debug(f"{self.log_prefix} 并行执行:回复生成任务已被取消")
return {
@@ -267,18 +245,8 @@ class CycleProcessor:
"loop_info": None
}
if not response_set:
logger.warning(f"{self.log_prefix} 模型超时或生成回复内容为空")
return {
"action_type": "reply",
"success": False,
"reply_text": "",
"loop_info": None
}
loop_info, reply_text, cycle_timers_reply = await self._send_and_store_reply(
response_set,
reply_to_str,
loop_start_time,
action_info["action_message"],
cycle_timers,
@@ -303,7 +271,6 @@ class CycleProcessor:
}
# 创建所有动作的后台任务
action_tasks = [asyncio.create_task(execute_action(action)) for action in actions]
# 并行执行所有任务
@@ -367,7 +334,6 @@ class CycleProcessor:
self.context.chat_instance.cycle_tracker.end_cycle(loop_info, cycle_timers)
self.context.chat_instance.cycle_tracker.print_cycle_info(cycle_timers)
# await self.willing_manager.after_generate_reply_handle(message_data.get("message_id", ""))
action_type = actions[0]["action_type"] if actions else "no_action"
# 管理no_reply计数器当执行了非no_reply动作时重置计数器
if action_type != "no_reply":
@@ -688,36 +654,6 @@ class CycleProcessor:
"action_prompt": "",
}
async def _build_reply_to_str(self, message_data: dict):
"""
构建回复目标字符串
Args:
message_data: 消息数据字典
Returns:
str: 格式化的回复目标字符串,格式为"用户名:消息内容"
功能说明:
- 从消息数据中提取平台和用户ID信息
- 通过人员信息管理器获取用户昵称
- 构建用于回复显示的格式化字符串
"""
from src.person_info.person_info import get_person_info_manager
person_info_manager = get_person_info_manager()
platform = (
message_data.get("chat_info_platform")
or message_data.get("user_platform")
or (self.context.chat_stream.platform if self.context.chat_stream else "default")
)
user_id = message_data.get("user_id", "")
if user_id == str(global_config.bot.qq_account) and platform == global_config.bot.platform:
raise UserWarning
person_id = person_info_manager.get_person_id(platform, user_id)
person_name = await person_info_manager.get_value(person_id, "person_name")
return f"{person_name}:{message_data.get('processed_plain_text')}"
def _build_final_loop_info(self, reply_loop_info, action_success, action_reply_text, action_command, plan_result):
"""
构建最终的循环信息

View File

@@ -57,26 +57,6 @@ class EnergyManager:
await asyncio.sleep(0)
logger.info(f"{self.context.log_prefix} 能量管理器已停止")
def _handle_energy_completion(self, task: asyncio.Task):
"""
处理能量循环任务完成
Args:
task: 完成的异步任务对象
功能说明:
- 处理任务正常完成或异常情况
- 记录相应的日志信息
- 区分取消和异常终止的情况
"""
try:
if exception := task.exception():
logger.error(f"{self.context.log_prefix} 能量循环异常: {exception}")
else:
logger.info(f"{self.context.log_prefix} 能量循环正常结束")
except asyncio.CancelledError:
logger.info(f"{self.context.log_prefix} 能量循环被取消")
async def _energy_loop(self):
"""
能量与睡眠压力管理的主循环

View File

@@ -12,14 +12,12 @@ from src.chat.express.expression_learner import expression_learner_manager
from src.plugin_system.base.component_types import ChatMode
from src.schedule.schedule_manager import schedule_manager, SleepState
from src.plugin_system.apis import message_api
from src.chat.willing.willing_manager import get_willing_manager
from .hfc_context import HfcContext
from .energy_manager import EnergyManager
from .proactive_thinker import ProactiveThinker
from .cycle_processor import CycleProcessor
from .response_handler import ResponseHandler
from .normal_mode_handler import NormalModeHandler
from .cycle_tracker import CycleTracker
from .wakeup_manager import WakeUpManager
@@ -47,7 +45,6 @@ class HeartFChatting:
self.cycle_processor = CycleProcessor(self.context, self.response_handler, self.cycle_tracker)
self.energy_manager = EnergyManager(self.context)
self.proactive_thinker = ProactiveThinker(self.context, self.cycle_processor)
self.normal_mode_handler = NormalModeHandler(self.context, self.cycle_processor)
self.wakeup_manager = WakeUpManager(self.context)
# 将唤醒度管理器设置到上下文中
@@ -60,7 +57,6 @@ class HeartFChatting:
# 记录最近3次的兴趣度
self.recent_interest_records: deque = deque(maxlen=3)
self.willing_manager = get_willing_manager()
self._initialize_chat_mode()
logger.info(f"{self.context.log_prefix} HeartFChatting 初始化完成")
@@ -97,7 +93,7 @@ class HeartFChatting:
self.context.relationship_builder = relationship_builder_manager.get_or_create_builder(self.context.stream_id)
self.context.expression_learner = expression_learner_manager.get_expression_learner(self.context.stream_id)
await self.energy_manager.start()
#await self.energy_manager.start()
await self.proactive_thinker.start()
await self.wakeup_manager.start()
@@ -120,7 +116,7 @@ class HeartFChatting:
return
self.context.running = False
await self.energy_manager.stop()
#await self.energy_manager.stop()
await self.proactive_thinker.stop()
await self.wakeup_manager.stop()
@@ -245,8 +241,6 @@ class HeartFChatting:
# 统一使用 _should_process_messages 判断是否应该处理
should_process,interest_value = await self._should_process_messages(recent_messages if has_new_messages else None)
if should_process:
#earliest_message_data = recent_messages[0]
#self.last_read_time = earliest_message_data.get("time")
self.context.last_read_time = time.time()
await self.cycle_processor.observe(interest_value = interest_value)
else:
@@ -418,6 +412,7 @@ class HeartFChatting:
# talk_frequency = global_config.chat.get_current_talk_frequency(self.context.chat_stream.stream_id)
modified_exit_count_threshold = self.context.focus_energy / global_config.chat.focus_value
modified_exit_interest_threshold = 3 / global_config.chat.focus_value
total_interest = 0.0
for msg_dict in new_message:
interest_value = msg_dict.get("interest_value", 0.0)
@@ -441,11 +436,11 @@ class HeartFChatting:
if not hasattr(self, "_last_accumulated_interest") or total_interest != self._last_accumulated_interest:
logger.info(f"{self.context.log_prefix} breaking形式当前累计兴趣值: {total_interest:.2f}, 专注度: {global_config.chat.focus_value:.1f}")
self._last_accumulated_interest = total_interest
if total_interest >= 3 / global_config.chat.focus_value:
if total_interest >= modified_exit_interest_threshold:
# 记录兴趣度到列表
self.recent_interest_records.append(total_interest)
logger.info(
f"{self.context.log_prefix} 累计兴趣值达到{total_interest:.2f}(>{3 / global_config.chat.focus_value}),结束等待"
f"{self.context.log_prefix} 累计兴趣值达到{total_interest:.2f}(>{modified_exit_interest_threshold:.1f}),结束等待"
)
return True,total_interest/new_message_count

