feat: 添加异步任务管理器和本地存储管理器,重构统计模块
This commit is contained in:
43
bot.py
43
bot.py
@@ -1,7 +1,6 @@
|
||||
import asyncio
|
||||
import hashlib
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
import time
|
||||
@@ -15,6 +14,8 @@ from src.common.crash_logger import install_crash_handler
|
||||
from src.main import MainSystem
|
||||
from rich.traceback import install
|
||||
|
||||
from src.manager.async_task_manager import async_task_manager
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
# 设置工作目录为脚本所在目录
|
||||
@@ -64,38 +65,6 @@ def easter_egg():
|
||||
print(rainbow_text)
|
||||
|
||||
|
||||
def init_config():
|
||||
# 初次启动检测
|
||||
if not os.path.exists("config/bot_config.toml"):
|
||||
logger.warning("检测到bot_config.toml不存在,正在从模板复制")
|
||||
|
||||
# 检查config目录是否存在
|
||||
if not os.path.exists("config"):
|
||||
os.makedirs("config")
|
||||
logger.info("创建config目录")
|
||||
|
||||
shutil.copy("template/bot_config_template.toml", "config/bot_config.toml")
|
||||
logger.info("复制完成,请修改config/bot_config.toml和.env中的配置后重新启动")
|
||||
if not os.path.exists("config/lpmm_config.toml"):
|
||||
logger.warning("检测到lpmm_config.toml不存在,正在从模板复制")
|
||||
|
||||
# 检查config目录是否存在
|
||||
if not os.path.exists("config"):
|
||||
os.makedirs("config")
|
||||
logger.info("创建config目录")
|
||||
|
||||
shutil.copy("template/lpmm_config_template.toml", "config/lpmm_config.toml")
|
||||
logger.info("复制完成,请修改config/lpmm_config.toml和.env中的配置后重新启动")
|
||||
|
||||
|
||||
def init_env():
|
||||
# 检测.env文件是否存在
|
||||
if not os.path.exists(".env"):
|
||||
logger.error("检测到.env文件不存在")
|
||||
shutil.copy("template/template.env", "./.env")
|
||||
logger.info("已从template/template.env复制创建.env,请修改配置后重新启动")
|
||||
|
||||
|
||||
def load_env():
|
||||
# 直接加载生产环境变量配置
|
||||
if os.path.exists(".env"):
|
||||
@@ -140,6 +109,10 @@ def scan_provider(env_config: dict):
|
||||
async def graceful_shutdown():
|
||||
try:
|
||||
logger.info("正在优雅关闭麦麦...")
|
||||
|
||||
# 停止所有异步任务
|
||||
await async_task_manager.stop_and_wait_all_tasks()
|
||||
|
||||
tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
|
||||
for task in tasks:
|
||||
task.cancel()
|
||||
@@ -235,9 +208,9 @@ def raw_main():
|
||||
|
||||
check_eula()
|
||||
print("检查EULA和隐私条款完成")
|
||||
|
||||
easter_egg()
|
||||
init_config()
|
||||
init_env()
|
||||
|
||||
load_env()
|
||||
|
||||
env_config = {key: os.getenv(key) for key in os.environ}
|
||||
|
||||
19
src/main.py
19
src/main.py
@@ -1,6 +1,8 @@
|
||||
import asyncio
|
||||
import time
|
||||
from .plugins.utils.statistic import LLMStatistics
|
||||
|
||||
from .manager.async_task_manager import async_task_manager
|
||||
from .plugins.utils.statistic import OnlineTimeRecordTask, StatisticOutputTask
|
||||
from .plugins.moods.moods import MoodManager
|
||||
from .plugins.schedule.schedule_generator import bot_schedule
|
||||
from .plugins.emoji_system.emoji_manager import emoji_manager
|
||||
@@ -26,11 +28,13 @@ logger = get_logger("main")
|
||||
|
||||
|
||||
class MainSystem:
|
||||
mood_manager: MoodManager
|
||||
hippocampus_manager: HippocampusManager
|
||||
individuality: Individuality
|
||||
|
||||
def __init__(self):
|
||||
self.llm_stats = LLMStatistics("llm_statistics.txt")
|
||||
self.mood_manager = MoodManager.get_instance()
|
||||
self.hippocampus_manager = HippocampusManager.get_instance()
|
||||
self._message_manager_started = False
|
||||
self.individuality = Individuality.get_instance()
|
||||
|
||||
# 使用消息API替代直接的FastAPI实例
|
||||
@@ -51,9 +55,12 @@ class MainSystem:
|
||||
async def _init_components(self):
|
||||
"""初始化其他组件"""
|
||||
init_start_time = time.time()
|
||||
# 启动LLM统计
|
||||
self.llm_stats.start()
|
||||
logger.success("LLM统计功能启动成功")
|
||||
|
||||
# 添加在线时间统计任务
|
||||
await async_task_manager.add_task(OnlineTimeRecordTask())
|
||||
|
||||
# 添加统计信息输出任务
|
||||
await async_task_manager.add_task(StatisticOutputTask())
|
||||
|
||||
# 启动API服务器
|
||||
start_api_server()
|
||||
|
||||
150
src/manager/async_task_manager.py
Normal file
150
src/manager/async_task_manager.py
Normal file
@@ -0,0 +1,150 @@
|
||||
from abc import abstractmethod
|
||||
|
||||
import asyncio
|
||||
from asyncio import Task, Event, Lock
|
||||
from typing import Callable, Dict
|
||||
|
||||
from src.common.logger_manager import get_logger
|
||||
|
||||
logger = get_logger("async_task_manager")
|
||||
|
||||
|
||||
class AsyncTask:
|
||||
"""异步任务基类"""
|
||||
|
||||
def __init__(self, task_name: str | None = None, wait_before_start: int = 0, run_interval: int = 0):
|
||||
self.task_name: str = task_name or self.__class__.__name__
|
||||
"""任务名称"""
|
||||
|
||||
self.wait_before_start: int = wait_before_start
|
||||
"""运行任务前是否进行等待(单位:秒,设为0则不等待)"""
|
||||
|
||||
self.run_interval: int = run_interval
|
||||
"""多次运行的时间间隔(单位:秒,设为0则仅运行一次)"""
|
||||
|
||||
@abstractmethod
|
||||
async def run(self):
|
||||
"""
|
||||
任务的执行过程
|
||||
"""
|
||||
pass
|
||||
|
||||
async def start_task(self, abort_flag: asyncio.Event):
|
||||
if self.wait_before_start > 0:
|
||||
# 等待指定时间后开始任务
|
||||
await asyncio.sleep(self.wait_before_start)
