feat:非常好的早期聊天记录压缩系统,麦麦现在有5倍上文记忆量(真的吗?

This commit is contained in:
SengokuCola
2025-04-14 21:33:27 +08:00
parent 7eba42f84a
commit 46347678b4
12 changed files with 314 additions and 446 deletions

View File

@@ -1,7 +1,8 @@
from src.do_tool.tool_can_use.base_tool import BaseTool, register_tool
from src.do_tool.tool_can_use.base_tool import BaseTool
from src.plugins.schedule.schedule_generator import bot_schedule
from src.common.logger import get_module_logger
from typing import Dict, Any
from datetime import datetime
logger = get_module_logger("get_current_task_tool")
@@ -9,19 +10,19 @@ logger = get_module_logger("get_current_task_tool")
class GetCurrentTaskTool(BaseTool):
"""获取当前正在做的事情/最近的任务工具"""
name = "get_current_task"
description = "获取当前正在做的事情/最近的任务"
name = "get_schedule"
description = "获取当前正在做的事情,或者某个时间点/时间段的日程信息"
parameters = {
"type": "object",
"properties": {
"num": {"type": "integer", "description": "要获取的任务数量"},
"time_info": {"type": "boolean", "description": "是否包含时间信息"},
"start_time": {"type": "string", "description": "开始时间,格式为'HH:MM'填写current则获取当前任务"},
"end_time": {"type": "string", "description": "结束时间,格式为'HH:MM'填写current则获取当前任务"},
},
"required": [],
"required": ["start_time", "end_time"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行获取当前任务
"""执行获取当前任务或指定时间段的日程信息
Args:
function_args: 工具参数
@@ -30,25 +31,31 @@ class GetCurrentTaskTool(BaseTool):
Returns:
Dict: 工具执行结果
"""
try:
# 获取参数,如果没有提供则使用默认值
num = function_args.get("num", 1)
time_info = function_args.get("time_info", False)
start_time = function_args.get("start_time")
end_time = function_args.get("end_time")
# 调用日程系统获取当前任务
current_task = bot_schedule.get_current_num_task(num=num, time_info=time_info)
# 格式化返回结果
# 如果 start_time 或 end_time 为 "current",则获取当前任务
if start_time == "current" or end_time == "current":
current_task = bot_schedule.get_current_num_task(num=1, time_info=True)
current_time = datetime.now().strftime("%H:%M:%S")
current_date = datetime.now().strftime("%Y-%m-%d")
if current_task:
task_info = current_task
task_info = f"{current_date} {current_time},你在{current_task}"
else:
task_info = "当前没有正在进行的任务"
task_info = f"{current_time} {current_date},没在做任何事情"
# 如果提供了时间范围,则获取该时间段的日程信息
elif start_time and end_time:
tasks = await bot_schedule.get_task_from_time_to_time(start_time, end_time)
if tasks:
task_list = []
for task in tasks:
task_time = task[0].strftime("%H:%M")
task_content = task[1]
task_list.append(f"{task_time}时,{task_content}")
task_info = "\n".join(task_list)
else:
task_info = f"{start_time}{end_time} 之间没有找到日程信息"
return {"name": "get_current_task", "content": f"当前任务信息: {task_info}"}
except Exception as e:
logger.error(f"获取当前任务工具执行失败: {str(e)}")
return {"name": "get_current_task", "content": f"获取当前任务失败: {str(e)}"}
return {"name": "get_current_task", "content": f"日程信息: {task_info}"}
# 注册工具
# register_tool(GetCurrentTaskTool)

View File

@@ -3,13 +3,13 @@ from src.plugins.memory_system.Hippocampus import HippocampusManager
from src.common.logger import get_module_logger
from typing import Dict, Any
logger = get_module_logger("get_memory_tool")
logger = get_module_logger("mid_chat_mem_tool")
class GetMemoryTool(BaseTool):
"""从记忆系统中获取相关记忆的工具"""
name = "get_memory"
name = "mid_chat_mem"
description = "从记忆系统中获取相关记忆"
parameters = {
"type": "object",
@@ -49,10 +49,10 @@ class GetMemoryTool(BaseTool):
else:
content = f"你不太记得有关{text}的记忆,你对此不太了解"
return {"name": "get_memory", "content": content}
return {"name": "mid_chat_mem", "content": content}
except Exception as e:
logger.error(f"记忆获取工具执行失败: {str(e)}")
return {"name": "get_memory", "content": f"记忆获取失败: {str(e)}"}
return {"name": "mid_chat_mem", "content": f"记忆获取失败: {str(e)}"}
# 注册工具