View File

@@ -1,84 +0,0 @@
import random
from typing import Dict, Any, TYPE_CHECKING
from src.common.logger import get_logger
from src.config.config import global_config
from src.chat.willing.willing_manager import get_willing_manager
from .hfc_context import HfcContext
if TYPE_CHECKING:
from .cycle_processor import CycleProcessor
logger = get_logger("hfc.normal_mode")
class NormalModeHandler:
def __init__(self, context: HfcContext, cycle_processor: "CycleProcessor"):
"""
初始化普通模式处理器
Args:
context: HFC聊天上下文对象
cycle_processor: 循环处理器,用于处理决定回复的消息
功能说明:
- 处理NORMAL模式下的消息
- 根据兴趣度和回复概率决定是否回复
- 管理意愿系统和回复概率计算
"""
self.context = context
self.cycle_processor = cycle_processor
self.willing_manager = get_willing_manager()
async def handle_message(self, message_data: Dict[str, Any]) -> bool:
"""
处理NORMAL模式下的单条消息
Args:
message_data: 消息数据字典,包含用户信息、消息内容、兴趣值等
Returns:
bool: 是否进行了回复处理
功能说明:
- 计算消息的兴趣度和基础回复概率
- 应用谈话频率调整回复概率
- 过滤表情和图片消息设置回复概率为0
- 根据概率随机决定是否回复
- 如果决定回复则调用循环处理器进行处理
- 记录详细的决策日志
"""
if not self.context.chat_stream:
return False
interested_rate = message_data.get("interest_value") or 0.0
self.willing_manager.setup(message_data, self.context.chat_stream)
reply_probability = await self.willing_manager.get_reply_probability(message_data.get("message_id", ""))
if reply_probability < 1:
additional_config = message_data.get("additional_config", {})
if additional_config and "maimcore_reply_probability_gain" in additional_config:
reply_probability += additional_config["maimcore_reply_probability_gain"]
reply_probability = min(max(reply_probability, 0), 1)
talk_frequency = global_config.chat.get_current_talk_frequency(self.context.stream_id)
reply_probability = talk_frequency * reply_probability
if message_data.get("is_emoji") or message_data.get("is_picid"):
reply_probability = 0
mes_name = self.context.chat_stream.group_info.group_name if self.context.chat_stream.group_info else "私聊"
if reply_probability > 0.05:
logger.info(
f"[{mes_name}]"
f"{message_data.get('user_nickname')}:"
f"{message_data.get('processed_plain_text')}[兴趣:{interested_rate:.2f}][回复概率:{reply_probability * 100:.1f}%]"
)
if random.random() < reply_probability:
await self.willing_manager.before_generate_reply_handle(message_data.get("message_id", ""))
await self.cycle_processor.observe(message_data=message_data)
return True
self.willing_manager.delete(message_data.get("message_id", ""))
return False

View File

@@ -105,7 +105,7 @@ class ResponseHandler:
return loop_info, reply_text, cycle_timers
async def send_response(self, reply_set, reply_to, thinking_start_time, message_data) -> str:
async def send_response(self, reply_set, thinking_start_time, message_data) -> str:
"""
发送回复内容的具体实现
@@ -129,9 +129,6 @@ class ResponseHandler:
new_message_count = message_api.count_new_messages(
chat_id=self.context.stream_id, start_time=thinking_start_time, end_time=current_time
)
platform = message_data.get("user_platform", "")
user_id = message_data.get("user_id", "")
reply_to_platform_id = f"{platform}:{user_id}"
need_reply = new_message_count >= random.randint(2, 4)
@@ -157,32 +154,26 @@ class ResponseHandler:
continue
if not first_replied:
if need_reply:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to=reply_to,
reply_to_platform_id=reply_to_platform_id,
typing=False,
)
else:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_platform_id=reply_to_platform_id,
typing=False,
)
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_message = message_data,
set_reply=need_reply,
typing=False,
)
first_replied = True
else:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_platform_id=reply_to_platform_id,
reply_to_message = message_data,
set_reply=need_reply,
typing=True,
)
return reply_text
# TODO: 已废弃
async def generate_response(
self,
message_data: dict,

View File

@@ -83,7 +83,7 @@ def init_prompt() -> None:
class ExpressionLearner:
def __init__(self, chat_id: str) -> None:
self.express_learn_model: LLMRequest = LLMRequest(
model_set=model_config.model_task_config.replyer_1, request_type="expressor.learner"
model_set=model_config.model_task_config.replyer, request_type="expressor.learner"
)
self.chat_id = chat_id
self.chat_name = get_chat_manager().get_stream_name(chat_id) or chat_id

View File

@@ -48,6 +48,19 @@ def init_prompt():
{actions_before_now_block}
{no_action_block}
动作reply
动作描述:参与聊天回复,发送文本进行表达
- 你想要闲聊或者随便附
- {mentioned_bonus}
- 如果你刚刚进行了回复,不要对同一个话题重复回应
- 不要回复自己发送的消息
{{
"action": "reply",
"target_message_id":"触发action的消息id",
"reason":"回复的原因"
}}
{action_options_text}
你必须从上面列出的可用action中选择一个并说明触发action的消息id不是消息原文和选择该action的原因。
@@ -302,12 +315,11 @@ class ActionPlanner:
if key not in ["action", "reason"]:
action_data[key] = value
# 在FOCUS模式下非no_reply动作需要target_message_id
# 非no_reply动作需要target_message_id
if action != "no_reply":
if target_message_id := parsed_json.get("target_message_id"):
# 根据target_message_id查找原始消息
target_message = self.find_message_by_id(target_message_id, message_id_list)
# target_message = None
# 如果获取的target_message为None输出warning并重新plan
if target_message is None:
self.plan_retry_count += 1
@@ -320,7 +332,7 @@ class ActionPlanner:
self.plan_retry_count = 0 # 重置计数器
else:
# 递归重新plan
return await self.plan(mode)
return await self.plan(mode, loop_start_time, available_actions)
else:
# 成功获取到target_message重置计数器
self.plan_retry_count = 0
@@ -328,9 +340,7 @@ class ActionPlanner:
logger.warning(f"{self.log_prefix}动作'{action}'缺少target_message_id")
if action == "no_action":
reasoning = "normal决定不使用额外动作"
elif action != "no_reply" and action != "reply" and action not in current_available_actions:
if action != "no_reply" and action != "reply" and action not in current_available_actions:
logger.warning(
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
)
@@ -470,34 +480,15 @@ class ActionPlanner:
mentioned_bonus = "\n- 有人提到你或者at你"
if mode == ChatMode.FOCUS:
no_action_block = f"""重要说明:
- 'no_reply' 表示只进行不进行回复,等待合适的回复时机
no_action_block = """重要说明:
- 'no_reply' 表示不进行回复,等待合适的回复时机
- 当你刚刚发送了消息没有人回复时选择no_reply
- 当你一次发送了太多消息为了避免打扰聊天节奏选择no_reply
动作reply
动作描述:参与聊天回复,发送文本进行表达
- 你想要闲聊或者随便附和{mentioned_bonus}
- 如果你刚刚进行了回复,不要对同一个话题重复回应
- 不要回复自己发送的消息
{{
"action": "reply",
"target_message_id":"触发action的消息id",
"reason":"回复的原因"
}}
"""
else: # NORMAL Mode
no_action_block = f"""重要说明:
no_action_block = """重要说明:
- 'reply' 表示只进行普通聊天回复,不执行任何额外动作
- 其他action表示在普通回复的基础上执行相应的额外动作
动作reply
动作描述:参与聊天回复,发送文本进行表达
- 你想要闲聊或者随便附
- {mentioned_bonus}
- 如果你刚刚进行了回复,不要对同一个话题重复回应
- 不要回复自己发送的消息
{{
"action": "reply",
"target_message_id":"触发action的消息id",
@@ -505,6 +496,7 @@ class ActionPlanner:
}}"""
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None
if not is_group_chat and chat_target_info:
chat_target_name = (
chat_target_info.get("person_name")
@@ -535,6 +527,7 @@ class ActionPlanner:
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
actions_before_now_block=actions_before_now_block,
mentioned_bonus=mentioned_bonus,
no_action_block=no_action_block,
action_options_text=action_options_block,
moderation_prompt=moderation_prompt_block,

