fix:修复enable_thinking导致的400问题

This commit is contained in:
SengokuCola
2025-07-24 23:20:05 +08:00
parent 8de3963069
commit 4ab6d59a79
2 changed files with 117 additions and 11 deletions

View File

@@ -78,7 +78,7 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
# print(f"is_mentioned: {is_mentioned}") # print(f"is_mentioned: {is_mentioned}")
# print(f"is_at: {is_at}") # print(f"is_at: {is_at}")
if is_at and global_config.normal_chat.at_bot_inevitable_reply: if is_at and global_config.chat.at_bot_inevitable_reply:
reply_probability = 1.0 reply_probability = 1.0
logger.debug("被@回复概率设置为100%") logger.debug("被@回复概率设置为100%")
else: else:

View File

@@ -109,10 +109,15 @@ class LLMRequest:
def __init__(self, model: dict, **kwargs): def __init__(self, model: dict, **kwargs):
# 将大写的配置键转换为小写并从config中获取实际值 # 将大写的配置键转换为小写并从config中获取实际值
logger.debug(f"🔍 [模型初始化] 开始初始化模型: {model.get('name', 'Unknown')}")
logger.debug(f"🔍 [模型初始化] 模型配置: {model}")
logger.debug(f"🔍 [模型初始化] 额外参数: {kwargs}")
try: try:
# print(f"model['provider']: {model['provider']}") # print(f"model['provider']: {model['provider']}")
self.api_key = os.environ[f"{model['provider']}_KEY"] self.api_key = os.environ[f"{model['provider']}_KEY"]
self.base_url = os.environ[f"{model['provider']}_BASE_URL"] self.base_url = os.environ[f"{model['provider']}_BASE_URL"]
logger.debug(f"🔍 [模型初始化] 成功获取环境变量: {model['provider']}_KEY 和 {model['provider']}_BASE_URL")
except AttributeError as e: except AttributeError as e:
logger.error(f"原始 model dict 信息:{model}") logger.error(f"原始 model dict 信息:{model}")
logger.error(f"配置错误:找不到对应的配置项 - {str(e)}") logger.error(f"配置错误:找不到对应的配置项 - {str(e)}")
@@ -124,6 +129,10 @@ class LLMRequest:
self.model_name: str = model["name"] self.model_name: str = model["name"]
self.params = kwargs self.params = kwargs
# 记录配置文件中声明了哪些参数(不管值是什么)
self.has_enable_thinking = "enable_thinking" in model
self.has_thinking_budget = "thinking_budget" in model
self.enable_thinking = model.get("enable_thinking", False) self.enable_thinking = model.get("enable_thinking", False)
self.temp = model.get("temp", 0.7) self.temp = model.get("temp", 0.7)
self.thinking_budget = model.get("thinking_budget", 4096) self.thinking_budget = model.get("thinking_budget", 4096)
@@ -132,12 +141,24 @@ class LLMRequest:
self.pri_out = model.get("pri_out", 0) self.pri_out = model.get("pri_out", 0)
self.max_tokens = model.get("max_tokens", global_config.model.model_max_output_length) self.max_tokens = model.get("max_tokens", global_config.model.model_max_output_length)
# print(f"max_tokens: {self.max_tokens}") # print(f"max_tokens: {self.max_tokens}")
logger.debug(f"🔍 [模型初始化] 模型参数设置完成:")
logger.debug(f" - model_name: {self.model_name}")
logger.debug(f" - has_enable_thinking: {self.has_enable_thinking}")
logger.debug(f" - enable_thinking: {self.enable_thinking}")
logger.debug(f" - has_thinking_budget: {self.has_thinking_budget}")
logger.debug(f" - thinking_budget: {self.thinking_budget}")
logger.debug(f" - temp: {self.temp}")
logger.debug(f" - stream: {self.stream}")
logger.debug(f" - max_tokens: {self.max_tokens}")
logger.debug(f" - base_url: {self.base_url}")
# 获取数据库实例 # 获取数据库实例
self._init_database() self._init_database()
# 从 kwargs 中提取 request_type如果没有提供则默认为 "default" # 从 kwargs 中提取 request_type如果没有提供则默认为 "default"
self.request_type = kwargs.pop("request_type", "default") self.request_type = kwargs.pop("request_type", "default")
logger.debug(f"🔍 [模型初始化] 初始化完成request_type: {self.request_type}")
@staticmethod @staticmethod
def _init_database(): def _init_database():
@@ -262,11 +283,12 @@ class LLMRequest:
if self.temp != 0.7: if self.temp != 0.7:
payload["temperature"] = self.temp payload["temperature"] = self.temp
# 添加enable_thinking参数如果不是默认值False # 添加enable_thinking参数只有配置文件中声明了才添加不管值是true还是false
if not self.enable_thinking: if self.has_enable_thinking:
payload["enable_thinking"] = False payload["enable_thinking"] = self.enable_thinking
if self.thinking_budget != 4096: # 添加thinking_budget参数只有配置文件中声明了才添加
if self.has_thinking_budget:
payload["thinking_budget"] = self.thinking_budget payload["thinking_budget"] = self.thinking_budget
if self.max_tokens: if self.max_tokens:
@@ -334,6 +356,19 @@ class LLMRequest:
# 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响 # 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响
if request_content["stream_mode"]: if request_content["stream_mode"]:
headers["Accept"] = "text/event-stream" headers["Accept"] = "text/event-stream"
# 添加请求发送前的调试信息
logger.debug(f"🔍 [请求调试] 模型 {self.model_name} 准备发送请求")
logger.debug(f"🔍 [请求调试] API URL: {request_content['api_url']}")
logger.debug(f"🔍 [请求调试] 请求头: {await self._build_headers(no_key=True, is_formdata=file_bytes is not None)}")
if not file_bytes:
# 安全地记录请求体(隐藏敏感信息)
safe_payload = await _safely_record(request_content, request_content["payload"])
logger.debug(f"🔍 [请求调试] 请求体: {json.dumps(safe_payload, indent=2, ensure_ascii=False)}")
else:
logger.debug(f"🔍 [请求调试] 文件上传请求,文件格式: {request_content['file_format']}")
async with aiohttp.ClientSession(connector=await get_tcp_connector()) as session: async with aiohttp.ClientSession(connector=await get_tcp_connector()) as session:
post_kwargs = {"headers": headers} post_kwargs = {"headers": headers}
# form-data数据上传方式不同 # form-data数据上传方式不同
@@ -491,7 +526,36 @@ class LLMRequest:
logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...") logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...")
raise RuntimeError("请求限制(429)") raise RuntimeError("请求限制(429)")
elif response.status in policy["abort_codes"]: elif response.status in policy["abort_codes"]:
if response.status != 403: # 特别处理400错误添加详细调试信息
if response.status == 400:
logger.error(f"🔍 [调试信息] 模型 {self.model_name} 参数错误 (400) - 开始详细诊断")
logger.error(f"🔍 [调试信息] 模型名称: {self.model_name}")
logger.error(f"🔍 [调试信息] API地址: {self.base_url}")
logger.error(f"🔍 [调试信息] 模型配置参数:")
logger.error(f" - enable_thinking: {self.enable_thinking}")
logger.error(f" - temp: {self.temp}")
logger.error(f" - thinking_budget: {self.thinking_budget}")
logger.error(f" - stream: {self.stream}")
logger.error(f" - max_tokens: {self.max_tokens}")
logger.error(f" - pri_in: {self.pri_in}")
logger.error(f" - pri_out: {self.pri_out}")
logger.error(f"🔍 [调试信息] 原始params: {self.params}")
# 尝试获取服务器返回的详细错误信息
try:
error_text = await response.text()
logger.error(f"🔍 [调试信息] 服务器返回的原始错误内容: {error_text}")
try:
error_json = json.loads(error_text)
logger.error(f"🔍 [调试信息] 解析后的错误JSON: {json.dumps(error_json, indent=2, ensure_ascii=False)}")
except json.JSONDecodeError:
logger.error(f"🔍 [调试信息] 错误响应不是有效的JSON格式")
except Exception as e:
logger.error(f"🔍 [调试信息] 无法读取错误响应内容: {str(e)}")
raise RequestAbortException("参数错误,请检查调试信息", response)
elif response.status != 403:
raise RequestAbortException("请求出现错误,中断处理", response) raise RequestAbortException("请求出现错误,中断处理", response)
else: else:
raise PermissionDeniedException("模型禁止访问") raise PermissionDeniedException("模型禁止访问")
@@ -510,6 +574,19 @@ class LLMRequest:
logger.error( logger.error(
f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}" f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
) )
# 如果是400错误额外输出请求体信息用于调试
if response.status == 400:
logger.error(f"🔍 [异常调试] 400错误 - 请求体调试信息:")
try:
safe_payload = await _safely_record(request_content, payload)
logger.error(f"🔍 [异常调试] 发送的请求体: {json.dumps(safe_payload, indent=2, ensure_ascii=False)}")
except Exception as debug_error:
logger.error(f"🔍 [异常调试] 无法安全记录请求体: {str(debug_error)}")
logger.error(f"🔍 [异常调试] 原始payload类型: {type(payload)}")
if isinstance(payload, dict):
logger.error(f"🔍 [异常调试] 原始payload键: {list(payload.keys())}")
# print(request_content) # print(request_content)
# print(response) # print(response)
# 尝试获取并记录服务器返回的详细错误信息 # 尝试获取并记录服务器返回的详细错误信息
@@ -654,14 +731,27 @@ class LLMRequest:
""" """
# 复制一份参数,避免直接修改原始数据 # 复制一份参数,避免直接修改原始数据
new_params = dict(params) new_params = dict(params)
logger.debug(f"🔍 [参数转换] 模型 {self.model_name} 开始参数转换")
logger.debug(f"🔍 [参数转换] 是否为CoT模型: {self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION}")
logger.debug(f"🔍 [参数转换] CoT模型列表: {self.MODELS_NEEDING_TRANSFORMATION}")