View File

@@ -0,0 +1,39 @@
from src.do_tool.tool_can_use.base_tool import BaseTool
from src.common.logger import get_module_logger
from typing import Dict, Any
from datetime import datetime
logger = get_module_logger("get_time_date")
class GetCurrentDateTimeTool(BaseTool):
"""获取当前时间、日期、年份和星期的工具"""
name = "get_current_date_time"
description = "当有人询问或者涉及到具体时间或者日期的时候,必须使用这个工具"
parameters = {
"type": "object",
"properties": {},
"required": [],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行获取当前时间、日期、年份和星期
Args:
function_args: 工具参数(此工具不使用)
message_txt: 原始消息文本(此工具不使用)
Returns:
Dict: 工具执行结果
"""
current_time = datetime.now().strftime("%H:%M:%S")
current_date = datetime.now().strftime("%Y-%m-%d")
current_year = datetime.now().strftime("%Y")
current_weekday = datetime.now().strftime("%A")
return {
"name": "get_current_date_time",
"content": f"当前时间: {current_time}, 日期: {current_date}, 年份: {current_year}, 星期: {current_weekday}"
}

View File

@@ -0,0 +1,40 @@
from src.do_tool.tool_can_use.base_tool import BaseTool
from src.common.logger import get_module_logger
from typing import Dict, Any
logger = get_module_logger("get_mid_memory_tool")
class GetMidMemoryTool(BaseTool):
"""从记忆系统中获取相关记忆的工具"""
name = "mid_chat_mem"
description = "之前的聊天内容中获取具体信息,当最新消息提到,或者你需要回复的消息中提到,你可以使用这个工具"
parameters = {
"type": "object",
"properties": {
"id": {"type": "integer", "description": "要查询的聊天记录id"},
},
"required": ["id"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行记忆获取
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
try:
id = function_args.get("id")
return {"name": "mid_chat_mem", "content": str(id)}
except Exception as e:
logger.error(f"聊天记录获取工具执行失败: {str(e)}")
return {"name": "mid_chat_mem", "content": f"聊天记录获取失败: {str(e)}"}
# 注册工具
# register_tool(GetMemoryTool)