|
||||
|
||||
while not abort_flag.is_set():
|
||||
await self.run()
|
||||
if self.run_interval > 0:
|
||||
await asyncio.sleep(self.run_interval)
|
||||
else:
|
||||
break
|
||||
|
||||
|
||||
class AsyncTaskManager:
|
||||
"""异步任务管理器"""
|
||||
|
||||
def __init__(self):
|
||||
self.tasks: Dict[str, Task] = {}
|
||||
"""任务列表"""
|
||||
|
||||
self.abort_flag: Event = Event()
|
||||
"""是否中止任务标志"""
|
||||
|
||||
self._lock: Lock = Lock()
|
||||
"""异步锁,当可能出现await时需要加锁"""
|
||||
|
||||
def _remove_task_call_back(self, task: Task):
|
||||
"""
|
||||
call_back: 任务完成后移除任务
|
||||
"""
|
||||
task_name = task.get_name()
|
||||
if task_name in self.tasks:
|
||||
# 任务完成后移除任务
|
||||
del self.tasks[task_name]
|
||||
logger.debug(f"已移除任务 '{task_name}'")
|
||||
else:
|
||||
logger.warning(f"尝试移除不存在的任务 '{task_name}'")
|
||||
|
||||
@staticmethod
|
||||
def _default_finish_call_back(task: Task):
|
||||
"""
|
||||
call_back: 默认的任务完成回调函数
|
||||
"""
|
||||
try:
|
||||
task.result()
|
||||
logger.debug(f"任务 '{task.get_name()}' 完成")
|
||||
except asyncio.CancelledError:
|
||||
logger.debug(f"任务 '{task.get_name()}' 被取消")
|
||||
except Exception as e:
|
||||
logger.error(f"任务 '{task.get_name()}' 执行时发生异常: {e}", exc_info=True)
|
||||
|
||||
async def add_task(self, task: AsyncTask, call_back: Callable[[asyncio.Task], None] | None = None):
|
||||
"""
|
||||
添加任务
|
||||
"""
|
||||
if not issubclass(task.__class__, AsyncTask):
|
||||
raise TypeError(f"task '{task.__class__.__name__}' 必须是继承 AsyncTask 的子类")
|
||||
|
||||
with self._lock: # 由于可能需要await等待任务完成,所以需要加异步锁
|
||||
if task.task_name in self.tasks:
|
||||
logger.warning(f"已存在名称为 '{task.task_name}' 的任务,正在尝试取消并替换")
|
||||
self.tasks[task.task_name].cancel() # 取消已存在的任务
|
||||
await self.tasks[task.task_name] # 等待任务完成
|
||||
logger.info(f"成功结束任务 '{task.task_name}'")
|
||||
|
||||
# 创建新任务
|
||||
task_inst = asyncio.create_task(task.start_task(self.abort_flag))
|
||||
task_inst.set_name(task.task_name)
|
||||
task_inst.add_done_callback(self._remove_task_call_back) # 添加完成回调函数-完成任务后自动移除任务
|
||||
task_inst.add_done_callback(
|
||||
call_back or self._default_finish_call_back
|
||||
) # 添加完成回调函数-用户自定义,或默认的FallBack
|
||||
|
||||
self.tasks[task.task_name] = task_inst # 将任务添加到任务列表
|
||||
logger.info(f"已启动任务 '{task.task_name}'")
|
||||
|
||||
def get_tasks_status(self) -> Dict[str, Dict[str, str]]:
|
||||
"""
|
||||
获取所有任务的状态
|
||||
"""
|
||||
tasks_status = {}
|
||||
for task_name, task in self.tasks.items():
|
||||
tasks_status[task_name] = {
|
||||
"status": "running" if not task.done() else "done",
|
||||
}
|
||||
return tasks_status
|
||||
|
||||
async def stop_and_wait_all_tasks(self):
|
||||
"""
|
||||
终止所有任务并等待它们完成(该方法会阻塞其它尝试add_task()的操作)
|
||||
"""
|
||||
with self._lock: # 由于可能需要await等待任务完成,所以需要加异步锁
|
||||
# 设置中止标志
|
||||
self.abort_flag.set()
|
||||
# 取消所有任务
|
||||
for name, inst in self.tasks.items():
|
||||
try:
|
||||
inst.cancel()
|
||||
except asyncio.CancelledError:
|
||||
logger.info(f"已取消任务 '{name}'")
|
||||
|
||||
# 等待所有任务完成
|
||||
for task_name, task_inst in self.tasks.items():
|
||||
if not task_inst.done():
|
||||
try:
|
||||
await task_inst
|
||||
except asyncio.CancelledError: # 此处再次捕获取消异常,防止stop_all_tasks()时延迟抛出异常
|
||||
logger.info(f"任务 {task_name} 已取消")
|
||||
except Exception as e:
|
||||
logger.error(f"任务 {task_name} 执行时发生异常: {e}", ext_info=True)
|
||||
|
||||
# 清空任务列表
|
||||
self.tasks.clear()
|
||||
self.abort_flag.clear()
|
||||
logger.info("所有异步任务已停止")
|
||||
|
||||
|
||||
async_task_manager = AsyncTaskManager()
|
||||
"""全局异步任务管理器实例"""
|
||||
67
src/manager/local_store_manager.py
Normal file
67
src/manager/local_store_manager.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
from src.common.logger_manager import get_logger
|
||||
|
||||
LOCAL_STORE_FILE_PATH = "data/local_store.json"
|
||||
|
||||
logger = get_logger("local_storage")
|
||||
|
||||
|
||||
class LocalStoreManager:
|
||||
file_path: str
|
||||
"""本地存储路径"""
|
||||
|
||||
store: dict[str, str | list | dict | int | float | bool]
|
||||
"""本地存储数据"""
|
||||
|
||||
def __init__(self, local_store_path: str | None = None):
|
||||
self.file_path = local_store_path or LOCAL_STORE_FILE_PATH
|
||||
self.store = {}
|
||||
self.load_local_store()
|
||||
|
||||
def __getitem__(self, item: str) -> str | list | dict | int | float | bool | None:
|
||||
"""获取本地存储数据"""
|
||||
return self.store.get(item, None)
|
||||
|
||||
def __setitem__(self, key: str, value: str | list | dict | int | float | bool):
|
||||
"""设置本地存储数据"""
|
||||
self.store[key] = value
|
||||
self.save_local_store()
|
||||
|
||||
def __contains__(self, item: str) -> bool:
|
||||
"""检查本地存储数据是否存在"""
|
||||
return item in self.store
|
||||
|
||||
def load_local_store(self):
|
||||
"""加载本地存储数据"""
|
||||
if os.path.exists(self.file_path):
|
||||
# 存在本地存储文件,加载数据
|
||||
logger.info("正在阅读记事本......我在看,我真的在看!")
|
||||
logger.debug(f"加载本地存储数据: {self.file_path}")
|
||||
try:
|
||||
with open(self.file_path, "r", encoding="utf-8") as f:
|
||||
self.store = json.load(f)
|
||||
logger.success("全都记起来了!")