if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION: if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION:
logger.debug(f"🔍 [参数转换] 检测到CoT模型开始参数转换")
# 删除 'temperature' 参数如果存在但避免删除我们在_build_payload中添加的自定义温度 # 删除 'temperature' 参数如果存在但避免删除我们在_build_payload中添加的自定义温度
if "temperature" in new_params and new_params["temperature"] == 0.7: if "temperature" in new_params and new_params["temperature"] == 0.7:
new_params.pop("temperature") removed_temp = new_params.pop("temperature")
logger.debug(f"🔍 [参数转换] 移除默认temperature参数: {removed_temp}")
# 如果存在 'max_tokens',则重命名为 'max_completion_tokens' # 如果存在 'max_tokens',则重命名为 'max_completion_tokens'
if "max_tokens" in new_params: if "max_tokens" in new_params:
old_value = new_params["max_tokens"]
new_params["max_completion_tokens"] = new_params.pop("max_tokens") new_params["max_completion_tokens"] = new_params.pop("max_tokens")
logger.debug(f"🔍 [参数转换] 参数重命名: max_tokens({old_value}) -> max_completion_tokens({new_params['max_completion_tokens']})")
else:
logger.debug(f"🔍 [参数转换] 非CoT模型无需参数转换")
logger.debug(f"🔍 [参数转换] 转换前参数: {params}")
logger.debug(f"🔍 [参数转换] 转换后参数: {new_params}")
return new_params return new_params
async def _build_formdata_payload(self, file_bytes: bytes, file_format: str) -> aiohttp.FormData: async def _build_formdata_payload(self, file_bytes: bytes, file_format: str) -> aiohttp.FormData:
@@ -693,7 +783,12 @@ class LLMRequest:
async def _build_payload(self, prompt: str, image_base64: str = None, image_format: str = None) -> dict: async def _build_payload(self, prompt: str, image_base64: str = None, image_format: str = None) -> dict:
"""构建请求体""" """构建请求体"""
# 复制一份参数,避免直接修改 self.params # 复制一份参数,避免直接修改 self.params
logger.debug(f"🔍 [参数构建] 模型 {self.model_name} 开始构建请求体")
logger.debug(f"🔍 [参数构建] 原始self.params: {self.params}")
params_copy = await self._transform_parameters(self.params) params_copy = await self._transform_parameters(self.params)
logger.debug(f"🔍 [参数构建] 转换后的params_copy: {params_copy}")
if image_base64: if image_base64:
messages = [ messages = [
{ {
@@ -715,26 +810,37 @@ class LLMRequest:
"messages": messages, "messages": messages,
**params_copy, **params_copy,
} }
logger.debug(f"🔍 [参数构建] 基础payload构建完成: {list(payload.keys())}")
# 添加temp参数如果不是默认值0.7 # 添加temp参数如果不是默认值0.7
if self.temp != 0.7: if self.temp != 0.7:
payload["temperature"] = self.temp payload["temperature"] = self.temp
logger.debug(f"🔍 [参数构建] 添加temperature参数: {self.temp}")
# 添加enable_thinking参数如果不是默认值False # 添加enable_thinking参数只有配置文件中声明了才添加不管值是true还是false
if not self.enable_thinking: if self.has_enable_thinking:
payload["enable_thinking"] = False payload["enable_thinking"] = self.enable_thinking
logger.debug(f"🔍 [参数构建] 添加enable_thinking参数: {self.enable_thinking}")
if self.thinking_budget != 4096: # 添加thinking_budget参数只有配置文件中声明了才添加
if self.has_thinking_budget:
payload["thinking_budget"] = self.thinking_budget payload["thinking_budget"] = self.thinking_budget
logger.debug(f"🔍 [参数构建] 添加thinking_budget参数: {self.thinking_budget}")
if self.max_tokens: if self.max_tokens:
payload["max_tokens"] = self.max_tokens payload["max_tokens"] = self.max_tokens
logger.debug(f"🔍 [参数构建] 添加max_tokens参数: {self.max_tokens}")
# if "max_tokens" not in payload and "max_completion_tokens" not in payload: # if "max_tokens" not in payload and "max_completion_tokens" not in payload:
# payload["max_tokens"] = global_config.model.model_max_output_length # payload["max_tokens"] = global_config.model.model_max_output_length
# 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查 # 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload: if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload:
old_value = payload["max_tokens"]
payload["max_completion_tokens"] = payload.pop("max_tokens") payload["max_completion_tokens"] = payload.pop("max_tokens")
logger.debug(f"🔍 [参数构建] CoT模型参数转换: max_tokens({old_value}) -> max_completion_tokens({payload['max_completion_tokens']})")
logger.debug(f"🔍 [参数构建] 最终payload键列表: {list(payload.keys())}")
return payload return payload
def _default_response_handler( def _default_response_handler(