View File

@@ -227,37 +227,9 @@ class DefaultReplyer:
def __init__(
self,
chat_stream: ChatStream,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "focus.replyer",
request_type: str = "replyer",
):
self.request_type = request_type
if model_set_with_weight:
# self.express_model_configs = model_configs
self.model_set: List[Tuple[TaskConfig, float]] = model_set_with_weight
else:
# 当未提供配置时,使用默认配置并赋予默认权重
# model_config_1 = global_config.model.replyer_1.copy()
# model_config_2 = global_config.model.replyer_2.copy()
prob_first = global_config.chat.replyer_random_probability
# model_config_1["weight"] = prob_first
# model_config_2["weight"] = 1.0 - prob_first
# self.express_model_configs = [model_config_1, model_config_2]
self.model_set = [
(model_config.model_task_config.replyer_1, prob_first),
(model_config.model_task_config.replyer_2, 1.0 - prob_first),
]
# if not self.express_model_configs:
# logger.warning("未找到有效的模型配置,回复生成可能会失败。")
# # 提供一个最终的回退,以防止在空列表上调用 random.choice
# fallback_config = global_config.model.replyer_1.copy()
# fallback_config.setdefault("weight", 1.0)
# self.express_model_configs = [fallback_config]
self.express_model = LLMRequest(model_set=model_config.model_task_config.replyer, request_type=request_type)
self.chat_stream = chat_stream
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_stream.stream_id)
@@ -270,14 +242,6 @@ class DefaultReplyer:
self.tool_executor = ToolExecutor(chat_id=self.chat_stream.stream_id)
def _select_weighted_models_config(self) -> Tuple[TaskConfig, float]:
"""使用加权随机选择来挑选一个模型配置"""
configs = self.model_set
# 提取权重,如果模型配置中没有'weight'键则默认为1.0
weights = [weight for _, weight in configs]
return random.choices(population=configs, weights=weights, k=1)[0]
async def generate_reply_with_context(
self,
reply_to: str = "",
@@ -286,6 +250,7 @@ class DefaultReplyer:
enable_tool: bool = True,
from_plugin: bool = True,
stream_id: Optional[str] = None,
reply_message: Optional[Dict[str, Any]] = None,
) -> Tuple[bool, Optional[Dict[str, Any]], Optional[str]]:
# sourcery skip: merge-nested-ifs
"""
@@ -313,6 +278,7 @@ class DefaultReplyer:
extra_info=extra_info,
available_actions=available_actions,
enable_tool=enable_tool,
reply_message=reply_message,
)
if not prompt:
@@ -590,7 +556,7 @@ class DefaultReplyer:
# 只有当完全没有任何记忆时才返回空字符串
return memory_str if has_any_memory else ""
async def build_tool_info(self, chat_history: str, reply_to: str = "", enable_tool: bool = True) -> str:
async def build_tool_info(self, chat_history: str, sender: str, target: str, enable_tool: bool = True) -> str:
"""构建工具信息块
Args:
@@ -605,18 +571,10 @@ class DefaultReplyer:
if not enable_tool:
return ""
if not reply_to:
return ""
sender, text = self._parse_reply_target(reply_to)
if not text:
return ""
try:
# 使用工具执行器获取信息
tool_results, _, _ = await self.tool_executor.execute_from_chat_message(
sender=sender, target_message=text, chat_history=chat_history, return_details=False
sender=sender, target_message=target, chat_history=chat_history, return_details=False
)
if tool_results:
@@ -826,7 +784,8 @@ class DefaultReplyer:
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_tool: bool = True,
) -> str: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
reply_message: Optional[Dict[str, Any]] = None,
) -> str:
"""
构建回复器上下文
@@ -836,6 +795,7 @@ class DefaultReplyer:
available_actions: 可用动作
enable_timeout: 是否启用超时处理
enable_tool: 是否启用工具调用
reply_message: 回复的原始消息
Returns:
str: 构建好的上下文
@@ -858,7 +818,20 @@ class DefaultReplyer:
else:
mood_prompt = ""
sender, target = self._parse_reply_target(reply_to)
if reply_to:
#兼容旧的reply_to
sender, target = self._parse_reply_target(reply_to)
else:
# 获取 platform如果不存在则从 chat_stream 获取,如果还是 None 则使用默认值
platform = reply_message.get("chat_info_platform")
person_id = person_info_manager.get_person_id(
platform, # type: ignore
reply_message.get("user_id"), # type: ignore
)
person_name = await person_info_manager.get_value(person_id, "person_name")
sender = person_name
target = reply_message.get('processed_plain_text')
person_info_manager = get_person_info_manager()
person_id = person_info_manager.get_person_id_by_person_name(sender)
user_id = person_info_manager.get_value_sync(person_id, "user_id")
@@ -908,12 +881,12 @@ class DefaultReplyer:
self._time_and_run_task(
self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits"
),
self._time_and_run_task(self.build_relation_info(reply_to), "relation_info"),
self._time_and_run_task(self.build_relation_info(sender, target), "relation_info"),
self._time_and_run_task(self.build_memory_block(chat_talking_prompt_short, target), "memory_block"),
self._time_and_run_task(
self.build_tool_info(chat_talking_prompt_short, reply_to, enable_tool=enable_tool), "tool_info"
self.build_tool_info(chat_talking_prompt_short, sender, target, enable_tool=enable_tool), "tool_info"
),
self._time_and_run_task(self.get_prompt_info(chat_talking_prompt_short, reply_to), "prompt_info"),
self._time_and_run_task(self.get_prompt_info(chat_talking_prompt_short, sender, target), "prompt_info"),
self._time_and_run_task(
PromptUtils.build_cross_context(chat_id, target_user_info, global_config.personality.prompt_mode),
"cross_context",
@@ -1046,12 +1019,17 @@ class DefaultReplyer:
raw_reply: str,
reason: str,
reply_to: str,
reply_message: Optional[Dict[str, Any]] = None,
) -> str: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
chat_stream = self.chat_stream
chat_id = chat_stream.stream_id
is_group_chat = bool(chat_stream.group_info)
sender, target = self._parse_reply_target(reply_to)
if reply_message:
sender = reply_message.get("sender")
target = reply_message.get("target")
else:
sender, target = self._parse_reply_target(reply_to)
# 添加情绪状态获取
if global_config.mood.enable_mood:
@@ -1082,7 +1060,7 @@ class DefaultReplyer:
# 并行执行2个构建任务
expression_habits_block, relation_info = await asyncio.gather(
self.build_expression_habits(chat_talking_prompt_half, target),
self.build_relation_info(reply_to),
self.build_relation_info(sender, target),
)
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
@@ -1195,34 +1173,24 @@ class DefaultReplyer:
async def llm_generate_content(self, prompt: str):
with Timer("LLM生成", {}): # 内部计时器,可选保留
# 加权随机选择一个模型配置
selected_model_config, weight = self._select_weighted_models_config()
logger.info(f"使用模型集生成回复: {selected_model_config} (选中概率: {weight})")
express_model = LLMRequest(model_set=selected_model_config, request_type=self.request_type)
# 直接使用已初始化的模型实例
logger.info(f"使用模型集生成回复: {self.express_model.model_for_task}")
if global_config.debug.show_prompt:
logger.info(f"\n{prompt}\n")
else:
logger.debug(f"\n{prompt}\n")
content, (reasoning_content, model_name, tool_calls) = await express_model.generate_response_async(prompt)
content, (reasoning_content, model_name, tool_calls) = await self.express_model.generate_response_async(prompt)
logger.debug(f"replyer生成内容: {content}")
return content, reasoning_content, model_name, tool_calls
async def get_prompt_info(self, message: str, reply_to: str):
async def get_prompt_info(self, message: str, sender: str, target: str):
related_info = ""
start_time = time.time()
from src.plugins.built_in.knowledge.lpmm_get_knowledge import SearchKnowledgeFromLPMMTool
if not reply_to:
logger.debug("没有回复对象,跳过获取知识库内容")
return ""
sender, content = self._parse_reply_target(reply_to)
if not content:
logger.debug("回复对象内容为空,跳过获取知识库内容")
return ""
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
# 从LPMM知识库获取知识
try:
@@ -1240,7 +1208,7 @@ class DefaultReplyer:
time_now=time_now,
chat_history=message,
sender=sender,
target_message=content,
target_message=target,
)
_, _, _, _, tool_calls = await llm_api.generate_with_model_with_tools(
prompt,
@@ -1269,16 +1237,11 @@ class DefaultReplyer:
logger.error(f"获取知识库内容时发生异常: {str(e)}")
return ""
async def build_relation_info(self, reply_to: str = ""):
async def build_relation_info(self, sender: str, target: str):
if not global_config.relationship.enable_relationship:
return ""
relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id)
if not reply_to:
return ""
sender, text = self._parse_reply_target(reply_to)
if not sender or not text:
return ""
# 获取用户ID
person_info_manager = get_person_info_manager()