View File

@@ -6,6 +6,7 @@ import time
import json
from src.common.logger import get_module_logger, TOOL_USE_STYLE_CONFIG, LogConfig
from src.do_tool.tool_can_use import get_all_tool_definitions, get_tool_instance
from src.heart_flow.sub_heartflow import SubHeartflow
tool_use_config = LogConfig(
# 使用消息发送专用样式
@@ -21,7 +22,7 @@ class ToolUser:
model=global_config.llm_heartflow, temperature=0.2, max_tokens=1000, request_type="tool_use"
)
async def _build_tool_prompt(self, message_txt: str, sender_name: str, chat_stream: ChatStream, reply_message:str = ""):
async def _build_tool_prompt(self, message_txt: str, sender_name: str, chat_stream: ChatStream, subheartflow: SubHeartflow = None):
"""构建工具使用的提示词
Args:
@@ -32,6 +33,12 @@ class ToolUser:
Returns:
str: 构建好的提示词
"""
if subheartflow:
mid_memory_info = subheartflow.observations[0].mid_memory_info
# print(f"intol111111111111111111111111111111111222222222222mid_memory_info{mid_memory_info}")
else:
mid_memory_info = ""
new_messages = list(
db.messages.find({"chat_id": chat_stream.stream_id, "time": {"$gt": time.time()}}).sort("time", 1).limit(15)
)
@@ -43,13 +50,12 @@ class ToolUser:
# 这些信息应该从调用者传入而不是从self获取
bot_name = global_config.BOT_NICKNAME
prompt = ""
prompt += mid_memory_info
prompt += "你正在思考如何回复群里的消息。\n"
prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
if reply_message:
prompt += f"你刚刚回复的内容是:{reply_message}\n"
prompt += f"注意你就是{bot_name}{bot_name}指的就是你。"
prompt += "你现在需要对群里的聊天内容进行回复,现在选择工具来对消息和你的回复进行处理,你是否需要额外的信息,或者进行一些动作,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么,请输出你需要的工具,或者你需要的额外信息"
prompt += "你现在需要对群里的聊天内容进行回复,现在选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
return prompt
def _define_tools(self):
@@ -83,20 +89,8 @@ class ToolUser:
# 执行工具
result = await tool_instance.execute(function_args, message_txt)
if result:
# 根据工具名称确定类型标签
tool_type = ""
if "memory" in function_name.lower():
tool_type = "memory"
elif "schedule" in function_name.lower() or "task" in function_name.lower():
tool_type = "schedule"
elif "knowledge" in function_name.lower():
tool_type = "knowledge"
elif "change_relationship" in function_name.lower():
tool_type = "change_relationship"
elif "change_mood" in function_name.lower():
tool_type = "change_mood"
else:
tool_type = "other"
# 直接使用 function_name 作为 tool_type
tool_type = function_name
return {
"tool_call_id": tool_call["id"],
@@ -110,7 +104,7 @@ class ToolUser:
logger.error(f"执行工具调用时发生错误: {str(e)}")
return None
async def use_tool(self, message_txt: str, sender_name: str, chat_stream: ChatStream):
async def use_tool(self, message_txt: str, sender_name: str, chat_stream: ChatStream, subheartflow: SubHeartflow = None):
"""使用工具辅助思考,判断是否需要额外信息
Args:
@@ -123,7 +117,12 @@ class ToolUser:
"""
try:
# 构建提示词
prompt = await self._build_tool_prompt(message_txt, sender_name, chat_stream)
prompt = await self._build_tool_prompt(
message_txt,
sender_name,
chat_stream,
subheartflow
)
# 定义可用工具
tools = self._define_tools()
@@ -158,30 +157,26 @@ class ToolUser:
tool_calls_str = ""
for tool_call in tool_calls:
tool_calls_str += f"{tool_call['function']['name']}\n"
logger.info(f"模型请求调用{len(tool_calls)}个工具: {tool_calls_str}")
logger.info(f"根据:\n{prompt}\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}")
tool_results = []
structured_info = {
"memory": [],
"schedule": [],
"knowledge": [],
"change_relationship": [],
"change_mood": [],
"other": []
}
structured_info = {} # 动态生成键
# 执行所有工具调用
for tool_call in tool_calls:
result = await self._execute_tool_call(tool_call, message_txt)
if result:
tool_results.append(result)
# 将工具结果添加到对应类型的列表中
structured_info[result["type"]].append({
# 使用工具名称作为键
tool_name = result["name"]
if tool_name not in structured_info:
structured_info[tool_name] = []
structured_info[tool_name].append({
"name": result["name"],
"content": result["content"]
})
# 如果有工具结果,返回结构化的信息
if any(structured_info.values()):
if structured_info:
logger.info(f"工具调用收集到结构化信息: {json.dumps(structured_info, ensure_ascii=False)}")
return {
"used_tools": True,