|
||||
except json.JSONDecodeError:
|
||||
logger.warning("啊咧?记事本被弄脏了,正在重建记事本......")
|
||||
self.store = {}
|
||||
with open(self.file_path, "w", encoding="utf-8") as f:
|
||||
json.dump({}, f, ensure_ascii=False, indent=4)
|
||||
logger.success("记事本重建成功!")
|
||||
else:
|
||||
# 不存在本地存储文件,创建新的目录和文件
|
||||
logger.warning("啊咧?记事本不存在,正在创建新的记事本......")
|
||||
os.makedirs(os.path.dirname(self.file_path), exist_ok=True)
|
||||
with open(self.file_path, "w", encoding="utf-8") as f:
|
||||
json.dump({}, f, ensure_ascii=False, indent=4)
|
||||
logger.success("记事本创建成功!")
|
||||
|
||||
def save_local_store(self):
|
||||
"""保存本地存储数据"""
|
||||
logger.debug(f"保存本地存储数据: {self.file_path}")
|
||||
with open(self.file_path, "w", encoding="utf-8") as f:
|
||||
json.dump(self.store, f, ensure_ascii=False, indent=4)
|
||||
|
||||
|
||||
local_storage = LocalStoreManager("data/local_store.json") # 全局单例化
|
||||
@@ -1,354 +1,550 @@
|
||||
import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict, Tuple, List
|
||||
|
||||
from src.common.logger import get_module_logger
|
||||
from src.manager.async_task_manager import AsyncTask
|
||||
|
||||
from ...common.database import db
|
||||
from src.manager.local_store_manager import local_storage
|
||||
|
||||
logger = get_module_logger("llm_statistics")
|
||||
logger = get_module_logger("maibot_statistic")
|
||||
|
||||
# 统计数据的键
|
||||
TOTAL_REQ_CNT = "total_requests"
|
||||
TOTAL_COST = "total_cost"
|
||||
REQ_CNT_BY_TYPE = "requests_by_type"
|
||||
REQ_CNT_BY_USER = "requests_by_user"
|
||||
REQ_CNT_BY_MODEL = "requests_by_model"
|
||||
IN_TOK_BY_TYPE = "in_tokens_by_type"
|
||||
IN_TOK_BY_USER = "in_tokens_by_user"
|
||||
IN_TOK_BY_MODEL = "in_tokens_by_model"
|
||||
OUT_TOK_BY_TYPE = "out_tokens_by_type"
|
||||
OUT_TOK_BY_USER = "out_tokens_by_user"
|
||||
OUT_TOK_BY_MODEL = "out_tokens_by_model"
|
||||
TOTAL_TOK_BY_TYPE = "tokens_by_type"
|
||||
TOTAL_TOK_BY_USER = "tokens_by_user"
|
||||
TOTAL_TOK_BY_MODEL = "tokens_by_model"
|
||||
COST_BY_TYPE = "costs_by_type"
|
||||
COST_BY_USER = "costs_by_user"
|
||||
COST_BY_MODEL = "costs_by_model"
|
||||
ONLINE_TIME = "online_time"
|
||||
TOTAL_MSG_CNT = "total_messages"
|
||||
MSG_CNT_BY_CHAT = "messages_by_chat"
|
||||
|
||||
|
||||
class LLMStatistics:
|
||||
def __init__(self, output_file: str = "llm_statistics.txt"):
|
||||
"""初始化LLM统计类
|
||||
class OnlineTimeRecordTask(AsyncTask):
|
||||
"""在线时间记录任务"""
|
||||
|
||||
Args:
|
||||
output_file: 统计结果输出文件路径
|
||||
"""
|
||||
self.output_file = output_file
|
||||
self.running = False
|
||||
self.stats_thread = None
|
||||
self.console_thread = None
|
||||
self._init_database()
|
||||
self.name_dict: Dict[List] = {}
|
||||
def __init__(self):
|
||||
super().__init__(task_name="Online Time Record Task", run_interval=60)
|
||||
|
||||
self.record_id: str | None = None
|
||||
"""记录ID"""
|
||||
|
||||
self._init_database() # 初始化数据库
|
||||
|
||||
@staticmethod
|
||||
def _init_database():
|
||||
"""初始化数据库集合"""
|
||||
"""初始化数据库"""
|
||||
if "online_time" not in db.list_collection_names():
|
||||
# 初始化数据库(在线时长)
|
||||
db.create_collection("online_time")
|
||||
db.online_time.create_index([("timestamp", 1)])
|
||||
# 创建索引
|
||||
if ("end_timestamp", 1) not in db.online_time.list_indexes():
|
||||
db.online_time.create_index([("end_timestamp", 1)])
|
||||
|
||||
def start(self):
|
||||
"""启动统计线程"""
|
||||
if not self.running:
|
||||
self.running = True
|
||||
# 启动文件统计线程
|
||||
self.stats_thread = threading.Thread(target=self._stats_loop)
|
||||
self.stats_thread.daemon = True
|
||||
self.stats_thread.start()
|
||||
# 启动控制台输出线程
|
||||
self.console_thread = threading.Thread(target=self._console_output_loop)
|
||||
self.console_thread.daemon = True
|
||||
self.console_thread.start()
|
||||
async def run(self):
|
||||
try:
|
||||
if self.record_id:
|
||||
# 如果有记录,则更新结束时间
|
||||
db.online_time.update_one(
|
||||
{"_id": self.record_id},
|
||||
{
|
||||
"$set": {
|
||||
"end_timestamp": datetime.now() + timedelta(minutes=1),
|
||||
}
|
||||
},
|
||||
)
|
||||
else:
|
||||
# 如果没有记录,检查一分钟以内是否已有记录
|
||||
current_time = datetime.now()
|
||||
recent_record = db.online_time.find_one(
|
||||
{"end_timestamp": {"$gte": current_time - timedelta(minutes=1)}}
|
||||
)
|
||||
|
||||
def stop(self):
|
||||
"""停止统计线程"""
|
||||
self.running = False
|
||||
if self.stats_thread:
|
||||
self.stats_thread.join()
|
||||
if self.console_thread:
|
||||
self.console_thread.join()
|
||||
if not recent_record:
|
||||
# 若没有记录,则插入新的在线时间记录
|
||||
self.record_id = db.online_time.insert_one(
|
||||
{
|
||||
"start_timestamp": current_time,
|
||||
"end_timestamp": current_time + timedelta(minutes=1),
|
||||
}
|
||||
).inserted_id
|
||||
else:
|
||||
# 如果有记录,则更新结束时间
|
||||
self.record_id = recent_record["_id"]
|
||||
db.online_time.update_one(
|
||||
{"_id": self.record_id},
|
||||
{
|
||||
"$set": {
|
||||
"end_timestamp": current_time + timedelta(minutes=1),
|
||||
}
|
||||
},
|
||||
)
|
||||
except Exception:
|
||||
logger.exception("在线时间记录失败")
|
||||
|
||||
@staticmethod
|