View File

@@ -16,7 +16,6 @@ class ReplyerManager:
self,
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "replyer",
) -> Optional[DefaultReplyer]:
"""
@@ -50,7 +49,6 @@ class ReplyerManager:
# model_configs 只在此时(初始化时)生效
replyer = DefaultReplyer(
chat_stream=target_stream,
model_set_with_weight=model_set_with_weight, # 可以是None此时使用默认模型
request_type=request_type,
)
self._repliers[stream_id] = replyer

View File

@@ -1,60 +0,0 @@
import asyncio
from src.config.config import global_config
from .willing_manager import BaseWillingManager
class ClassicalWillingManager(BaseWillingManager):
def __init__(self):
super().__init__()
self._decay_task: asyncio.Task | None = None
async def _decay_reply_willing(self):
"""定期衰减回复意愿"""
while True:
await asyncio.sleep(1)
for chat_id in self.chat_reply_willing:
self.chat_reply_willing[chat_id] = max(0.0, self.chat_reply_willing[chat_id] * 0.9)
async def async_task_starter(self):
if self._decay_task is None:
self._decay_task = asyncio.create_task(self._decay_reply_willing())
async def get_reply_probability(self, message_id):
willing_info = self.ongoing_messages[message_id]
chat_id = willing_info.chat_id
current_willing = self.chat_reply_willing.get(chat_id, 0)
# print(f"[{chat_id}] 回复意愿: {current_willing}")
interested_rate = willing_info.interested_rate
# print(f"[{chat_id}] 兴趣值: {interested_rate}")
current_willing += interested_rate
if willing_info.is_mentioned_bot and global_config.chat.mentioned_bot_inevitable_reply and current_willing < 2:
current_willing += 1 if current_willing < 1.0 else 0.2
self.chat_reply_willing[chat_id] = min(current_willing, 1.0)
reply_probability = min(max((current_willing - 0.5), 0.01) * 2, 1.5)
# print(f"[{chat_id}] 回复概率: {reply_probability}")
return reply_probability
async def before_generate_reply_handle(self, message_id):
pass
async def after_generate_reply_handle(self, message_id):
if message_id not in self.ongoing_messages:
return
chat_id = self.ongoing_messages[message_id].chat_id
current_willing = self.chat_reply_willing.get(chat_id, 0)
if current_willing < 1:
self.chat_reply_willing[chat_id] = min(1.0, current_willing + 0.3)
async def not_reply_handle(self, message_id):
return await super().not_reply_handle(message_id)

View File

@@ -1,24 +0,0 @@
from .willing_manager import BaseWillingManager
NOT_IMPLEMENTED_MESSAGE = "\ncustom模式你实现了吗没自行实现不要选custom。给你退了快点给你麦爹配置\n以上内容由gemini生成如有不满请投诉gemini"
class CustomWillingManager(BaseWillingManager):
async def async_task_starter(self) -> None:
raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE)
async def before_generate_reply_handle(self, message_id: str):
raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE)
async def after_generate_reply_handle(self, message_id: str):
raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE)
async def not_reply_handle(self, message_id: str):
raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE)
async def get_reply_probability(self, message_id: str):
raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE)
def __init__(self):
super().__init__()
raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE)