View File

@@ -4,7 +4,9 @@ from datetime import datetime
from src.plugins.models.utils_model import LLM_request
from src.plugins.config.config import global_config
from src.common.database import db
from src.common.logger import get_module_logger
import traceback
logger = get_module_logger("observation")
# 所有观察的基类
class Observation:
@@ -34,23 +36,59 @@ class ChattingObservation(Observation):
self.last_summary_time = 0 # 上次更新summary的时间
self.sub_observe = None
self.max_now_obs_len = 20
self.overlap_len = 5
self.mid_memorys = []
self.max_mid_memory_len = 5
self.mid_memory_info = ""
self.now_message_info = ""
self.updating_old = False
self.llm_summary = LLM_request(
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
)
# 进行一次观察 返回观察结果observe_info
def get_observe_info(self, ids = None):
if ids:
mid_memory_str = ""
for id in ids:
print(f"id{id}")
try:
for mid_memory in self.mid_memorys:
if mid_memory['id'] == id:
mid_memory_by_id = mid_memory
msg_str = ""
for msg in mid_memory_by_id['messages']:
msg_str += f"{msg['detailed_plain_text']}"
time_diff = int((datetime.now().timestamp() - mid_memory_by_id['created_at']) / 60)
mid_memory_str += f"距离现在{time_diff}分钟前:\n{msg_str}\n"
except Exception as e:
logger.error(f"获取mid_memory_id失败: {e}")
traceback.print_exc()
# print(f"获取mid_memory_id失败: {e}")
return self.now_message_info
return mid_memory_str + "现在群里正在聊:\n" + self.now_message_info
else:
return self.now_message_info
async def observe(self):
# 查找新消息限制最多30条
# 查找新消息
new_messages = list(
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", 1)
.limit(15)
) # 按时间正序排列最多15条
) # 按时间正序排列
if not new_messages:
return self.observe_info # 没有新消息,返回上次观察结果
self.last_observe_time = new_messages[-1]["time"]
self.talking_message.extend(new_messages)
# 将新消息转换为字符串格式
new_messages_str = ""
for msg in new_messages:
@@ -60,82 +98,61 @@ class ChattingObservation(Observation):
# print(f"new_messages_str{new_messages_str}")
# 将新消息添加到talking_message同时保持列表长度不超过20条
self.talking_message.extend(new_messages)
if len(self.talking_message) > 15:
self.talking_message = self.talking_message[-15:] # 只保留最新的15条
self.translate_message_list_to_str()
# 更新观察次数
# self.observe_times += 1
self.last_observe_time = new_messages[-1]["time"]
if len(self.talking_message) > self.max_now_obs_len and not self.updating_old:
self.updating_old = True
# 计算需要保留的消息数量
keep_messages_count = self.max_now_obs_len - self.overlap_len
# 提取所有超出保留数量的最老消息
oldest_messages = self.talking_message[:-keep_messages_count]
self.talking_message = self.talking_message[-keep_messages_count:]
oldest_messages_str = "\n".join([msg["detailed_plain_text"] for msg in oldest_messages])
oldest_timestamps = [msg["time"] for msg in oldest_messages]
# 检查是否需要更新summary
# current_time = int(datetime.now().timestamp())
# if current_time - self.last_summary_time >= 30: # 如果超过30秒重置计数
# self.summary_count = 0
# self.last_summary_time = current_time
# 调用 LLM 总结主题
prompt = f"请总结以下聊天记录的主题:\n{oldest_messages_str}\n主题,用一句话概括包括人物事件和主要信息,不要分点:"
try:
summary, _ = await self.llm_summary.generate_response_async(prompt)
except Exception as e:
print(f"总结主题失败: {e}")
summary = "无法总结主题"
# if self.summary_count < self.max_update_in_30s: # 如果30秒内更新次数小于2次
# await self.update_talking_summary(new_messages_str)
# print(f"更新聊天总结:{self.observe_info}11111111111111")
# self.summary_count += 1
updated_observe_info = await self.update_talking_summary(new_messages_str)
print(f"更新聊天总结:{updated_observe_info}11111111111111")
self.observe_info = updated_observe_info
mid_memory = {
"id": str(int(datetime.now().timestamp())),
"theme": summary,
"messages": oldest_messages,
"timestamps": oldest_timestamps,
"chat_id": self.chat_id,
"created_at": datetime.now().timestamp()
}
# print(f"mid_memory{mid_memory}")
# 存入内存中的 mid_memorys
self.mid_memorys.append(mid_memory)
if len(self.mid_memorys) > self.max_mid_memory_len:
self.mid_memorys.pop(0)
return updated_observe_info
mid_memory_str = "之前聊天的内容概括是:\n"
for mid_memory in self.mid_memorys:
time_diff = int((datetime.now().timestamp() - mid_memory['created_at']) / 60)
mid_memory_str += f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory['id']}){mid_memory['theme']}\n"
self.mid_memory_info = mid_memory_str
async def carefully_observe(self):
# 查找新消息限制最多40条
new_messages = list(
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", 1)
.limit(30)
) # 按时间正序排列最多30条
if not new_messages:
return self.observe_info # 没有新消息,返回上次观察结果
self.updating_old = False
# 将新消息转换为字符串格式
new_messages_str = ""
for msg in new_messages:
if "detailed_plain_text" in msg:
new_messages_str += f"{msg['detailed_plain_text']}\n"
# print(f"处理后self.talking_message{self.talking_message}")
# 将新消息添加到talking_message同时保持列表长度不超过30条
self.talking_message.extend(new_messages)
if len(self.talking_message) > 30:
self.talking_message = self.talking_message[-30:] # 只保留最新的30条
self.translate_message_list_to_str()
now_message_str = ""
now_message_str += self.translate_message_list_to_str(talking_message=self.talking_message)
self.now_message_info = now_message_str
# 更新观察次数
self.observe_times += 1
self.last_observe_time = new_messages[-1]["time"]
updated_observe_info = await self.update_talking_summary(new_messages_str)
self.observe_info = updated_observe_info
return updated_observe_info
logger.debug(f"压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.now_message_info}")
async def update_talking_summary(self, new_messages_str):
# 基于已经有的talking_summary和新的talking_message生成一个summary
# print(f"更新聊天总结:{self.talking_summary}")
# 开始构建prompt
# prompt_personality = "你"
# # person
# individuality = Individuality.get_instance()
# personality_core = individuality.personality.personality_core
# prompt_personality += personality_core
# personality_sides = individuality.personality.personality_sides
# random.shuffle(personality_sides)
# prompt_personality += f",{personality_sides[0]}"
# identity_detail = individuality.identity.identity_detail
# random.shuffle(identity_detail)
# prompt_personality += f",{identity_detail[0]}"
# personality_info = prompt_personality
prompt = ""
# prompt += f"{personality_info}"
@@ -155,7 +172,9 @@ class ChattingObservation(Observation):
# print(f"prompt{prompt}")
# print(f"self.observe_info{self.observe_info}")
def translate_message_list_to_str(self):
self.talking_message_str = ""
for message in self.talking_message:
self.talking_message_str += message["detailed_plain_text"]
def translate_message_list_to_str(self, talking_message):
talking_message_str = ""
for message in talking_message:
talking_message_str += message["detailed_plain_text"]
return talking_message_str