||||
def _record_online_time():
|
||||
"""记录在线时间"""
|
||||
current_time = datetime.now()
|
||||
# 检查5分钟内是否已有记录
|
||||
recent_record = db.online_time.find_one({"timestamp": {"$gte": current_time - timedelta(minutes=5)}})
|
||||
|
||||
if not recent_record:
|
||||
db.online_time.insert_one(
|
||||
{
|
||||
"timestamp": current_time,
|
||||
"duration": 5, # 5分钟
|
||||
}
|
||||
class StatisticOutputTask(AsyncTask):
|
||||
"""统计输出任务"""
|
||||
|
||||
SEP_LINE = "-" * 84
|
||||
|
||||
def __init__(self, record_file_path: str = "llm_statistics.txt"):
|
||||
# 延迟300秒启动,运行间隔300秒
|
||||
super().__init__(task_name="Statistics Data Output Task", wait_before_start=300, run_interval=300)
|
||||
|
||||
self.name_mapping: Dict[str, Tuple[str, float]] = {}
|
||||
"""
|
||||
联系人/群聊名称映射 {聊天ID: (联系人/群聊名称, 记录时间(timestamp))}
|
||||
注:设计记录时间的目的是方便更新名称,使联系人/群聊名称保持最新
|
||||
"""
|
||||
|
||||
self.record_file_path: str = record_file_path
|
||||
"""
|
||||
记录文件路径
|
||||
"""
|
||||
|
||||
now = datetime.now()
|
||||
self.stat_period: List[Tuple[str, datetime, str]] = [
|
||||
("all_time", datetime(2000, 1, 1), "自部署以来的"),
|
||||
("last_7_days", now - timedelta(days=7), "最近7天的"),
|
||||
("last_24_hours", now - timedelta(days=1), "最近24小时的"),
|
||||
("last_hour", now - timedelta(hours=1), "最近1小时的"),
|
||||
]
|
||||
"""
|
||||
统计时间段
|
||||
"""
|
||||
|
||||
def _statistic_console_output(self, stats: Dict[str, Any]):
|
||||
"""
|
||||
输出统计数据到控制台
|
||||
"""
|
||||
# 输出最近一小时的统计数据
|
||||
|
||||
output = [
|
||||
self.SEP_LINE,
|
||||
f" 最近1小时的统计数据 (详细信息见文件:{self.record_file_path})",
|
||||
self.SEP_LINE,
|
||||
self._format_total_stat(stats["last_hour"]),
|
||||
"",
|
||||
self._format_model_classified_stat(stats["last_hour"]),
|
||||
"",
|
||||
self._format_chat_stat(stats["last_hour"]),
|
||||
self.SEP_LINE,
|
||||
"",
|
||||
]
|
||||
|
||||
logger.info("\n" + "\n".join(output))
|
||||
|
||||
def _statistic_file_output(self, stats: Dict[str, Any]):
|
||||
"""
|
||||
输出统计数据到文件
|
||||
"""
|
||||
output = [f"MaiBot运行统计报告 (生成时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')})", ""]
|
||||
|
||||
def _format_stat_data(title: str, stats_: Dict[str, Any]) -> str:
|
||||
"""
|
||||
格式化统计数据
|
||||
"""
|
||||
return "\n".join(
|
||||
[
|
||||
self.SEP_LINE,
|
||||
f" {title}",
|
||||
self.SEP_LINE,
|
||||
self._format_total_stat(stats_),
|
||||
"",
|
||||
self._format_model_classified_stat(stats_),
|
||||
"",
|
||||
self._format_req_type_classified_stat(stats_),
|
||||
"",
|
||||
self._format_user_classified_stat(stats_),
|
||||
"",
|
||||
self._format_chat_stat(stats_),
|
||||
"",
|
||||
]
|
||||
)
|
||||
|
||||
def _collect_statistics_for_period(self, start_time: datetime) -> Dict[str, Any]:
|
||||
"""收集指定时间段的LLM请求统计数据
|
||||
for period_key, period_start_time, period_desc in self.stat_period:
|
||||
if period_key in stats:
|
||||
# 统计数据存在
|
||||
output.append(
|
||||
_format_stat_data(
|
||||
f"{period_desc}统计数据 (自{period_start_time.strftime('%Y-%m-%d %H:%M:%S')}开始)",
|
||||
stats[period_key],
|
||||
)
|
||||
)
|
||||
|
||||
Args:
|
||||
start_time: 统计开始时间
|
||||
with open(self.record_file_path, "w", encoding="utf-8") as f:
|
||||
f.write("\n\n".join(output))
|
||||
|
||||
async def run(self):
|
||||
try:
|
||||
# 收集统计数据
|
||||
stats = self._collect_all_statistics()
|
||||
|
||||
# 输出统计数据到控制台
|
||||
self._statistic_console_output(stats)
|
||||
# 输出统计数据到文件
|
||||
self._statistic_file_output(stats)
|
||||
except Exception as e:
|
||||
logger.exception(f"输出统计数据过程中发生异常,错误信息:{e}")
|
||||
|
||||
# -- 以下为统计数据收集方法 --
|
||||
|
||||
@staticmethod
|
||||
def _collect_model_request_for_period(collect_period: List[Tuple[str, datetime, str]]) -> Dict[str, Any]:
|
||||
"""
|
||||
收集指定时间段的LLM请求统计数据
|
||||
|
||||
:param collect_period: 统计时间段
|
||||
"""
|
||||
if len(collect_period) <= 0:
|
||||
return {}
|
||||
else:
|
||||
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
stats = {
|
||||
"total_requests": 0,
|
||||
"requests_by_type": defaultdict(int),
|
||||
"requests_by_user": defaultdict(int),
|
||||
"requests_by_model": defaultdict(int),
|
||||
"average_tokens": 0,
|
||||
"total_tokens": 0,
|
||||
"total_cost": 0.0,
|
||||
"costs_by_user": defaultdict(float),
|
||||
"costs_by_type": defaultdict(float),
|
||||
"costs_by_model": defaultdict(float),
|
||||
# 新增token统计字段
|
||||
"tokens_by_type": defaultdict(int),
|
||||
"tokens_by_user": defaultdict(int),
|
||||
"tokens_by_model": defaultdict(int),
|
||||
# 新增在线时间统计
|
||||
"online_time_minutes": 0,
|
||||
# 新增消息统计字段
|
||||
"total_messages": 0,
|
||||
"messages_by_user": defaultdict(int),
|
||||
"messages_by_chat": defaultdict(int),
|
||||
period_key: {
|
||||
# 总LLM请求数
|
||||
TOTAL_REQ_CNT: 0,
|
||||
# 请求次数统计
|
||||
REQ_CNT_BY_TYPE: defaultdict(int),
|
||||
REQ_CNT_BY_USER: defaultdict(int),
|
||||
REQ_CNT_BY_MODEL: defaultdict(int),
|
||||
# 输入Token数
|
||||
IN_TOK_BY_TYPE: defaultdict(int),
|
||||
IN_TOK_BY_USER: defaultdict(int),
|
||||
IN_TOK_BY_MODEL: defaultdict(int),
|
||||
# 输出Token数
|
||||
OUT_TOK_BY_TYPE: defaultdict(int),
|
||||