View File

@@ -1,296 +0,0 @@
"""
Mxp 模式:梦溪畔独家赞助
此模式的一些参数不会在配置文件中显示,要修改请在可变参数下修改
同时一些全局设置对此模式无效
此模式的可变参数暂时比较草率,需要调参仙人的大手
此模式的特点:
1.每个聊天流的每个用户的意愿是独立的
2.接入关系系统,关系会影响意愿值(已移除,因为关系系统重构)
3.会根据群聊的热度来调整基础意愿值
4.限制同时思考的消息数量,防止喷射
5.拥有单聊增益无论在群里还是私聊只要bot一直和你聊就会增加意愿值
6.意愿分为衰减意愿+临时意愿
7.疲劳机制
如果你发现本模式出现了bug
上上策是询问智慧的小草神()
上策是询问万能的千石可乐
中策是发issue
下下策是询问一个菜鸟(@梦溪畔)
"""
from typing import Dict
import asyncio
import time
import math
from src.chat.message_receive.chat_stream import ChatStream
from .willing_manager import BaseWillingManager
class MxpWillingManager(BaseWillingManager):
"""Mxp意愿管理器"""
def __init__(self):
super().__init__()
self.chat_person_reply_willing: Dict[str, Dict[str, float]] = {} # chat_id: {person_id: 意愿值}
self.chat_new_message_time: Dict[str, list[float]] = {} # 聊天流ID: 消息时间
self.last_response_person: Dict[str, tuple[str, int]] = {} # 上次回复的用户信息
self.temporary_willing: float = 0 # 临时意愿值
self.chat_bot_message_time: Dict[str, list[float]] = {} # 聊天流ID: bot已回复消息时间
self.chat_fatigue_punishment_list: Dict[
str, list[tuple[float, float]]
] = {} # 聊天流疲劳惩罚列, 聊天流ID: 惩罚时间列(开始时间,持续时间)
self.chat_fatigue_willing_attenuation: Dict[str, float] = {} # 聊天流疲劳意愿衰减值
# 可变参数
self.intention_decay_rate = 0.93 # 意愿衰减率
self.number_of_message_storage = 12 # 消息存储数量
self.expected_replies_per_min = 3 # 每分钟预期回复数
self.basic_maximum_willing = 0.5 # 基础最大意愿值
self.mention_willing_gain = 0.6 # 提及意愿增益
self.interest_willing_gain = 0.3 # 兴趣意愿增益
self.single_chat_gain = 0.12 # 单聊增益
self.fatigue_messages_triggered_num = self.expected_replies_per_min # 疲劳消息触发数量(int)
self.fatigue_coefficient = 1.0 # 疲劳系数
self.is_debug = False # 是否开启调试模式
async def async_task_starter(self) -> None:
"""异步任务启动器"""
asyncio.create_task(self._return_to_basic_willing())
asyncio.create_task(self._chat_new_message_to_change_basic_willing())
asyncio.create_task(self._fatigue_attenuation())
async def before_generate_reply_handle(self, message_id: str):
"""回复前处理"""
current_time = time.time()
async with self.lock:
w_info = self.ongoing_messages[message_id]
if w_info.chat_id not in self.chat_bot_message_time:
self.chat_bot_message_time[w_info.chat_id] = []
self.chat_bot_message_time[w_info.chat_id] = [
t for t in self.chat_bot_message_time[w_info.chat_id] if current_time - t < 60
]
self.chat_bot_message_time[w_info.chat_id].append(current_time)
if len(self.chat_bot_message_time[w_info.chat_id]) == int(self.fatigue_messages_triggered_num):
time_interval = 60 - (current_time - self.chat_bot_message_time[w_info.chat_id].pop(0))
self.chat_fatigue_punishment_list[w_info.chat_id].append((current_time, time_interval * 2))
async def after_generate_reply_handle(self, message_id: str):
"""回复后处理"""
async with self.lock:
w_info = self.ongoing_messages[message_id]
# 移除关系值相关代码
# rel_value = await w_info.person_info_manager.get_value(w_info.person_id, "relationship_value")
# rel_level = self._get_relationship_level_num(rel_value)
# self.chat_person_reply_willing[w_info.chat_id][w_info.person_id] += rel_level * 0.05
now_chat_new_person = self.last_response_person.get(w_info.chat_id, (w_info.person_id, 0))
if now_chat_new_person[0] == w_info.person_id:
if now_chat_new_person[1] < 3:
tmp_list = list(now_chat_new_person)
tmp_list[1] += 1 # type: ignore
self.last_response_person[w_info.chat_id] = tuple(tmp_list) # type: ignore
else:
self.last_response_person[w_info.chat_id] = (w_info.person_id, 0)
async def not_reply_handle(self, message_id: str):
"""不回复处理"""
async with self.lock:
w_info = self.ongoing_messages[message_id]
if w_info.is_mentioned_bot:
self.chat_person_reply_willing[w_info.chat_id][w_info.person_id] += self.mention_willing_gain / 2.5
if (
w_info.chat_id in self.last_response_person
and self.last_response_person[w_info.chat_id][0] == w_info.person_id
and self.last_response_person[w_info.chat_id][1]
):
self.chat_person_reply_willing[w_info.chat_id][w_info.person_id] += self.single_chat_gain * (
2 * self.last_response_person[w_info.chat_id][1] - 1
)
now_chat_new_person = self.last_response_person.get(w_info.chat_id, ("", 0))
if now_chat_new_person[0] != w_info.person_id:
self.last_response_person[w_info.chat_id] = (w_info.person_id, 0)
async def get_reply_probability(self, message_id: str):
# sourcery skip: merge-duplicate-blocks, remove-redundant-if
"""获取回复概率"""
async with self.lock:
w_info = self.ongoing_messages[message_id]
current_willing = self.chat_person_reply_willing[w_info.chat_id][w_info.person_id]
if self.is_debug:
self.logger.debug(f"基础意愿值:{current_willing}")
if w_info.is_mentioned_bot:
willing_gain = self.mention_willing_gain / (int(current_willing) + 1)
current_willing += willing_gain
if self.is_debug:
self.logger.debug(f"提及增益:{willing_gain}")
if w_info.interested_rate > 0:
willing_gain = math.atan(w_info.interested_rate / 2) / math.pi * 2 * self.interest_willing_gain
current_willing += willing_gain
if self.is_debug:
self.logger.debug(f"兴趣增益:{willing_gain}")
self.chat_person_reply_willing[w_info.chat_id][w_info.person_id] = current_willing
# 添加单聊增益
if (
w_info.chat_id in self.last_response_person
and self.last_response_person[w_info.chat_id][0] == w_info.person_id
and self.last_response_person[w_info.chat_id][1]
):
current_willing += self.single_chat_gain * (2 * self.last_response_person[w_info.chat_id][1] + 1)
if self.is_debug:
self.logger.debug(
f"单聊增益:{self.single_chat_gain * (2 * self.last_response_person[w_info.chat_id][1] + 1)}"
)
current_willing += self.chat_fatigue_willing_attenuation.get(w_info.chat_id, 0)
if self.is_debug:
self.logger.debug(f"疲劳衰减:{self.chat_fatigue_willing_attenuation.get(w_info.chat_id, 0)}")
chat_ongoing_messages = [msg for msg in self.ongoing_messages.values() if msg.chat_id == w_info.chat_id]
chat_person_ongoing_messages = [msg for msg in chat_ongoing_messages if msg.person_id == w_info.person_id]
if len(chat_person_ongoing_messages) >= 2:
current_willing = 0
if self.is_debug:
self.logger.debug("进行中消息惩罚归0")
elif len(chat_ongoing_messages) == 2:
current_willing -= 0.5
if self.is_debug:
self.logger.debug("进行中消息惩罚:-0.5")
elif len(chat_ongoing_messages) == 3:
current_willing -= 1.5
if self.is_debug:
self.logger.debug("进行中消息惩罚:-1.5")
elif len(chat_ongoing_messages) >= 4:
current_willing = 0
if self.is_debug:
self.logger.debug("进行中消息惩罚归0")
probability = self._willing_to_probability(current_willing)
self.temporary_willing = current_willing
return probability
async def _return_to_basic_willing(self):
"""使每个人的意愿恢复到chat基础意愿"""
while True:
await asyncio.sleep(3)
async with self.lock:
for chat_id, person_willing in self.chat_person_reply_willing.items():
for person_id, willing in person_willing.items():
if chat_id not in self.chat_reply_willing:
self.logger.debug(f"聊天流{chat_id}不存在,错误")
continue
basic_willing = self.chat_reply_willing[chat_id]
person_willing[person_id] = (
basic_willing + (willing - basic_willing) * self.intention_decay_rate
)
def setup(self, message: dict, chat_stream: ChatStream):
super().setup(message, chat_stream)
stream_id = chat_stream.stream_id
self.chat_reply_willing[stream_id] = self.chat_reply_willing.get(stream_id, self.basic_maximum_willing)
self.chat_person_reply_willing[stream_id] = self.chat_person_reply_willing.get(stream_id, {})
self.chat_person_reply_willing[stream_id][self.ongoing_messages[message.get("message_id", "")].person_id] = (
self.chat_person_reply_willing[stream_id].get(
self.ongoing_messages[message.get("message_id", "")].person_id,
self.chat_reply_willing[stream_id],
)
)
current_time = time.time()
if stream_id not in self.chat_new_message_time:
self.chat_new_message_time[stream_id] = []
self.chat_new_message_time[stream_id].append(current_time)
if len(self.chat_new_message_time[stream_id]) > self.number_of_message_storage:
self.chat_new_message_time[stream_id].pop(0)
if stream_id not in self.chat_fatigue_punishment_list:
self.chat_fatigue_punishment_list[stream_id] = [
(
current_time,
self.number_of_message_storage * self.basic_maximum_willing / self.expected_replies_per_min * 60,
)
]
self.chat_fatigue_willing_attenuation[stream_id] = (
-2 * self.basic_maximum_willing * self.fatigue_coefficient
)
@staticmethod
def _willing_to_probability(willing: float) -> float:
"""意愿值转化为概率"""
willing = max(0, willing)
if willing < 2:
return math.atan(willing * 2) / math.pi * 2
elif willing < 2.5:
return math.atan(willing * 4) / math.pi * 2
else:
return 1
async def _chat_new_message_to_change_basic_willing(self):
"""聊天流新消息改变基础意愿"""
update_time = 20
while True:
await asyncio.sleep(update_time)
async with self.lock:
for chat_id, message_times in self.chat_new_message_time.items():
# 清理过期消息
current_time = time.time()
message_times = [
msg_time
for msg_time in message_times
if current_time - msg_time
< self.number_of_message_storage
* self.basic_maximum_willing
/ self.expected_replies_per_min
* 60
]
self.chat_new_message_time[chat_id] = message_times
if len(message_times) < self.number_of_message_storage:
self.chat_reply_willing[chat_id] = self.basic_maximum_willing
update_time = 20
elif len(message_times) == self.number_of_message_storage:
time_interval = current_time - message_times[0]
basic_willing = self._basic_willing_calculate(time_interval)
self.chat_reply_willing[chat_id] = basic_willing
update_time = 17 * basic_willing / self.basic_maximum_willing + 3
else:
self.logger.debug(f"聊天流{chat_id}消息时间数量异常,数量:{len(message_times)}")
self.chat_reply_willing[chat_id] = 0
if self.is_debug:
self.logger.debug(f"聊天流意愿值更新:{self.chat_reply_willing}")
def _basic_willing_calculate(self, t: float) -> float:
"""基础意愿值计算"""
return math.tan(t * self.expected_replies_per_min * math.pi / 120 / self.number_of_message_storage) / 2
async def _fatigue_attenuation(self):
"""疲劳衰减"""
while True:
await asyncio.sleep(1)
current_time = time.time()
async with self.lock:
for chat_id, fatigue_list in self.chat_fatigue_punishment_list.items():
fatigue_list = [z for z in fatigue_list if current_time - z[0] < z[1]]
self.chat_fatigue_willing_attenuation[chat_id] = 0
for start_time, duration in fatigue_list:
self.chat_fatigue_willing_attenuation[chat_id] += (
self.chat_reply_willing[chat_id]
* 2
/ math.pi
* math.asin(2 * (current_time - start_time) / duration - 1)
- self.chat_reply_willing[chat_id]
) * self.fatigue_coefficient
async def get_willing(self, chat_id):
return self.temporary_willing

