From 4ab6d59a79135b88dadfb906470436b50decb9c5 Mon Sep 17 00:00:00 2001 From: SengokuCola <1026294844@qq.com> Date: Thu, 24 Jul 2025 23:20:05 +0800 Subject: [PATCH] =?UTF-8?q?fix=EF=BC=9A=E4=BF=AE=E5=A4=8Denable=5Fthinking?= =?UTF-8?q?=E5=AF=BC=E8=87=B4=E7=9A=84400=E9=97=AE=E9=A2=98?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- src/chat/utils/utils.py | 2 +- src/llm_models/utils_model.py | 126 +++++++++++++++++++++++++++++++--- 2 files changed, 117 insertions(+), 11 deletions(-) diff --git a/src/chat/utils/utils.py b/src/chat/utils/utils.py index 13ffc2fda..3ee4ae7b1 100644 --- a/src/chat/utils/utils.py +++ b/src/chat/utils/utils.py @@ -78,7 +78,7 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]: # print(f"is_mentioned: {is_mentioned}") # print(f"is_at: {is_at}") - if is_at and global_config.normal_chat.at_bot_inevitable_reply: + if is_at and global_config.chat.at_bot_inevitable_reply: reply_probability = 1.0 logger.debug("被@,回复概率设置为100%") else: diff --git a/src/llm_models/utils_model.py b/src/llm_models/utils_model.py index 3621b4502..8a1215884 100644 --- a/src/llm_models/utils_model.py +++ b/src/llm_models/utils_model.py @@ -109,10 +109,15 @@ class LLMRequest: def __init__(self, model: dict, **kwargs): # 将大写的配置键转换为小写并从config中获取实际值 + logger.debug(f"🔍 [模型初始化] 开始初始化模型: {model.get('name', 'Unknown')}") + logger.debug(f"🔍 [模型初始化] 模型配置: {model}") + logger.debug(f"🔍 [模型初始化] 额外参数: {kwargs}") + try: # print(f"model['provider']: {model['provider']}") self.api_key = os.environ[f"{model['provider']}_KEY"] self.base_url = os.environ[f"{model['provider']}_BASE_URL"] + logger.debug(f"🔍 [模型初始化] 成功获取环境变量: {model['provider']}_KEY 和 {model['provider']}_BASE_URL") except AttributeError as e: logger.error(f"原始 model dict 信息:{model}") logger.error(f"配置错误:找不到对应的配置项 - {str(e)}") @@ -124,6 +129,10 @@ class LLMRequest: self.model_name: str = model["name"] self.params = kwargs + # 记录配置文件中声明了哪些参数(不管值是什么) + self.has_enable_thinking = "enable_thinking" in model + self.has_thinking_budget = "thinking_budget" in model + self.enable_thinking = model.get("enable_thinking", False) self.temp = model.get("temp", 0.7) self.thinking_budget = model.get("thinking_budget", 4096) @@ -132,12 +141,24 @@ class LLMRequest: self.pri_out = model.get("pri_out", 0) self.max_tokens = model.get("max_tokens", global_config.model.model_max_output_length) # print(f"max_tokens: {self.max_tokens}") + + logger.debug(f"🔍 [模型初始化] 模型参数设置完成:") + logger.debug(f" - model_name: {self.model_name}") + logger.debug(f" - has_enable_thinking: {self.has_enable_thinking}") + logger.debug(f" - enable_thinking: {self.enable_thinking}") + logger.debug(f" - has_thinking_budget: {self.has_thinking_budget}") + logger.debug(f" - thinking_budget: {self.thinking_budget}") + logger.debug(f" - temp: {self.temp}") + logger.debug(f" - stream: {self.stream}") + logger.debug(f" - max_tokens: {self.max_tokens}") + logger.debug(f" - base_url: {self.base_url}") # 获取数据库实例 self._init_database() # 从 kwargs 中提取 request_type,如果没有提供则默认为 "default" self.request_type = kwargs.pop("request_type", "default") + logger.debug(f"🔍 [模型初始化] 初始化完成,request_type: {self.request_type}") @staticmethod def _init_database(): @@ -262,11 +283,12 @@ class LLMRequest: if self.temp != 0.7: payload["temperature"] = self.temp - # 添加enable_thinking参数(如果不是默认值False) - if not