OUT_TOK_BY_USER: defaultdict(int),
|
||||
OUT_TOK_BY_MODEL: defaultdict(int),
|
||||
# 总Token数
|
||||
TOTAL_TOK_BY_TYPE: defaultdict(int),
|
||||
TOTAL_TOK_BY_USER: defaultdict(int),
|
||||
TOTAL_TOK_BY_MODEL: defaultdict(int),
|
||||
# 总开销
|
||||
TOTAL_COST: 0.0,
|
||||
# 请求开销统计
|
||||
COST_BY_TYPE: defaultdict(float),
|
||||
COST_BY_USER: defaultdict(float),
|
||||
COST_BY_MODEL: defaultdict(float),
|
||||
}
|
||||
for period_key, _, _ in collect_period
|
||||
}
|
||||
|
||||
cursor = db.llm_usage.find({"timestamp": {"$gte": start_time}})
|
||||
total_requests = 0
|
||||
# 以最早的时间戳为起始时间获取记录
|
||||
for record in db.llm_usage.find({"timestamp": {"$gte": collect_period[-1][1]}}):
|
||||
record_timestamp = record.get("timestamp")
|
||||
for idx, (_, period_start, _) in enumerate(collect_period):
|
||||
if record_timestamp >= period_start:
|
||||
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
|
||||
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
|
||||
for period_key, _, _ in collect_period[idx:]:
|
||||
stats[period_key][TOTAL_REQ_CNT] += 1
|
||||
|
||||
for doc in cursor:
|
||||
stats["total_requests"] += 1
|
||||
request_type = doc.get("request_type", "unknown")
|
||||
user_id = str(doc.get("user_id", "unknown"))
|
||||
model_name = doc.get("model_name", "unknown")
|
||||
request_type = record.get("request_type", "unknown") # 请求类型
|
||||
user_id = str(record.get("user_id", "unknown")) # 用户ID
|
||||
model_name = record.get("model_name", "unknown") # 模型名称
|
||||
|
||||
stats["requests_by_type"][request_type] += 1
|
||||
stats["requests_by_user"][user_id] += 1
|
||||
stats["requests_by_model"][model_name] += 1
|
||||
stats[period_key][REQ_CNT_BY_TYPE][request_type] += 1
|
||||
stats[period_key][REQ_CNT_BY_USER][user_id] += 1
|
||||
stats[period_key][REQ_CNT_BY_MODEL][model_name] += 1
|
||||
|
||||
prompt_tokens = doc.get("prompt_tokens", 0)
|
||||
completion_tokens = doc.get("completion_tokens", 0)
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
stats["tokens_by_type"][request_type] += total_tokens
|
||||
stats["tokens_by_user"][user_id] += total_tokens
|
||||
stats["tokens_by_model"][model_name] += total_tokens
|
||||
stats["total_tokens"] += total_tokens
|
||||
prompt_tokens = record.get("prompt_tokens", 0) # 输入Token数
|
||||
completion_tokens = record.get("completion_tokens", 0) # 输出Token数
|
||||
total_tokens = prompt_tokens + completion_tokens # Token总数 = 输入Token数 + 输出Token数
|
||||
|
||||
cost = doc.get("cost", 0.0)
|
||||
stats["total_cost"] += cost
|
||||
stats["costs_by_user"][user_id] += cost
|
||||
stats["costs_by_type"][request_type] += cost
|
||||
stats["costs_by_model"][model_name] += cost
|
||||
stats[period_key][IN_TOK_BY_TYPE][request_type] += prompt_tokens
|
||||
stats[period_key][IN_TOK_BY_USER][user_id] += prompt_tokens
|
||||
stats[period_key][IN_TOK_BY_MODEL][model_name] += prompt_tokens
|
||||
|
||||
total_requests += 1
|
||||
stats[period_key][OUT_TOK_BY_TYPE][request_type] += completion_tokens
|
||||
stats[period_key][OUT_TOK_BY_USER][user_id] += completion_tokens
|
||||
stats[period_key][OUT_TOK_BY_MODEL][model_name] += completion_tokens
|
||||
|
||||
if total_requests > 0:
|
||||
stats["average_tokens"] = stats["total_tokens"] / total_requests
|
||||
stats[period_key][TOTAL_TOK_BY_TYPE][request_type] += total_tokens
|
||||
stats[period_key][TOTAL_TOK_BY_USER][user_id] += total_tokens
|
||||
stats[period_key][TOTAL_TOK_BY_MODEL][model_name] += total_tokens
|
||||
|
||||
cost = record.get("cost", 0.0)
|
||||
stats[period_key][TOTAL_COST] += cost
|
||||
stats[period_key][COST_BY_TYPE][request_type] += cost
|
||||
stats[period_key][COST_BY_USER][user_id] += cost
|
||||
stats[period_key][COST_BY_MODEL][model_name] += cost
|
||||
break # 取消更早时间段的判断
|
||||
|
||||
return stats
|
||||
|
||||
@staticmethod
|
||||
def _collect_online_time_for_period(collect_period: List[Tuple[str, datetime, str]]) -> Dict[str, Any]:
|
||||
"""
|
||||
收集指定时间段的在线时间统计数据
|
||||
|
||||
:param collect_period: 统计时间段
|
||||
"""
|
||||
if len(collect_period) <= 0:
|
||||
return {}
|
||||
else:
|
||||
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
stats = {
|
||||
period_key: {
|
||||
# 在线时间统计
|
||||
ONLINE_TIME: 0.0,
|
||||
}
|
||||
for period_key, _, _ in collect_period
|
||||
}
|
||||
|
||||
# 统计在线时间
|
||||
online_time_cursor = db.online_time.find({"timestamp": {"$gte": start_time}})
|
||||
for doc in online_time_cursor:
|
||||
stats["online_time_minutes"] += doc.get("duration", 0)
|
||||
for record in db.online_time.find({"end_timestamp": {"$gte": collect_period[-1][1]}}):
|
||||
end_timestamp: datetime = record.get("end_timestamp")
|
||||
for idx, (_, period_start, _) in enumerate(collect_period):
|
||||
if end_timestamp >= period_start:
|
||||
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
|
||||
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
|
||||
for period_key, _period_start, _ in collect_period[idx:]:
|
||||
start_timestamp: datetime = record.get("start_timestamp")
|
||||
if start_timestamp < _period_start:
|
||||
# 如果开始时间在查询边界之前,则使用开始时间
|