View File

@@ -1,4 +1,4 @@
from .observation import Observation
from .observation import Observation, ChattingObservation
import asyncio
from src.plugins.moods.moods import MoodManager
from src.plugins.models.utils_model import LLM_request
@@ -32,9 +32,10 @@ def init_prompt():
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += "{extra_info}\n"
# prompt += "{prompt_schedule}\n"
prompt += "{relation_prompt_all}\n"
prompt += "{prompt_personality}\n"
prompt += "刚刚你的想法是{current_thinking_info}如果有新的内容,记得转换话题\n"
prompt += "刚刚你的想法是{current_thinking_info}可以适当转换话题\n"
prompt += "-----------------------------------\n"
prompt += "现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
prompt += "你现在{mood_info}\n"
@@ -91,7 +92,7 @@ class SubHeartflow:
self.is_active = False
self.observations: list[Observation] = []
self.observations: list[ChattingObservation] = []
self.running_knowledges = []
@@ -151,14 +152,22 @@ class SubHeartflow:
observation = self.observations[0]
await observation.observe()
async def do_thinking_before_reply(self, message_txt: str, sender_name: str, chat_stream: ChatStream, extra_info: str):
async def do_thinking_before_reply(self, message_txt: str, sender_name: str, chat_stream: ChatStream, extra_info: str, obs_id: int = None):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# mood_info = "你很生气,很愤怒"
observation = self.observations[0]
chat_observe_info = observation.observe_info
if obs_id:
print(f"11111111111有id,开始获取观察信息{obs_id}")
chat_observe_info = observation.get_observe_info(obs_id)
else:
chat_observe_info = observation.get_observe_info()
extra_info_prompt = ""
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
# 开始构建prompt
prompt_personality = f"你的名字是{self.bot_name},你"
@@ -215,7 +224,8 @@ class SubHeartflow:
# prompt += f"记得结合上述的消息,生成内心想法,文字不要浮夸,注意你就是{self.bot_name}{self.bot_name}指的就是你。"
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info,
extra_info_prompt,
# prompt_schedule,
relation_prompt_all,
prompt_personality,
current_thinking_info,
@@ -250,6 +260,12 @@ class SubHeartflow:
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
extra_info_prompt = ""
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
@@ -268,7 +284,7 @@ class SubHeartflow:
reply_info = reply_content
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after")).format(
extra_info,
extra_info_prompt,
prompt_personality,
chat_observe_info,
current_thinking_info,

View File

@@ -3,7 +3,6 @@ from ..person_info.relationship_manager import relationship_manager
from .chat_stream import chat_manager
from .message_sender import message_manager
from ..storage.storage import MessageStorage
from .auto_speak import auto_speak_manager
__all__ = [
@@ -12,5 +11,4 @@ __all__ = [
"chat_manager",
"message_manager",
"MessageStorage",
"auto_speak_manager",
]