View File

@@ -1,180 +0,0 @@
import importlib
import asyncio
from abc import ABC, abstractmethod
from typing import Dict, Optional, Any
from rich.traceback import install
from dataclasses import dataclass
from src.common.logger import get_logger
from src.config.config import global_config
from src.chat.message_receive.chat_stream import ChatStream, GroupInfo
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
install(extra_lines=3)
"""
基类方法概览:
以下8个方法是你必须在子类重写的哪怕什么都不干
async_task_starter 在程序启动时执行在其中用asyncio.create_task启动你想要执行的异步任务
before_generate_reply_handle 确定要回复后,在生成回复前的处理
after_generate_reply_handle 确定要回复后,在生成回复后的处理
not_reply_handle 确定不回复后的处理
get_reply_probability 获取回复概率
get_variable_parameters 暂不确定
set_variable_parameters 暂不确定
以下2个方法根据你的实现可以做调整
get_willing 获取某聊天流意愿
set_willing 设置某聊天流意愿
规范说明:
模块文件命名: `mode_{manager_type}.py`
示例: 若 `manager_type="aggressive"`,则模块文件应为 `mode_aggressive.py`
类命名: `{manager_type}WillingManager` (首字母大写)
示例: 在 `mode_aggressive.py` 中,类名应为 `AggressiveWillingManager`
"""
logger = get_logger("willing")
@dataclass
class WillingInfo:
"""此类保存意愿模块常用的参数
Attributes:
message (MessageRecv): 原始消息对象
chat (ChatStream): 聊天流对象
person_info_manager (PersonInfoManager): 用户信息管理对象
chat_id (str): 当前聊天流的标识符
person_id (str): 发送者的个人信息的标识符
group_id (str): 群组ID如果是私聊则为空
is_mentioned_bot (bool): 是否提及了bot
is_emoji (bool): 是否为表情包
interested_rate (float): 兴趣度
"""
message: Dict[str, Any] # 原始消息数据
chat: ChatStream
person_info_manager: PersonInfoManager
chat_id: str
person_id: str
group_info: Optional[GroupInfo]
is_mentioned_bot: bool
is_emoji: bool
is_picid: bool
interested_rate: float
# current_mood: float 当前心情?
class BaseWillingManager(ABC):
"""回复意愿管理基类"""
@classmethod
def create(cls, manager_type: str) -> "BaseWillingManager":
try:
module = importlib.import_module(f".mode_{manager_type}", __package__)
manager_class = getattr(module, f"{manager_type.capitalize()}WillingManager")
if not issubclass(manager_class, cls):
raise TypeError(f"Manager class {manager_class.__name__} is not a subclass of {cls.__name__}")
else:
logger.info(f"普通回复模式:{manager_type}")
return manager_class()
except (ImportError, AttributeError, TypeError) as e:
module = importlib.import_module(".mode_classical", __package__)
manager_class = module.ClassicalWillingManager
logger.info(f"载入当前意愿模式{manager_type}失败,使用经典配方~~~~")
logger.debug(f"加载willing模式{manager_type}失败,原因: {str(e)}")
return manager_class()
def __init__(self):
self.chat_reply_willing: Dict[str, float] = {} # 存储每个聊天流的回复意愿(chat_id)
self.ongoing_messages: Dict[str, WillingInfo] = {} # 当前正在进行的消息(message_id)
self.lock = asyncio.Lock()
self.logger = logger
def setup(self, message: dict, chat: ChatStream):
person_id = PersonInfoManager.get_person_id(chat.platform, chat.user_info.user_id) # type: ignore
self.ongoing_messages[message.get("message_id", "")] = WillingInfo(
message=message,
chat=chat,
person_info_manager=get_person_info_manager(),
chat_id=chat.stream_id,
person_id=person_id,
group_info=chat.group_info,
is_mentioned_bot=message.get("is_mentioned", False),
is_emoji=message.get("is_emoji", False),
is_picid=message.get("is_picid", False),
interested_rate=message.get("interest_value") or 0.0,
)
def delete(self, message_id: str):
del_message = self.ongoing_messages.pop(message_id, None)
if not del_message:
logger.debug(f"尝试删除不存在的消息 ID: {message_id},可能已被其他流程处理,喵~")
@abstractmethod
async def async_task_starter(self) -> None:
"""抽象方法:异步任务启动器"""
pass
@abstractmethod
async def before_generate_reply_handle(self, message_id: str):
"""抽象方法:回复前处理"""
pass
@abstractmethod
async def after_generate_reply_handle(self, message_id: str):
"""抽象方法:回复后处理"""
pass
@abstractmethod
async def not_reply_handle(self, message_id: str):
"""抽象方法:不回复处理"""
pass
@abstractmethod
async def get_reply_probability(self, message_id: str):
"""抽象方法:获取回复概率"""
raise NotImplementedError
async def get_willing(self, chat_id: str):
"""获取指定聊天流的回复意愿"""
async with self.lock:
return self.chat_reply_willing.get(chat_id, 0)
async def set_willing(self, chat_id: str, willing: float):
"""设置指定聊天流的回复意愿"""
async with self.lock:
self.chat_reply_willing[chat_id] = willing
# @abstractmethod
# async def get_variable_parameters(self) -> Dict[str, str]:
# """抽象方法:获取可变参数"""
# pass
# @abstractmethod
# async def set_variable_parameters(self, parameters: Dict[str, any]):
# """抽象方法:设置可变参数"""
# pass
def init_willing_manager() -> BaseWillingManager:
"""
根据配置初始化并返回对应的WillingManager实例
Returns:
对应mode的WillingManager实例
"""
mode = global_config.normal_chat.willing_mode.lower()
return BaseWillingManager.create(mode)
# 全局willing_manager对象
willing_manager = None
def get_willing_manager():
global willing_manager
if willing_manager is None:
willing_manager = init_willing_manager()
return willing_manager