||||
stats[period_key][ONLINE_TIME] += (end_timestamp - _period_start).total_seconds() / 60
|
||||
else:
|
||||
# 否则,使用开始时间
|
||||
stats[period_key][ONLINE_TIME] += (end_timestamp - start_timestamp).total_seconds() / 60
|
||||
break # 取消更早时间段的判断
|
||||
|
||||
return stats
|
||||
|
||||
def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime, str]]) -> Dict[str, Any]:
|
||||
"""
|
||||
收集指定时间段的消息统计数据
|
||||
|
||||
:param collect_period: 统计时间段
|
||||
"""
|
||||
if len(collect_period) <= 0:
|
||||
return {}
|
||||
else:
|
||||
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
stats = {
|
||||
period_key: {
|
||||
# 消息统计
|
||||
TOTAL_MSG_CNT: 0,
|
||||
MSG_CNT_BY_CHAT: defaultdict(int),
|
||||
}
|
||||
for period_key, _, _ in collect_period
|
||||
}
|
||||
|
||||
# 统计消息量
|
||||
messages_cursor = db.messages.find({"time": {"$gte": start_time.timestamp()}})
|
||||
for doc in messages_cursor:
|
||||
stats["total_messages"] += 1
|
||||
# user_id = str(doc.get("user_info", {}).get("user_id", "unknown"))
|
||||
chat_info = doc.get("chat_info", {})
|
||||
user_info = doc.get("user_info", {})
|
||||
user_id = str(user_info.get("user_id", "unknown"))
|
||||
message_time = doc.get("time", 0)
|
||||
group_info = chat_info.get("group_info") if chat_info else {}
|
||||
# print(f"group_info: {group_info}")
|
||||
group_name = None
|
||||
if group_info:
|
||||
group_id = f"g{group_info.get('group_id')}"
|
||||
group_name = group_info.get("group_name", f"群{group_info.get('group_id')}")
|
||||
if user_info and not group_name:
|
||||
group_id = f"u{user_info['user_id']}"
|
||||
group_name = user_info["user_nickname"]
|
||||
if self.name_dict.get(group_id):
|
||||
if message_time > self.name_dict.get(group_id)[1]:
|
||||
self.name_dict[group_id] = [group_name, message_time]
|
||||
for message in db.messages.find({"time": {"$gte": collect_period[-1][1].timestamp()}}):
|
||||
chat_info = message.get("chat_info", None) # 聊天信息
|
||||
user_info = message.get("user_info", None) # 用户信息(消息发送人)
|
||||
message_time = message.get("time", 0) # 消息时间
|
||||
|
||||
group_info = chat_info.get("group_info") if chat_info else None # 尝试获取群聊信息
|
||||
if group_info is not None:
|
||||
# 若有群聊信息
|
||||
chat_id = f"g{group_info.get('group_id')}"
|
||||
chat_name = group_info.get("group_name", f"群{group_info.get('group_id')}")
|
||||
elif user_info:
|
||||
# 若没有群聊信息,则尝试获取用户信息
|
||||
chat_id = f"u{user_info['user_id']}"
|
||||
chat_name = user_info["user_nickname"]
|
||||
else:
|
||||
self.name_dict[group_id] = [group_name, message_time]
|
||||
# print(f"group_name: {group_name}")
|
||||
stats["messages_by_user"][user_id] += 1
|
||||
stats["messages_by_chat"][group_id] += 1
|
||||
continue # 如果没有群组信息也没有用户信息,则跳过
|
||||
|
||||
if chat_id in self.name_mapping:
|
||||
if chat_name != self.name_mapping[chat_id][0] and message_time > self.name_mapping[chat_id][1]:
|
||||
# 如果用户名称不同,且新消息时间晚于之前记录的时间,则更新用户名称
|
||||
self.name_mapping[chat_id] = (chat_name, message_time)
|
||||
else:
|
||||
self.name_mapping[chat_id] = (chat_name, message_time)
|
||||
|
||||
for idx, (_, period_start, _) in enumerate(collect_period):
|
||||
if message_time >= period_start.timestamp():
|
||||
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
|
||||
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
|
||||
for period_key, _, _ in collect_period[idx:]:
|
||||
stats[period_key][TOTAL_MSG_CNT] += 1
|
||||
stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1
|
||||
break
|
||||
|
||||
return stats
|
||||
|
||||
def _collect_all_statistics(self) -> Dict[str, Dict[str, Any]]:
|
||||
"""收集所有时间范围的统计数据"""
|
||||
"""
|
||||
收集各时间段的统计数据
|
||||
"""
|
||||
|
||||
now = datetime.now()
|
||||
# 使用2000年1月1日作为"所有时间"的起始时间,这是一个更合理的起始点
|
||||
all_time_start = datetime(2000, 1, 1)
|
||||
|
||||
return {
|
||||
"all_time": self._collect_statistics_for_period(all_time_start),
|
||||
"last_7_days": self._collect_statistics_for_period(now - timedelta(days=7)),
|
||||
"last_24_hours": self._collect_statistics_for_period(now - timedelta(days=1)),
|
||||
"last_hour": self._collect_statistics_for_period(now - timedelta(hours=1)),
|
||||
}
|
||||
last_all_time_stat = None
|
||||
|
||||
def _format_stats_section(self, stats: Dict[str, Any], title: str) -> str:
|
||||
"""格式化统计部分的输出"""
|
||||
output = ["\n" + "-" * 84, f"{title}", "-" * 84, f"总请求数: {stats['total_requests']}"]
|
||||
stat = {period[0]: {} for period in self.stat_period}
|
||||
|
||||
if stats["total_requests"] > 0:
|
||||
output.append(f"总Token数: {stats['total_tokens']}")
|
||||
output.append(f"总花费: {stats['total_cost']:.4f}¥")
|
||||
output.append(f"在线时间: {stats['online_time_minutes']}分钟")
|
||||
output.append(f"总消息数: {stats['total_messages']}\n")
|
||||
if "last_full_statistics_timestamp" in local_storage and "last_full_statistics" in local_storage:
|
||||
# 若存有上次完整统计的时间戳,则使用该时间戳作为"所有时间"的起始时间,进行增量统计
|
||||
last_full_stat_ts: float = local_storage["last_full_statistics_timestamp"]
|
||||
last_all_time_stat = local_storage["last_full_statistics"]
|
||||