View File

@@ -1,184 +0,0 @@
import time
import asyncio
import random
from random import random as random_float
from typing import Dict
from ..config.config import global_config
from .message import MessageSending, MessageThinking, MessageSet, MessageRecv
from ..message.message_base import UserInfo, Seg
from .message_sender import message_manager
from ..moods.moods import MoodManager
from ..chat_module.reasoning_chat.reasoning_generator import ResponseGenerator
from src.common.logger import get_module_logger
from src.heart_flow.heartflow import heartflow
from ...common.database import db
logger = get_module_logger("auto_speak")
class AutoSpeakManager:
def __init__(self):
self._last_auto_speak_time: Dict[str, float] = {} # 记录每个聊天流上次自主发言的时间
self.mood_manager = MoodManager.get_instance()
self.gpt = ResponseGenerator() # 添加gpt实例
self._started = False
self._check_task = None
self.db = db
async def get_chat_info(self, chat_id: str) -> dict:
"""从数据库获取聊天流信息"""
chat_info = await self.db.chat_streams.find_one({"stream_id": chat_id})
return chat_info
async def start_auto_speak_check(self):
"""启动自动发言检查任务"""
if not self._started:
self._check_task = asyncio.create_task(self._periodic_check())
self._started = True
logger.success("自动发言检查任务已启动")
async def _periodic_check(self):
"""定期检查是否需要自主发言"""
while True and global_config.enable_think_flow:
# 获取所有活跃的子心流
active_subheartflows = []
for chat_id, subheartflow in heartflow._subheartflows.items():
if (
subheartflow.is_active and subheartflow.current_state.willing > 0
): # 只考虑活跃且意愿值大于0.5的子心流
active_subheartflows.append((chat_id, subheartflow))
logger.debug(
f"发现活跃子心流 - 聊天ID: {chat_id}, 意愿值: {subheartflow.current_state.willing:.2f}"
)
if not active_subheartflows:
logger.debug("当前没有活跃的子心流")
await asyncio.sleep(20) # 添加异步等待
continue
# 随机选择一个活跃的子心流
chat_id, subheartflow = random.choice(active_subheartflows)
logger.info(f"随机选择子心流 - 聊天ID: {chat_id}, 意愿值: {subheartflow.current_state.willing:.2f}")
# 检查是否应该自主发言
if await self.check_auto_speak(subheartflow):
logger.info(f"准备自主发言 - 聊天ID: {chat_id}")
# 生成自主发言
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform="qq", # 默认使用qq平台
)
# 创建一个空的MessageRecv对象作为上下文
message = MessageRecv(
{
"message_info": {
"user_info": {"user_id": chat_id, "user_nickname": "", "platform": "qq"},
"group_info": None,
"platform": "qq",
"time": time.time(),
},
"processed_plain_text": "",
"raw_message": "",
"is_emoji": False,
}
)
await self.generate_auto_speak(
subheartflow, message, bot_user_info, message.message_info["user_info"], message.message_info
)
else:
logger.debug(f"不满足自主发言条件 - 聊天ID: {chat_id}")
# 每分钟检查一次
await asyncio.sleep(20)
# await asyncio.sleep(5) # 发生错误时等待5秒再继续
async def check_auto_speak(self, subheartflow) -> bool:
"""检查是否应该自主发言"""
if not subheartflow:
return False
current_time = time.time()
chat_id = subheartflow.observe_chat_id
# 获取上次自主发言时间
if chat_id not in self._last_auto_speak_time:
self._last_auto_speak_time[chat_id] = 0
last_speak_time = self._last_auto_speak_time.get(chat_id, 0)
# 如果距离上次自主发言不到5分钟不发言
if current_time - last_speak_time < 30:
logger.debug(
f"距离上次发言时间太短 - 聊天ID: {chat_id}, 剩余时间: {30 - (current_time - last_speak_time):.1f}"
)
return False
# 获取当前意愿值
current_willing = subheartflow.current_state.willing
if current_willing > 0.1 and random_float() < 0.5:
self._last_auto_speak_time[chat_id] = current_time
logger.info(f"满足自主发言条件 - 聊天ID: {chat_id}, 意愿值: {current_willing:.2f}")
return True
logger.debug(f"不满足自主发言条件 - 聊天ID: {chat_id}, 意愿值: {current_willing:.2f}")
return False
async def generate_auto_speak(self, subheartflow, message, bot_user_info: UserInfo, userinfo, messageinfo):
"""生成自主发言内容"""
thinking_time_point = round(time.time(), 2)
think_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=think_id,
chat_stream=None, # 不需要chat_stream
bot_user_info=bot_user_info,
reply=message,
thinking_start_time=thinking_time_point,
)
message_manager.add_message(thinking_message)
# 生成自主发言内容
try:
response, raw_content = await self.gpt.generate_response(message)
except Exception as e:
logger.error(f"生成自主发言内容时发生错误: {e}")
return False
if response:
message_set = MessageSet(None, think_id) # 不需要chat_stream
mark_head = False
for msg in response:
message_segment = Seg(type="text", data=msg)
bot_message = MessageSending(
message_id=think_id,
chat_stream=None, # 不需要chat_stream
bot_user_info=bot_user_info,
sender_info=userinfo,
message_segment=message_segment,
reply=message,
is_head=not mark_head,
is_emoji=False,
thinking_start_time=thinking_time_point,
)
if not mark_head:
mark_head = True
message_set.add_message(bot_message)
message_manager.add_message(message_set)
# 更新情绪和关系
stance, emotion = await self.gpt._get_emotion_tags(raw_content, message.processed_plain_text)
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
return True
return False
# 创建全局AutoSpeakManager实例
auto_speak_manager = AutoSpeakManager()