View File

@@ -106,8 +106,7 @@ class ModelTaskConfig(ValidatedConfigBase):
# 必需配置项
utils: TaskConfig = Field(..., description="组件模型配置")
utils_small: TaskConfig = Field(..., description="组件小模型配置")
replyer_1: TaskConfig = Field(..., description="normal_chat首要回复模型模型配置")
replyer_2: TaskConfig = Field(..., description="normal_chat次要回复模型配置")
replyer: TaskConfig = Field(..., description="normal_chat首要回复模型模型配置")
maizone: TaskConfig = Field(..., description="maizone专用模型")
emotion: TaskConfig = Field(..., description="情绪模型配置")
vlm: TaskConfig = Field(..., description="视觉语言模型配置")

View File

@@ -258,7 +258,6 @@ class MessageReceiveConfig(ValidatedConfigBase):
class NormalChatConfig(ValidatedConfigBase):
"""普通聊天配置类"""
willing_mode: str = Field(default="classical", description="意愿模式")
class ExpressionRule(ValidatedConfigBase):

View File

@@ -8,7 +8,6 @@ from maim_message import MessageServer
from src.manager.async_task_manager import async_task_manager
from src.chat.utils.statistic import OnlineTimeRecordTask, StatisticOutputTask
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.willing.willing_manager import get_willing_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.config.config import global_config
from src.chat.message_receive.bot import chat_bot
@@ -38,8 +37,6 @@ if global_config.memory.enable_memory:
install(extra_lines=3)
willing_manager = get_willing_manager()
logger = get_logger("main")
@@ -192,10 +189,6 @@ MoFox_Bot(第三方修改版)
get_emoji_manager().initialize()
logger.info("表情包管理器初始化成功")
# 启动愿望管理器
await willing_manager.async_task_starter()
logger.info("willing管理器初始化成功")
# 启动情绪管理器
await mood_manager.start()

View File

@@ -60,7 +60,7 @@ class MaiThinking:
self.sender = ""
self.target = ""
self.thinking_model = LLMRequest(model_set=model_config.model_task_config.replyer_1, request_type="thinking")
self.thinking_model = LLMRequest(model_set=model_config.model_task_config.replyer, request_type="thinking")
async def do_think_before_response(self):
pass

View File

@@ -13,8 +13,8 @@ logger = get_logger("s4u_stream_generator")
class S4UStreamGenerator:
def __init__(self):
replyer_1_config = model_config.model_task_config.replyer_1
model_to_use = replyer_1_config.model_list[0]
replyer_config = model_config.model_task_config.replyer
model_to_use = replyer_config.model_list[0]
model_info = model_config.get_model_info(model_to_use)
if not model_info:
logger.error(f"模型 {model_to_use} 在配置中未找到")
@@ -22,8 +22,8 @@ class S4UStreamGenerator:
provider_name = model_info.api_provider
provider_info = model_config.get_provider(provider_name)
if not provider_info:
logger.error("`replyer_1` 找不到对应的Provider")
raise ValueError("`replyer_1` 找不到对应的Provider")
logger.error("`replyer` 找不到对应的Provider")
raise ValueError("`replyer` 找不到对应的Provider")
api_key = provider_info.api_key
base_url = provider_info.base_url
@@ -34,7 +34,7 @@ class S4UStreamGenerator:
self.client_1 = AsyncOpenAIClient(api_key=api_key, base_url=base_url)
self.model_1_name = model_to_use
self.replyer_1_config = replyer_1_config
self.replyer_config = replyer_config
self.current_model_name = "unknown model"
self.partial_response = ""
@@ -104,10 +104,10 @@ class S4UStreamGenerator:
self.current_model_name = self.model_1_name
extra_kwargs = {}
if self.replyer_1_config.get("enable_thinking") is not None:
extra_kwargs["enable_thinking"] = self.replyer_1_config.get("enable_thinking")
if self.replyer_1_config.get("thinking_budget") is not None:
extra_kwargs["thinking_budget"] = self.replyer_1_config.get("thinking_budget")
if self.replyer_config.get("enable_thinking") is not None:
extra_kwargs["enable_thinking"] = self.replyer_config.get("enable_thinking")
if self.replyer_config.get("thinking_budget") is not None:
extra_kwargs["thinking_budget"] = self.replyer_config.get("thinking_budget")
async for chunk in self._generate_response_with_model(
prompt, current_client, self.current_model_name, **extra_kwargs

View File

@@ -32,7 +32,6 @@ logger = get_logger("generator_api")
def get_replyer(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "replyer",
) -> Optional[DefaultReplyer]:
"""获取回复器对象
@@ -43,7 +42,6 @@ def get_replyer(
Args:
chat_stream: 聊天流对象(优先)
chat_id: 聊天ID实际上就是stream_id
model_set_with_weight: 模型配置列表,每个元素为 (TaskConfig, weight) 元组
request_type: 请求类型
Returns:
@@ -59,7 +57,6 @@ def get_replyer(
return replyer_manager.get_replyer(
chat_stream=chat_stream,
chat_id=chat_id,
model_set_with_weight=model_set_with_weight,
request_type=request_type,
)
except Exception as e:
@@ -78,13 +75,13 @@ async def generate_reply(
chat_id: Optional[str] = None,
action_data: Optional[Dict[str, Any]] = None,
reply_to: str = "",
reply_message: Optional[Dict[str, Any]] = None,
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_tool: bool = False,
enable_splitter: bool = True,
enable_chinese_typo: bool = True,
return_prompt: bool = False,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "generator_api",
from_plugin: bool = True,
) -> Tuple[bool, List[Tuple[str, Any]], Optional[str]]:
@@ -95,6 +92,7 @@ async def generate_reply(
chat_id: 聊天ID备用
action_data: 动作数据向下兼容包含reply_to和extra_info
reply_to: 回复对象,格式为 "发送者:消息内容"
reply_message: 回复的原始消息
extra_info: 额外信息,用于补充上下文
available_actions: 可用动作
enable_tool: 是否启用工具调用
@@ -110,7 +108,7 @@ async def generate_reply(
try:
# 获取回复器
replyer = get_replyer(
chat_stream, chat_id, model_set_with_weight=model_set_with_weight, request_type=request_type
chat_stream, chat_id, request_type=request_type
)
if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器")
@@ -131,6 +129,7 @@ async def generate_reply(
enable_tool=enable_tool,
from_plugin=from_plugin,
stream_id=chat_stream.stream_id if chat_stream else chat_id,
reply_message=reply_message,
)
if not success:
logger.warning("[GeneratorAPI] 回复生成失败")
@@ -166,11 +165,11 @@ async def rewrite_reply(
chat_id: Optional[str] = None,
enable_splitter: bool = True,
enable_chinese_typo: bool = True,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
raw_reply: str = "",
reason: str = "",
reply_to: str = "",
return_prompt: bool = False,
request_type: str = "generator_api",
) -> Tuple[bool, List[Tuple[str, Any]], Optional[str]]:
"""重写回复
@@ -180,7 +179,6 @@ async def rewrite_reply(
chat_id: 聊天ID备用
enable_splitter: 是否启用消息分割器
enable_chinese_typo: 是否启用错字生成器
model_set_with_weight: 模型配置列表,每个元素为 (TaskConfig, weight) 元组
raw_reply: 原始回复内容
reason: 回复原因
reply_to: 回复对象
@@ -191,7 +189,7 @@ async def rewrite_reply(
"""
try:
# 获取回复器
replyer = get_replyer(chat_stream, chat_id, model_set_with_weight=model_set_with_weight)
replyer = get_replyer(chat_stream, chat_id, request_type=request_type)
if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器")
return False, [], None
@@ -258,10 +256,10 @@ def process_human_text(content: str, enable_splitter: bool, enable_chinese_typo:
async def generate_response_custom(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "generator_api",
prompt: str = "",
) -> Optional[str]:
replyer = get_replyer(chat_stream, chat_id, model_set_with_weight=model_set_with_weight)
replyer = get_replyer(chat_stream, chat_id, request_type=request_type)
if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器")
return None