self.enable_thinking: - payload["enable_thinking"] = False + # 添加enable_thinking参数(只有配置文件中声明了才添加,不管值是true还是false) + if self.has_enable_thinking: + payload["enable_thinking"] = self.enable_thinking - if self.thinking_budget != 4096: + # 添加thinking_budget参数(只有配置文件中声明了才添加) + if self.has_thinking_budget: payload["thinking_budget"] = self.thinking_budget if self.max_tokens: @@ -334,6 +356,19 @@ class LLMRequest: # 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响 if request_content["stream_mode"]: headers["Accept"] = "text/event-stream" + + # 添加请求发送前的调试信息 + logger.debug(f"🔍 [请求调试] 模型 {self.model_name} 准备发送请求") + logger.debug(f"🔍 [请求调试] API URL: {request_content['api_url']}") + logger.debug(f"🔍 [请求调试] 请求头: {await self._build_headers(no_key=True, is_formdata=file_bytes is not None)}") + + if not file_bytes: + # 安全地记录请求体(隐藏敏感信息) + safe_payload = await _safely_record(request_content, request_content["payload"]) + logger.debug(f"🔍 [请求调试] 请求体: {json.dumps(safe_payload, indent=2, ensure_ascii=False)}") + else: + logger.debug(f"🔍 [请求调试] 文件上传请求,文件格式: {request_content['file_format']}") + async with aiohttp.ClientSession(connector=await get_tcp_connector()) as session: post_kwargs = {"headers": headers} # form-data数据上传方式不同 @@ -491,7 +526,36 @@ class LLMRequest: logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...") raise RuntimeError("请求限制(429)") elif response.status in policy["abort_codes"]: - if response.status != 403: + # 特别处理400错误,添加详细调试信息 + if response.status == 400: + logger.error(f"🔍 [调试信息] 模型 {self.model_name} 参数错误 (400) - 开始详细诊断") + logger.error(f"🔍 [调试信息] 模型名称: {self.model_name}") + logger.error(f"🔍 [调试信息] API地址: {self.base_url}") + logger.error(f"🔍 [调试信息] 模型配置参数:") + logger.error(f" - enable_thinking: {self.enable_thinking}") + logger.error(f" - temp: {self.temp}") + logger.error(f" - thinking_budget: {self.thinking_budget}") + logger.error(f" - stream: {self.stream}") + logger.error(f" - max_tokens: {self.max_tokens}") + logger.error(f" - pri_in: {self.pri_in}") + logger.error(f" - pri_out: {self.pri_out}") + logger.error(f"🔍 [调试信息] 原始params: {self.params}") + + # 尝试获取服务器返回的详细错误信息 + try: + error_text = await response.text() + logger.error(f"🔍 [调试信息] 服务器返回的原始错误内容: {error_text}") + + try: + error_json = json.loads(error_text) + logger.error(f"🔍 [调试信息] 解析后的错误JSON: {json.dumps(error_json, indent=2, ensure_ascii=False)}") + except json.JSONDecodeError: + logger.error(f"🔍 [调试信息] 错误响应不是有效的JSON格式") + except Exception as e: + logger.error(f"🔍 [调试信息] 无法读取错误响应内容: {str(e)}") + + raise RequestAbortException("参数错误,请检查调试信息", response) + elif response.status != 403: raise RequestAbortException("请求出现错误,中断处理", response) else: raise PermissionDeniedException("模型禁止访问") @@ -510,6 +574,19 @@ class LLMRequest: logger.error( f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}" ) + + # 如果是400错误,额外输出请求体信息用于调试 + if response.status == 400: + logger.error(f"🔍 [异常调试] 400错误 - 请求体调试信息:") + try: + safe_payload = await _safely_record(request_content, payload) + logger.error(f"🔍 [异常调试] 发送的请求体: {json.dumps(safe_payload, indent=2, ensure_ascii=False)}") + except Exception as debug_error: + logger.error(f"🔍 [异常调试] 无法安全记录请求体: {str(debug_error)}") + logger.error(f"🔍 [异常调试] 原始payload类型: {type(payload)}") + if isinstance(payload, dict): + logger.error(f"🔍 [异常调试] 原始payload键: {list(payload.keys())}") + # print(request_content) # print(response) # 尝试获取并记录服务器返回的详细错误信息 @@ -654,14 +731,27 @@ class LLMRequest: """ # 复制一份参数,避免直接修改原始数据 new_params = dict(params) + + logger.debug(f"🔍 [参数转换] 模型 {self.model_name} 开始参数转换") + logger.debug(f"🔍 [参数转换] 是否为CoT模型: {self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION}") + logger.debug(f"🔍 [参数转换] CoT模型列表: {self.MODELS_NEEDING_TRANSFORMATION}") if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION: + logger.debug(f"🔍 [参数转换] 检测到CoT模型,开始参数转换") # 删除 'temperature' 参数(如果存在),但避免删除我们在_build_payload中添加的自定义温度 if "temperature" in new_params and new_params["temperature"] == 0.7: - new_params.pop("temperature") + removed_temp = new_params.pop("temperature") + logger.debug(f"🔍 [参数转换] 移除默认temperature参数: {removed_temp}") # 如果存在 'max_tokens',则重命名为 'max_completion_tokens' if "max_tokens" in new_params: + old_value = new_params["max_tokens"] new_params["max_completion_tokens"] = new_params.pop("max_tokens") + logger.debug(f"🔍 [参数转换] 参数重命名: max_tokens({old_value}) -> max_completion_tokens({new_params['max_completion_tokens']})") + else: + logger.debug(f"🔍 [参数转换] 非CoT模型,无需参数转换") + + logger.debug(f"🔍 [参数转换] 转换前参数: {params}") + logger.debug(f"🔍 [参数转换] 转换后参数: {new_params}") return new_params async def _build_formdata_payload(self, file_bytes: bytes, file_format: str) -> aiohttp.FormData: @@ -693,7 +783,12 @@ class LLMRequest: async def _build_payload(self, prompt: str, image_base64: str = None, image_format: str = None) -> dict: """构建请求体""" # 复制一份参数,避免直接修改 self.params + logger.debug(f"🔍 [参数构建] 模型 {self.model_name} 开始构建请求体") + logger.debug(f"🔍 [参数构建] 原始self.params: {self.params}") + params_copy = await self._transform_parameters(self.params) + logger.debug(f"🔍 [参数构建] 转换后的params_copy: {params_copy}") + if image_base64: messages = [ { @@ -715,26 +810,37 @@ class LLMRequest: "messages": messages, **params_copy, } + + logger.debug(f"🔍 [参数构建] 基础payload构建完成: {list(payload.keys())}") # 添加temp参数(如果不是默认值0.7) if self.temp != 0.7: payload["temperature"] = self.temp + logger.debug(f"🔍 [参数构建] 添加temperature参数: {self.temp}") - # 添加enable_thinking参数(如果不是默认值False) - if not self.enable_thinking: - payload["enable_thinking"] = False + # 添加enable_thinking参数(只有配置文件中声明了才添加,不管值是true还是false) + if self.has_enable_thinking: + payload["enable_thinking"] = self.enable_thinking + logger.debug(f"🔍 [参数构建] 添加enable_thinking参数: {self.enable_thinking}") - if self.thinking_budget != 4096: + # 添加thinking_budget参数(只有配置文件中声明了才添加) + if self.has_thinking_budget: payload["thinking_budget"] = self.thinking_budget + logger.debug(f"🔍 [参数构建] 添加thinking_budget参数: {self.thinking_budget}") if self.max_tokens: payload["max_tokens"] = self.max_tokens + logger.debug(f"🔍 [参数构建] 添加max_tokens参数: {self.max_tokens}") # if "max_tokens" not in payload and "max_completion_tokens" not in payload: # payload["max_tokens"] = global_config.model.model_max_output_length # 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查 if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload: + old_value = payload["max_tokens"] payload["max_completion_tokens"] = payload.pop("max_tokens") + logger.debug(f"🔍 [参数构建] CoT模型参数转换: max_tokens({old_value}) -> max_completion_tokens({payload['max_completion_tokens']})") + + logger.debug(f"🔍 [参数构建] 最终payload键列表: {list(payload.keys())}") return payload def _default_response_handler(