View File

@@ -252,79 +252,76 @@ class ThinkFlowChat:
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
try:
# 观察
try:
with Timer("观察", timing_results):
await heartflow.get_subheartflow(chat.stream_id).do_observe()
except Exception as e:
logger.error(f"心流观察失败: {e}")
traceback.print_exc()
info_catcher.catch_after_observe(timing_results["观察"])
# 思考前使用工具
update_relationship = ""
get_mid_memory_id = []
tool_result_info = {}
try:
with Timer("思考前使用工具", timing_results):
tool_result = await self.tool_user.use_tool(message.processed_plain_text, message.message_info.user_info.user_nickname, chat)
tool_result = await self.tool_user.use_tool(
message.processed_plain_text,
message.message_info.user_info.user_nickname,
chat,
heartflow.get_subheartflow(chat.stream_id))
# 如果工具被使用且获得了结果,将收集到的信息合并到思考中
collected_info = ""
# collected_info = ""
if tool_result.get("used_tools", False):
# 如果有收集到的结构化信息,将其格式化后添加到当前思考中
if "structured_info" in tool_result:
info = tool_result["structured_info"]
# 处理记忆信息
if info["memory"]:
collected_info += "\n记忆相关信息:\n"
for mem in info["memory"]:
collected_info += f"- {mem['name']}: {mem['content']}\n"
tool_result_info = tool_result["structured_info"]
# collected_info = ""
get_mid_memory_id = []
update_relationship = ""
# 处理日程信息
if info["schedule"]:
collected_info += "\n日程相关信息:\n"
for sch in info["schedule"]:
collected_info += f"- {sch['name']}: {sch['content']}\n"
# 动态解析工具结果
for tool_name, tool_data in tool_result_info.items():
# tool_result_info += f"\n{tool_name} 相关信息:\n"
# for item in tool_data:
# tool_result_info += f"- {item['name']}: {item['content']}\n"
# 处理知识信息
if info["knowledge"]:
collected_info += "\n知识相关信息:\n"
for know in info["knowledge"]:
collected_info += f"- {know['name']}: {know['content']}\n"
# 特殊判定mid_chat_mem
if tool_name == "mid_chat_mem":
for mid_memory in tool_data:
get_mid_memory_id.append(mid_memory['content'])
# 处理关系信息
if info["change_relationship"]:
collected_info += "\n关系相关信息:\n"
for rel in info["change_relationship"]:
collected_info += f"- {rel['name']}: {rel['content']}\n"
# print("11111111111111111111111111111")
update_relationship += rel["content"]
# print(f"11111111111111111111111111111{update_relationship}")
# 特殊判定change_mood
if tool_name == "change_mood":
for mood in tool_data:
self.mood_manager.update_mood_from_emotion(
mood['content'],
global_config.mood_intensity_factor
)
# 处理心情信息
if info["change_mood"]:
collected_info += "\n心情相关信息:\n"
for mood in info["change_mood"]:
collected_info += f"- {mood['name']}: {mood['content']}\n"
# 特殊判定change_relationship
if tool_name == "change_relationship":
update_relationship = tool_data[0]["content"]
# 处理其他信息
if info["other"]:
collected_info += "\n其他相关信息:\n"
for other in info["other"]:
collected_info += f"- {other['name']}: {other['content']}\n"
except Exception as e:
logger.error(f"思考前工具调用失败: {e}")
logger.error(traceback.format_exc())
# 处理关系更新
if update_relationship:
# ori_response = ",".join(response_set)
# print("22222222222222222222222222222")
stance, emotion = await self.gpt._get_emotion_tags_with_reason("你还没有回复", message.processed_plain_text,update_relationship)
await relationship_manager.calculate_update_relationship_value(
chat_stream=message.chat_stream, label=emotion, stance=stance
stance, emotion = await self.gpt._get_emotion_tags_with_reason(
"你还没有回复",
message.processed_plain_text,
update_relationship
)
await relationship_manager.calculate_update_relationship_value(