View File

@@ -32,7 +32,7 @@ import traceback
import time
import difflib
import asyncio
from typing import Optional, Union, Dict
from typing import Optional, Union, Dict, Any
from src.common.logger import get_logger
# 导入依赖
@@ -88,7 +88,8 @@ async def _send_to_target(
display_message: str = "",
typing: bool = False,
reply_to: str = "",
reply_to_platform_id: Optional[str] = None,
set_reply: bool = False,
reply_to_message: Optional[Dict[str, Any]] = None,
storage_message: bool = True,
show_log: bool = True,
) -> bool:
@@ -101,7 +102,6 @@ async def _send_to_target(
display_message: 显示消息
typing: 是否模拟打字等待。
reply_to: 回复消息,格式为"发送者:消息内容"
reply_to_platform_id: 回复消息,格式为"平台:用户ID",如果不提供则自动查找(插件开发者禁用!)
storage_message: 是否存储消息到数据库
show_log: 发送是否显示日志
@@ -109,6 +109,9 @@ async def _send_to_target(
bool: 是否发送成功
"""
try:
if reply_to:
logger.warning("[SendAPI] 在0.10.0, reply_to 参数已弃用,请使用 reply_to_message 参数")
if show_log:
logger.debug(f"[SendAPI] 发送{message_type}消息到 {stream_id}")
@@ -135,14 +138,14 @@ async def _send_to_target(
# 创建消息段
message_segment = Seg(type=message_type, data=content) # type: ignore
# 处理回复消息
anchor_message = None
if reply_to:
anchor_message = await _find_reply_message(target_stream, reply_to)
if anchor_message and anchor_message.message_info.user_info and not reply_to_platform_id:
reply_to_platform_id = (
f"{anchor_message.message_info.platform}:{anchor_message.message_info.user_info.user_id}"
)
if reply_to_message:
anchor_message = MessageRecv(message_dict=reply_to_message)
anchor_message.update_chat_stream(target_stream)
reply_to_platform_id = (
f"{anchor_message.message_info.platform}:{anchor_message.message_info.user_info.user_id}"
)
else:
anchor_message = None
# 构建发送消息对象
bot_message = MessageSending(
@@ -163,7 +166,7 @@ async def _send_to_target(
sent_msg = await heart_fc_sender.send_message(
bot_message,
typing=typing,
set_reply=(anchor_message is not None),
set_reply=set_reply,
storage_message=storage_message,
show_log=show_log,
)
@@ -298,7 +301,8 @@ async def text_to_stream(
stream_id: str,
typing: bool = False,
reply_to: str = "",
reply_to_platform_id: str = "",
reply_to_message: Optional[Dict[str, Any]] = None,
set_reply: bool = False,
storage_message: bool = True,
) -> bool:
"""向指定流发送文本消息
@@ -308,7 +312,6 @@ async def text_to_stream(
stream_id: 聊天流ID
typing: 是否显示正在输入
reply_to: 回复消息,格式为"发送者:消息内容"
reply_to_platform_id: 回复消息,格式为"平台:用户ID",如果不提供则自动查找(插件开发者禁用!)
storage_message: 是否存储消息到数据库
Returns:
@@ -321,12 +324,13 @@ async def text_to_stream(
"",
typing,
reply_to,
reply_to_platform_id=reply_to_platform_id,
set_reply=set_reply,
reply_to_message=reply_to_message,
storage_message=storage_message,
)
async def emoji_to_stream(emoji_base64: str, stream_id: str, storage_message: bool = True) -> bool:
async def emoji_to_stream(emoji_base64: str, stream_id: str, storage_message: bool = True, set_reply: bool = False) -> bool:
"""向指定流发送表情包
Args:
@@ -337,10 +341,10 @@ async def emoji_to_stream(emoji_base64: str, stream_id: str, storage_message: bo
Returns:
bool: 是否发送成功
"""
return await _send_to_target("emoji", emoji_base64, stream_id, "", typing=False, storage_message=storage_message)
return await _send_to_target("emoji", emoji_base64, stream_id, "", typing=False, storage_message=storage_message, set_reply=set_reply)
async def image_to_stream(image_base64: str, stream_id: str, storage_message: bool = True) -> bool:
async def image_to_stream(image_base64: str, stream_id: str, storage_message: bool = True, set_reply: bool = False) -> bool:
"""向指定流发送图片
Args:
@@ -351,11 +355,11 @@ async def image_to_stream(image_base64: str, stream_id: str, storage_message: bo
Returns:
bool: 是否发送成功
"""
return await _send_to_target("image", image_base64, stream_id, "", typing=False, storage_message=storage_message)
return await _send_to_target("image", image_base64, stream_id, "", typing=False, storage_message=storage_message, set_reply=set_reply)
async def command_to_stream(
command: Union[str, dict], stream_id: str, storage_message: bool = True, display_message: str = ""
command: Union[str, dict], stream_id: str, storage_message: bool = True, display_message: str = "", set_reply: bool = False
) -> bool:
"""向指定流发送命令
@@ -379,6 +383,8 @@ async def custom_to_stream(
display_message: str = "",
typing: bool = False,
reply_to: str = "",
reply_to_message: Optional[Dict[str, Any]] = None,
set_reply: bool = False,
storage_message: bool = True,
show_log: bool = True,
) -> bool:
@@ -403,6 +409,8 @@ async def custom_to_stream(
display_message=display_message,
typing=typing,
reply_to=reply_to,
reply_to_message=reply_to_message,
set_reply=set_reply,
storage_message=storage_message,
show_log=show_log,
)

View File

@@ -48,7 +48,7 @@ class ContentService:
try:
# 获取模型配置
models = llm_api.get_available_models()
text_model = str(self.get_config("models.text_model", "replyer_1"))
text_model = str(self.get_config("models.text_model", "replyer"))
model_config = models.get(text_model)
if not model_config:
@@ -278,7 +278,7 @@ class ContentService:
try:
# 获取模型配置
models = llm_api.get_available_models()
text_model = str(self.get_config("models.text_model", "replyer_1"))
text_model = str(self.get_config("models.text_model", "replyer"))
model_config = models.get(text_model)
if not model_config:

View File

@@ -1,5 +1,5 @@
[inner]
version = "1.2.9"
version = "1.3.0"
# 配置文件版本号迭代规则同bot_config.toml
@@ -132,16 +132,11 @@ model_list = ["qwen3-8b"]
temperature = 0.7
max_tokens = 800
[model_task_config.replyer_1] # 首要回复模型,还用于表达器和表达方式学习
[model_task_config.replyer] # 首要回复模型,还用于表达器和表达方式学习
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800
[model_task_config.replyer_2] # 次要回复模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.7
max_tokens = 800
[model_task_config.planner] #决策:负责决定麦麦该做什么的模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3