self.stat_period = [item for item in self.stat_period if item[0] != "all_time"] # 删除"所有时间"的统计时段
|
||||
self.stat_period.append(("all_time", datetime.fromtimestamp(last_full_stat_ts), "自部署以来的"))
|
||||
|
||||
data_fmt = "{:<32} {:>10} {:>14} {:>13.4f} ¥"
|
||||
model_req_stat = self._collect_model_request_for_period(self.stat_period)
|
||||
online_time_stat = self._collect_online_time_for_period(self.stat_period)
|
||||
message_count_stat = self._collect_message_count_for_period(self.stat_period)
|
||||
|
||||
# 统计数据合并
|
||||
# 合并三类统计数据
|
||||
for period_key, _, _ in self.stat_period:
|
||||
stat[period_key].update(model_req_stat[period_key])
|
||||
stat[period_key].update(online_time_stat[period_key])
|
||||
stat[period_key].update(message_count_stat[period_key])
|
||||
|
||||
if last_all_time_stat:
|
||||
# 若存在上次完整统计数据,则将其与当前统计数据合并
|
||||
for key, val in last_all_time_stat.items():
|
||||
if isinstance(val, dict):
|
||||
# 是字典类型,则进行合并
|
||||
for sub_key, sub_val in val.items():
|
||||
stat["all_time"][key][sub_key] += sub_val
|
||||
else:
|
||||
# 直接合并
|
||||
stat["all_time"][key] += val
|
||||
|
||||
# 更新上次完整统计数据的时间戳
|
||||
local_storage["last_full_statistics_timestamp"] = now.timestamp()
|
||||
# 更新上次完整统计数据
|
||||
local_storage["last_full_statistics"] = stat["all_time"]
|
||||
|
||||
return stat
|
||||
|
||||
# -- 以下为统计数据格式化方法 --
|
||||
|
||||
@staticmethod
|
||||
def _format_total_stat(stats: Dict[str, Any]) -> str:
|
||||
"""
|
||||
格式化总统计数据
|
||||
"""
|
||||
output = [
|
||||
f"总在线时间: {stats[ONLINE_TIME]:.1f}分钟",
|
||||
f"总消息数: {stats[TOTAL_MSG_CNT]}",
|
||||
f"总请求数: {stats[TOTAL_REQ_CNT]}",
|
||||
f"总花费: {stats[TOTAL_COST]:.4f}¥",
|
||||
"",
|
||||
]
|
||||
|
||||
return "\n".join(output)
|
||||
|
||||
@staticmethod
|
||||
def _format_model_classified_stat(stats: Dict[str, Any]) -> str:
|
||||
"""
|
||||
格式化按模型分类的统计数据
|
||||
"""
|
||||
if stats[TOTAL_REQ_CNT] > 0:
|
||||
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥"
|
||||
|
||||
output = [
|
||||
"按模型分类统计:",
|
||||
" 模型名称 调用次数 输入Token 输出Token Token总量 累计花费",
|
||||
]
|
||||
for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()):
|
||||
name = model_name[:29] + "..." if len(model_name) > 32 else model_name
|
||||
in_tokens = stats[IN_TOK_BY_MODEL][model_name]
|
||||
out_tokens = stats[OUT_TOK_BY_MODEL][model_name]
|
||||
tokens = stats[TOTAL_TOK_BY_MODEL][model_name]
|
||||
cost = stats[COST_BY_MODEL][model_name]
|
||||
output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost))
|
||||
|
||||
# 按模型统计
|
||||
output.append("按模型统计:")
|
||||
output.append("模型名称 调用次数 Token总量 累计花费")
|
||||
for model_name, count in sorted(stats["requests_by_model"].items()):
|
||||
tokens = stats["tokens_by_model"][model_name]
|
||||
cost = stats["costs_by_model"][model_name]
|
||||
output.append(
|
||||
data_fmt.format(model_name[:30] + ".." if len(model_name) > 32 else model_name, count, tokens, cost)
|
||||
)
|
||||
output.append("")
|
||||
return "\n".join(output)
|
||||
else:
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def _format_req_type_classified_stat(stats: Dict[str, Any]) -> str:
|
||||
"""
|
||||
格式化按请求类型分类的统计数据
|
||||
"""
|
||||
if stats[TOTAL_REQ_CNT] > 0:
|
||||
# 按请求类型统计
|
||||
output.append("按请求类型统计:")
|
||||
output.append("模型名称 调用次数 Token总量 累计花费")
|
||||
for req_type, count in sorted(stats["requests_by_type"].items()):
|
||||
tokens = stats["tokens_by_type"][req_type]
|
||||
cost = stats["costs_by_type"][req_type]
|
||||
output.append(
|
||||
data_fmt.format(req_type[:22] + ".." if len(req_type) > 24 else req_type, count, tokens, cost)
|
||||
)
|
||||
output.append("")
|
||||
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥"
|
||||
|
||||
output = [
|
||||
"按请求类型分类统计:",
|
||||
" 请求类型 调用次数 输入Token 输出Token Token总量 累计花费",
|
||||
]
|
||||
for req_type, count in sorted(stats[REQ_CNT_BY_TYPE].items()):
|
||||
name = req_type[:29] + "..." if len(req_type) > 32 else req_type
|
||||
in_tokens = stats[IN_TOK_BY_TYPE][req_type]
|
||||
out_tokens = stats[OUT_TOK_BY_TYPE][req_type]
|
||||
tokens = stats[TOTAL_TOK_BY_TYPE][req_type]
|
||||
cost = stats[COST_BY_TYPE][req_type]
|
||||
output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost))
|
||||
|
||||
output.append("")
|
||||
return "\n".join(output)
|
||||
else:
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def _format_user_classified_stat(stats: Dict[str, Any]) -> str:
|
||||
"""
|
||||
格式化按用户分类的统计数据
|
||||
"""
|
||||
if stats[TOTAL_REQ_CNT] > 0:
|
||||
# 修正用户统计列宽
|
||||
output.append("按用户统计:")
|
||||
output.append("用户ID 调用次数 Token总量 累计花费")
|
||||
for user_id, count in sorted(stats["requests_by_user"].items()):
|
||||
tokens = stats["tokens_by_user"][user_id]
|
||||
cost = stats["costs_by_user"][user_id]
|
||||
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥"
|
||||
|
||||
output = [
|
||||
"按用户分类统计:",
|
||||
" 用户名称 调用次数 输入Token 输出Token Token总量 累计花费",
|
||||
]
|
||||
for user_id, count in sorted(stats[REQ_CNT_BY_USER].items()):
|
||||
in_tokens = stats[IN_TOK_BY_USER][user_id]
|
||||
out_tokens = stats[OUT_TOK_BY_USER][user_id]