chat_stream=message.chat_stream,
label=emotion,
stance=stance
)
print("33333333333333333333333333333")
# 思考前脑内状态
try:
@@ -335,7 +332,8 @@ class ThinkFlowChat:
message_txt=message.processed_plain_text,
sender_name=message.message_info.user_info.user_nickname,
chat_stream=chat,
extra_info=collected_info
obs_id = get_mid_memory_id,
extra_info=tool_result_info
)
except Exception as e:
logger.error(f"心流思考前脑内状态失败: {e}")
@@ -371,66 +369,6 @@ class ThinkFlowChat:
logger.error(f"心流处理表情包失败: {e}")
# 思考后使用工具
try:
with Timer("思考后使用工具", timing_results):
tool_result = await self.tool_user.use_tool(message.processed_plain_text, message.message_info.user_info.user_nickname, chat)
# 如果工具被使用且获得了结果,将收集到的信息合并到思考中
collected_info = ""
if tool_result.get("used_tools", False):
# 如果有收集到的结构化信息,将其格式化后添加到当前思考中
if "structured_info" in tool_result:
info = tool_result["structured_info"]
# 处理记忆信息
if info["memory"]:
collected_info += "\n记忆相关信息:\n"
for mem in info["memory"]:
collected_info += f"- {mem['name']}: {mem['content']}\n"
# 处理日程信息
if info["schedule"]:
collected_info += "\n日程相关信息:\n"
for sch in info["schedule"]:
collected_info += f"- {sch['name']}: {sch['content']}\n"
# 处理知识信息
if info["knowledge"]:
collected_info += "\n知识相关信息:\n"
for know in info["knowledge"]:
collected_info += f"- {know['name']}: {know['content']}\n"
# 处理关系信息
if info["change_relationship"]:
collected_info += "\n关系相关信息:\n"
for rel in info["change_relationship"]:
collected_info += f"- {rel['name']}: {rel['content']}\n"
# 处理心情信息
if info["change_mood"]:
collected_info += "\n心情相关信息:\n"
for mood in info["change_mood"]:
collected_info += f"- {mood['name']}: {mood['content']}\n"
# 处理其他信息
if info["other"]:
collected_info += "\n其他相关信息:\n"
for other in info["other"]:
collected_info += f"- {other['name']}: {other['content']}\n"
except Exception as e:
logger.error(f"思考后工具调用失败: {e}")
logger.error(traceback.format_exc())
# 更新关系
if info["change_relationship"]:
ori_response = ",".join(response_set)
stance, emotion = await self.gpt._get_emotion_tags(ori_response, message.processed_plain_text,info["change_relationship"]["content"])
await relationship_manager.calculate_update_relationship_value(
chat_stream=message.chat_stream, label=emotion, stance=stance
)
try:
with Timer("思考后脑内状态更新", timing_results):
stream_id = message.chat_stream.stream_id
@@ -440,7 +378,7 @@ class ThinkFlowChat:
stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
)
await heartflow.get_subheartflow(stream_id).do_thinking_after_reply(response_set, chat_talking_prompt,collected_info)
await heartflow.get_subheartflow(stream_id).do_thinking_after_reply(response_set, chat_talking_prompt,tool_result_info)
except Exception as e:
logger.error(f"心流思考后脑内状态更新失败: {e}")

View File

@@ -43,7 +43,7 @@ def init_prompt():
{chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
你刚刚脑子里在想:{current_mind_info}
现在请你读读之前的聊天记录,然后给出日常,口语化且简短的回复内容,只给出文字的回复内容,不要有内心独白:
现在请你读读之前的聊天记录,然后给出日常,口语化且简短的回复内容,请只对一个话题进行回复,只给出文字的回复内容,不要有内心独白:
""",
"heart_flow_prompt_simple",
)

View File

@@ -60,7 +60,7 @@ appearance = "用几句话描述外貌特征" # 外貌特征
enable_schedule_gen = true # 是否启用日程表(尚未完成)
prompt_schedule_gen = "用几句话描述描述性格特点或行动规律,这个特征会用来生成日程表"
schedule_doing_update_interval = 900 # 日程表更新间隔 单位秒
schedule_temperature = 0.2 # 日程表温度建议0.2-0.5
schedule_temperature = 0.1 # 日程表温度建议0.1-0.5
time_zone = "Asia/Shanghai" # 给你的机器人设置时区,可以解决运行电脑时区和国内时区不同的情况,或者模拟国外留学生日程
[platforms] # 必填项目,填写每个平台适配器提供的链接