|
||||
tokens = stats[TOTAL_TOK_BY_USER][user_id]
|
||||
cost = stats[COST_BY_USER][user_id]
|
||||
output.append(
|
||||
data_fmt.format(
|
||||
user_id[:22], # 不再添加省略号,保持原始ID
|
||||
count,
|
||||
in_tokens,
|
||||
out_tokens,
|
||||
tokens,
|
||||
cost,
|
||||
)
|
||||
)
|
||||
|
||||
output.append("")
|
||||
return "\n".join(output)
|
||||
else:
|
||||
return ""
|
||||
|
||||
# 添加聊天统计
|
||||
output.append("群组统计:")
|
||||
output.append("群组名称 消息数量")
|
||||
for group_id, count in sorted(stats["messages_by_chat"].items()):
|
||||
output.append(f"{self.name_dict[group_id][0][:32]:<32} {count:>10}")
|
||||
def _format_chat_stat(self, stats: Dict[str, Any]) -> str:
|
||||
"""
|
||||
格式化聊天统计数据
|
||||
"""
|
||||
if stats[TOTAL_MSG_CNT] > 0:
|
||||
output = ["聊天消息统计:", " 联系人/群组名称 消息数量"]
|
||||
for chat_id, count in sorted(stats[MSG_CNT_BY_CHAT].items()):
|
||||
output.append(f"{self.name_mapping[chat_id][0][:32]:<32} {count:>10}")
|
||||
|
||||
return "\n".join(output)
|
||||
|
||||
def _format_stats_section_lite(self, stats: Dict[str, Any], title: str) -> str:
|
||||
"""格式化统计部分的输出"""
|
||||
output = ["\n" + "-" * 84, f"{title}", "-" * 84]
|
||||
|
||||
# output.append(f"总请求数: {stats['total_requests']}")
|
||||
if stats["total_requests"] > 0:
|
||||
# output.append(f"总Token数: {stats['total_tokens']}")
|
||||
output.append(f"总花费: {stats['total_cost']:.4f}¥")
|
||||
# output.append(f"在线时间: {stats['online_time_minutes']}分钟")
|
||||
output.append(f"总消息数: {stats['total_messages']}\n")
|
||||
|
||||
data_fmt = "{:<32} {:>10} {:>14} {:>13.4f} ¥"
|
||||
|
||||
# 按模型统计
|
||||
output.append("按模型统计:")
|
||||
output.append("模型名称 调用次数 Token总量 累计花费")
|
||||
for model_name, count in sorted(stats["requests_by_model"].items()):
|
||||
tokens = stats["tokens_by_model"][model_name]
|
||||
cost = stats["costs_by_model"][model_name]
|
||||
output.append(
|
||||
data_fmt.format(model_name[:30] + ".." if len(model_name) > 32 else model_name, count, tokens, cost)
|
||||
)
|
||||
output.append("")
|
||||
|
||||
# 按请求类型统计
|
||||
# output.append("按请求类型统计:")
|
||||
# output.append(("模型名称 调用次数 Token总量 累计花费"))
|
||||
# for req_type, count in sorted(stats["requests_by_type"].items()):
|
||||
# tokens = stats["tokens_by_type"][req_type]
|
||||
# cost = stats["costs_by_type"][req_type]
|
||||
# output.append(
|
||||
# data_fmt.format(req_type[:22] + ".." if len(req_type) > 24 else req_type, count, tokens, cost)
|
||||
# )
|
||||
# output.append("")
|
||||
|
||||
# 修正用户统计列宽
|
||||
# output.append("按用户统计:")
|
||||
# output.append(("用户ID 调用次数 Token总量 累计花费"))
|
||||
# for user_id, count in sorted(stats["requests_by_user"].items()):
|
||||
# tokens = stats["tokens_by_user"][user_id]
|
||||
# cost = stats["costs_by_user"][user_id]
|
||||
# output.append(
|
||||
# data_fmt.format(
|
||||
# user_id[:22], # 不再添加省略号,保持原始ID
|
||||
# count,
|
||||
# tokens,
|
||||
# cost,
|
||||
# )
|
||||
# )
|
||||
# output.append("")
|
||||
|
||||
# 添加聊天统计
|
||||
output.append("群组统计:")
|
||||
output.append("群组名称 消息数量")
|
||||
for group_id, count in sorted(stats["messages_by_chat"].items()):
|
||||
output.append(f"{self.name_dict[group_id][0][:32]:<32} {count:>10}")
|
||||
|
||||
return "\n".join(output)
|
||||
|
||||
def _save_statistics(self, all_stats: Dict[str, Dict[str, Any]]):
|
||||
"""将统计结果保存到文件"""
|
||||
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
output = [f"LLM请求统计报告 (生成时间: {current_time})"]
|
||||
|
||||
# 添加各个时间段的统计
|
||||
sections = [
|
||||
("所有时间统计", "all_time"),
|
||||
("最近7天统计", "last_7_days"),
|
||||
("最近24小时统计", "last_24_hours"),
|
||||
("最近1小时统计", "last_hour"),
|
||||
]
|
||||
|
||||
for title, key in sections:
|
||||
output.append(self._format_stats_section(all_stats[key], title))
|
||||
|
||||
# 写入文件
|
||||
with open(self.output_file, "w", encoding="utf-8") as f:
|
||||
f.write("\n".join(output))
|
||||
|
||||
def _console_output_loop(self):
|
||||
"""控制台输出循环,每5分钟输出一次最近1小时的统计"""
|
||||
while self.running:
|
||||
# 等待5分钟
|
||||
for _ in range(300): # 5分钟 = 300秒
|
||||
if not self.running:
|
||||
break
|
||||
time.sleep(1)
|
||||
try:
|
||||
# 收集最近1小时的统计数据
|
||||
now = datetime.now()
|
||||
hour_stats = self._collect_statistics_for_period(now - timedelta(hours=1))
|
||||
|
||||
# 使用logger输出
|
||||
stats_output = self._format_stats_section_lite(
|
||||
hour_stats, "最近1小时统计:详细信息见根目录文件:llm_statistics.txt"
|
||||
)
|
||||
logger.info("\n" + stats_output + "\n" + "=" * 50)
|
||||
|
||||
except Exception:
|
||||
logger.exception("控制台统计数据输出失败")
|
||||
|
||||
def _stats_loop(self):
|
||||
"""统计循环,每5分钟运行一次"""
|
||||
while self.running:
|
||||
try:
|
||||
# 记录在线时间
|
||||
self._record_online_time()
|
||||
# 收集并保存统计数据
|
||||
all_stats = self._collect_all_statistics()
|
||||
self._save_statistics(all_stats)
|
||||
except Exception:
|
||||
logger.exception("统计数据处理失败")
|
||||
|
||||
# 等待5分钟
|
||||
for _ in range(300): # 5分钟 = 300秒
|
||||
if not self.running:
|
||||
break
|
||||
time.sleep(1)
|
||||
return "\n".join(output)
|
||||
else:
|
||||
return ""
|
||||
|
||||
Reference in New Issue
Block a user